【轻量级神经网络】MobileNet网络详解

news2024/11/13 10:25:09

文章目录

  • 1、深度卷积(Depthwise convolution)
  • 2、逐点卷积(Pointwise Convolution)
  • 3、深度可分离卷积(Depthwise Separable Convolution)
  • 4、Xception与MobileNet深度可分离卷积的区别

  • 深度学习领域内努力促使神经网络向小型化发展。在保证模型准确率的同时体积更小,速度更快。到了2016年直至现在,业内提出了SqueezeNet、ShuffleNet、NasNet、MnasNet以及MobileNet等轻量级网络模型。这些模型使移动终端、嵌入式设备运行神经网络模型成为可能。而MobileNet在轻量级神经网络中较具代表性。
  • MobileNet网络拥有更小的体积,更少的计算量,更高的精度。在轻量级神经网络中拥有极大的优势。

1、深度卷积(Depthwise convolution)

  • 深度卷积(Depthwise convolution, DW)不同于常规卷积操作,深度卷积中一个卷积核只有一维,负责一个通道,一个通道只被一个卷积核卷积,即没有各个通道进行卷积后相加的操作,因此卷积核个数与输入通道数相同,而且输出通道数也与输入通道数相同;常规卷积每个卷积核的维度与输入维度相同,每个通道单独做卷积运算后相加。
  • 以一张5x5x3(长和宽为5,RGB3通道)的彩色图片举例。每层深度卷积卷积核的数量与上一层的通道数相同(通道和卷积核一一对应)。设padding=1,stride=1,一个三通道的图像经过运算后生成了3个特征图,如下图所示:
    在这里插入图片描述
  • 深度卷积完成后的输出特征图通道数与输入层的通道数相同,无法扩展通道数。而且这种运算对输入层的每个通道独立进行卷积运算,没有有效的利用不同通道在相同空间位置上的特征信息。因此需要逐点卷积来将生成的特征图进行组合生成新的特征图。

2、逐点卷积(Pointwise Convolution)

  • 逐点卷积(Pointwise Convolution, PW)的运算与标准的1*1卷积运算非常相似。
  • 逐点卷积卷积核大小为1×1xM(M为输入数据的维度),每次卷积一个像素的区域。逐点卷积运算会将上一层的特征图在深度(通道)方向上进行加权组合,生成新的特征图,新的特征图的大小与输入数据大小一致,这种卷积方式以较少的计算量进行降维或升维操作(改变输出数据的维度)。这种卷积被用来“混合”通道之间的信息。
  • 以一张5x5x3(长和宽为5,RGB3通道)的彩色图片举例,使用4个1x1x3的逐点卷积核进行卷积,逐点卷积运算后生成了4个特征图。这个例子是使用逐点卷积进行升维的操作,特征图从5x5x3 升维到5x5x4。如下图所示:
    在这里插入图片描述

3、深度可分离卷积(Depthwise Separable Convolution)

  • 从MobileNetV1开始,到V2、V3的线性瓶颈结构都大量使用了深度可分离卷积。
  • 深度可分离卷积(Depthwise Separable Convolution)是一种卷积结构。它是由一层深度卷积(Depthwise convolution)与一层逐点卷积(Pointwise Convolution)组合而成的,每一层卷积之后都紧跟着批规范化和ReLU激活函数。跟标准卷积的区别就是精度基本不变的情况下,参数与计算量都明显减少。
    在这里插入图片描述
  • 将深度卷积和逐点卷积组成深度可分离卷积后的示意图,如下图所示:
    在这里插入图片描述
  • 首先进行深度卷积操作,得出的特征图各通道之间是不关联的。接着进行逐点卷积把深度卷积输出的特征图各通道关联起来。
  • 深度可分离卷积使用了更小的空间代价(参数减少)和更少的时间代价(计算量更少)实现了标准卷积层一样的效果(提取特征)。
  • 一般的设Df为输入特征图边长,Dk为卷积核边长,特征图和卷积核均为长宽一致,输入通道数为M,输出通道数为N,则:
    • 标准卷积计算量为:Df×Df×Dk×Dk×M×N
    • 深度卷积的计算量为:Df×Df×Dk×Dk×M
    • 逐点卷积的计算量为:Df×Df×M×N
  • 上图所示实现输入特征图大小为5×5×3,输出特成图大小为5×5×4,设padding=1,stride=1,深度卷积卷积核大小为3×3,标准卷积也使用3×3尺寸卷积核。实现相同的卷积效果,参数量(不包含偏置)与计算量对比如下表所示:
    在这里插入图片描述
    在这里插入图片描述

4、Xception与MobileNet深度可分离卷积的区别

  • 事实上深度可分离卷积不是在MobileNetV1中第一次提出的,而是在2016年由谷歌的Xception网络结构中提出的。MobileNetV1在Xception的基础上,对深度可分离卷积进行了改进,做到了计算量与参数量的下降:
  • 假定M为输入层的通道数,N为输出层的通道数。
  • Xception的深度可分离卷积是由输入参数开始,使用1x1xMxN卷积将输入层的通道数转换为目标通道数,再通过3x3x1卷积核对每个通道进行卷积,每次卷积过后使用ReLU进行激活。
  • MobileNetV1的深度可分离卷积则是先使用3x3x1xM对输入层的每个通道分别卷积,之后通过1x1xMxN将输入层通道数转换为输出层通道数,每次卷积过后做一次批规范化操作,再使用ReLU进行激活。
  • 这里我们使用MobileNetV1网络结构的第一个深度可分离卷积层来举例,输入层维度为112x112x32,输出层维度为112x112x64,Xception与MobileNet的深度可分离卷积的计算量与参数个数对比如下表:
    在这里插入图片描述
    参考链接:https://blog.csdn.net/qq_37555071/article/details/108393809

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/888580.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

opencv进阶07-支持向量机cv2.ml.SVM_create()简介及示例

支持向量机(Support Vector Machine,SVM)是一种二分类模型,目标是寻找一个标准(称为超平面)对样本数据进行分割,分割的原则是确保分类最优化(类别之间的间隔最大)。当数据…

你信吗,40%的受访者表示ChatGPT会做出比自己更好的投资决策

注意:本信息仅供参考,发布该内容旨在传递更多信息的目的,并不意味着赞同其观点或证实其说法。 调查显示,很大一部分受访者认为人工智能可以比他们更好地选择股票。 对于许多人来说,人工智能仍处于相对初始阶段&#x…

Python程序设计——元组、集合和字典

可以使用元组存储一个固定的元素列表,使用集合存储和快速访问不重复的元素、使用字典存储键值对并使用这些关键字来快速访问元素。 一、元组 元组跟列表类似,但是元组中的元素是固定的;也就是说,一旦一个元组被创建,就无法对元组中的元素进行…

部署mysql到win10电脑上

中间出现了很多问题, 记录一下 我这边是去官网下载的 ,链接:https://dev.mysql.com/downloads/mysql/ 我这边选了不是最新版本的MySQL,因为第一次安装8.1.0版本的,死活运行不起来,直接卸载安重装了&#x…

Python web实战之Django的国际化和本地化详解

关键词:Django、Python、Web开发、国际化(i18n)、本地化(l10n) 今天我要和大家分享一下 Python Web 开发中的一个重要话题——Django 的国际化和本地化。 1. 国际化和本地化 你有没有想过如何让你的网站在全球范围内…

ssm蜀都天香酒楼网站设计与实现

ssm蜀都天香酒楼的网站设计与实现028 开发工具:idea 数据库mysql5.7 数据库链接工具:navcat,小海豚等 技术:ssm 摘要 近年来,信息化管理行业的不断兴起,使得人们的日常生活越来越离不开计算机和互联网技术。首…

DAY06_SpringBoot—简介基础配置yaml多环境开发配置整合第三方技术

目录 一 SpringBoot简介1. 入门案例问题导入1.1 入门案例开发步骤1.2 基于SpringBoot官网创建项目1.3 SpringBoot项目快速启动 2. SpringBoot概述问题导入2.1 起步依赖2.2 辅助功能 二 基础配置1. 配置文件格式问题导入1.1 修改服务器端口1.2 自动提示功能消失解决方案1.3 Spri…

7. CSS(四)

目录 一、浮动 (一)传统网页布局的三种方式 (二)标准流(普通流/文档流) (三)为什么需要浮动? (四)什么是浮动 (五)浮…

【BASH】回顾与知识点梳理(三十二)

【BASH】回顾与知识点梳理 三十二 三十二. SELinux 初探32.1 什么是 SELinux当初设计的目标:避免资源的误用传统的文件权限与账号关系:自主式访问控制, DAC以政策规则订定特定进程读取特定文件:委任式访问控制, MAC 32.2 SELinux 的运作模式安…

[Go版]算法通关村第十二关青铜——不简单的字符串转换问题

目录 题目:转换成小写字母思路分析:大写字母ASCII码 32 小写字母ASCII码Go代码Go代码-优化: 大写字母ASCII码 | 32 小写字母ASCII码 题目:字符串转换整数(atoi)思路分析:去除首部空格 明确正负 读取数…

使用Java实现拼音模糊搜索功能(支持拼音、首字母、多音字、谐音字、汉字、阿拉伯数字)

&#x1f34e; 介绍 Java实现的简单的工具类支持(拼音, 多音字, 谐音字, 汉字, 阿拉伯数字) 对标阿里钉钉的上方搜索栏实现的 &#x1f349; 对应依赖 <!-- https://mvnrepository.com/artifact/com.github.open-android/pinyin4j --> <dependency><groupId&g…

视觉大模型综述

万字长文带你全面解读视觉大模型细数近期涌现的优秀视觉大模型工作https://mp.weixin.qq.com/s/jLQaguLejx9zXjZjaJWx-Q深入了解视觉语言模型 - 知乎人类学习本质上是多模态 (multi-modal) 的&#xff0c;因为联合利用多种感官有助于我们更好地理解和分析新信息。理所当然地&am…

uniapp 顶部头部样式

<u-navbartitle"商城":safeAreaInsetTop"true"><view slot"left"><image src"/static/logo.png" mode"" class"u-w-50 u-h-50"></image></view></u-navbar>

TIA博途_通过EXCEL快速给PLC程序段添加注释信息的方法示例

通过EXCEL快速给PLC程序段添加注释信息的方法示例 如下图所示,以OB1为例,正常情况下,我们可以在博途中直接输入各个程序段的注释信息, 但是如果程序段较多的话,逐个输入的话效率不高,此时可以参考下面这种通过EXCEL进行快速添加的方法。 如下图所示,选中某个OB或FC、FB块…

蓝牙资讯|2023年Q2蓝牙耳机市场报告发布,苹果依然占据第一

市场调查机构 Canalys 发布最新报告&#xff0c;2023 年第二季度全球个人智能音频设备&#xff08;包括 TWS, 无线头戴&#xff0c;无线颈挂&#xff09;下滑了 2%&#xff0c;出货量达到 9568 万部&#xff0c;基本追平去年同期。其中&#xff0c;真无线耳机&#xff08;TWS&a…

出现ffmpeg.dll丢失的修复方法分享,教你快速修复ffmpeg.dll文件

当你使用或尝试运行与FFmpeg相关的应用程序时&#xff0c;可能会遇到一个常见的问题&#xff0c;ffmpeg.dll文件丢失。这个动态链接库文件对于正常运行FFmpeg应用程序至关重要。在本文中&#xff0c;我们将详细探讨为什么会出现ffmpeg.dll丢失的情况&#xff0c;并提供一些修复…

互联网账号被封禁解决办法,以qq为例

百度搜索&#xff1a;互联网信息服务投诉平台 电脑端浏览器&#xff1a;打开 ts.isc.org.cn 推荐使用360极速浏览器 谷歌浏览器 提交完成后&#xff0c;将投诉码保存&#xff0c;可以在“查询评价”处用投诉码查询进度

什么是可视化编程?为什么它如此重要?

可视化编程&#xff0c;又叫可视化程序设计&#xff0c;一直以来就是备受讨论的“热门技术”。一方面&#xff0c;程序员抵触它&#xff0c;觉得它不如用代码开发。另一方面&#xff0c;对于产品经理等稍微懂点开发的业余人员&#xff0c;它确实能提供价值。所以&#xff0c;它…

第十课:Qt 字符编码和中文乱码相关问题

功能描述&#xff1a;最全的 Qt 字符编码相关知识以及中文乱码的原因与解决办法 一、字符编码种类 ASCII 码 美国人对信息交流的编码&#xff0c;包括 26 个字母&#xff08;大小写&#xff09;、数字和标点符号等&#xff0c;用一个字节&#xff08;8 位&#xff09;表示这些…