哈夫曼树(赫夫曼树、最优树)详解

news2024/12/25 10:27:43

目录

哈夫曼树(赫夫曼树、最优树)详解

哈夫曼树相关的几个名词

什么是哈夫曼树

构建哈夫曼树的过程

哈弗曼树中结点结构

构建哈弗曼树的算法实现


哈夫曼树(赫夫曼树、最优树)详解

哈夫曼树相关的几个名词

路径:在一棵树中,一个结点到另一个结点之间的通路,称为路径。图 1 中,从根结点到结点 a 之间的通路就是一条路径。

路径长度:在一条路径中,每经过一个结点,路径长度都要加 1 。例如在一棵树中,规定根结点所在层数为1层,那么从根结点到第 i 层结点的路径长度为 i - 1 。图 1 中从根结点到结点 c 的路径长度为 3。

结点的权:给每一个结点赋予一个新的数值,被称为这个结点的权。例如,图 1 中结点 a 的权为 7,结点 b 的权为 5。

结点的带权路径长度:指的是从根结点到该结点之间的路径长度与该结点的权的乘积。例如,图 1 中结点 b 的带权路径长度为 2 * 5 = 10 。

树的带权路径长度为树中所有叶子结点的带权路径长度之和。通常记作 “WPL” 。例如图 1 中所示的这颗树的带权路径长度为:

WPL = 7 * 1 + 5 * 2 + 2 * 3 + 4 * 3


图1 哈夫曼树

什么是哈夫曼树

当用 n 个结点(都做叶子结点且都有各自的权值)试图构建一棵树时,如果构建的这棵树的带权路径长度最小,称这棵树为“最优二叉树”,有时也叫“赫夫曼树”或者“哈夫曼树”。

在构建哈弗曼树时,要使树的带权路径长度最小,只需要遵循一个原则,那就是:权重越大的结点离树根越近。在图 1 中,因为结点 a 的权值最大,所以理应直接作为根结点的孩子结点。

构建哈夫曼树的过程

对于给定的有各自权值的 n 个结点,构建哈夫曼树有一个行之有效的办法:

  1. 在 n 个权值中选出两个最小的权值,对应的两个结点组成一个新的二叉树,且新二叉树的根结点的权值为左右孩子权值的和;
  2. 在原有的 n 个权值中删除那两个最小的权值,同时将新的权值加入到 n–2 个权值的行列中,以此类推;
  3. 重复 1 和 2 ,直到所以的结点构建成了一棵二叉树为止,这棵树就是哈夫曼树。

图 2 哈夫曼树的构建过程
 

图 2 中,(A)给定了四个结点a,b,c,d,权值分别为7,5,2,4;第一步如(B)所示,找出现有权值中最小的两个,2 和 4 ,相应的结点 c 和 d 构建一个新的二叉树,树根的权值为 2 + 4 = 6,同时将原有权值中的 2 和 4 删掉,将新的权值 6 加入;进入(C),重复之前的步骤。直到(D)中,所有的结点构建成了一个全新的二叉树,这就是哈夫曼树。

哈弗曼树中结点结构

构建哈夫曼树时,首先需要确定树中结点的构成。由于哈夫曼树的构建是从叶子结点开始,不断地构建新的父结点,直至树根,所以结点中应包含指向父结点的指针。但是在使用哈夫曼树时是从树根开始,根据需求遍历树中的结点,因此每个结点需要有指向其左孩子和右孩子的指针。

所以,哈夫曼树中结点构成用代码表示为:

  1. //哈夫曼树结点结构
  2. typedef struct {
  3. int weight;//结点权重
  4. int parent, left, right;//父结点、左孩子、右孩子在数组中的位置下标
  5. }HTNode, *HuffmanTree;

构建哈弗曼树的算法实现

构建哈夫曼树时,需要每次根据各个结点的权重值,筛选出其中值最小的两个结点,然后构建二叉树。

查找权重值最小的两个结点的思想是:从树组起始位置开始,首先找到两个无父结点的结点(说明还未使用其构建成树),然后和后续无父结点的结点依次做比较,有两种情况需要考虑:

  • 如果比两个结点中较小的那个还小,就保留这个结点,删除原来较大的结点;
  • 如果介于两个结点权重值之间,替换原来较大的结点;


实现代码:

 
  1. //HT数组中存放的哈夫曼树,end表示HT数组中存放结点的最终位置,s1和s2传递的是HT数组中权重值最小的两个结点在数组中的位置
  2. void Select(HuffmanTree HT, int end, int *s1, int *s2)
  3. {
  4. int min1, min2;
  5. //遍历数组初始下标为 1
  6. int i = 1;
  7. //找到还没构建树的结点
  8. while(HT[i].parent != 0 && i <= end){
  9. i++;
  10. }
  11. min1 = HT[i].weight;
  12. *s1 = i;
  13. i++;
  14. while(HT[i].parent != 0 && i <= end){
  15. i++;
  16. }
  17. //对找到的两个结点比较大小,min2为大的,min1为小的
  18. if(HT[i].weight < min1){
  19. min2 = min1;
  20. *s2 = *s1;
  21. min1 = HT[i].weight;
  22. *s1 = i;
  23. }else{
  24. min2 = HT[i].weight;
  25. *s2 = i;
  26. }
  27. //两个结点和后续的所有未构建成树的结点做比较
  28. for(int j=i+1; j <= end; j++)
  29. {
  30. //如果有父结点,直接跳过,进行下一个
  31. if(HT[j].parent != 0){
  32. continue;
  33. }
  34. //如果比最小的还小,将min2=min1,min1赋值新的结点的下标
  35. if(HT[j].weight < min1){
  36. min2 = min1;
  37. min1 = HT[j].weight;
  38. *s2 = *s1;
  39. *s1 = j;
  40. }
  41. //如果介于两者之间,min2赋值为新的结点的位置下标
  42. else if(HT[j].weight >= min1 && HT[j].weight < min2){
  43. min2 = HT[j].weight;
  44. *s2 = j;
  45. }
  46. }
  47. }

注意:s1和s2传入的是实参的地址,所以函数运行完成后,实参中存放的自然就是哈夫曼树中权重值最小的两个结点在数组中的位置。

构建哈弗曼树的代码实现如下:

 
  1. //HT为地址传递的存储哈夫曼树的数组,w为存储结点权重值的数组,n为结点个数
  2. void CreateHuffmanTree(HuffmanTree *HT, int *w, int n)
  3. {
  4. if(n<=1) return; // 如果只有一个编码就相当于0
  5. int m = 2*n-1; // 哈夫曼树总节点数,n就是叶子结点
  6. *HT = (HuffmanTree) malloc((m+1) * sizeof(HTNode)); // 0号位置不用
  7. HuffmanTree p = *HT;
  8. // 初始化哈夫曼树中的所有结点
  9. for(int i = 1; i <= n; i++)
  10. {
  11. (p+i)->weight = *(w+i-1);
  12. (p+i)->parent = 0;
  13. (p+i)->left = 0;
  14. (p+i)->right = 0;
  15. }
  16. //从树组的下标 n+1 开始初始化哈夫曼树中除叶子结点外的结点
  17. for(int i = n+1; i <= m; i++)
  18. {
  19. (p+i)->weight = 0;
  20. (p+i)->parent = 0;
  21. (p+i)->left = 0;
  22. (p+i)->right = 0;
  23. }
  24. //构建哈夫曼树
  25. for(int i = n+1; i <= m; i++)
  26. {
  27. int s1, s2;
  28. Select(*HT, i-1, &s1, &s2);
  29. (*HT)[s1].parent = (*HT)[s2].parent = i;
  30. (*HT)[i].left = s1;
  31. (*HT)[i].right = s2;
  32. (*HT)[i].weight = (*HT)[s1].weight + (*HT)[s2].weight;
  33. }
  34. }

注意,如果使用此程序,对权重值分别为 2、8、7、6、5 的节点构建哈夫曼树,最终效果如图 4(A) 所示。但其实,图 4(B) 中显示的哈夫曼树也满足条件,这两棵树的带权路径长度相同。
 


图 4 两种哈夫曼树


之所以使用此程序构建的哈夫曼树,是图 4(A) 而不是 4(B),是因为在构建哈夫曼树时,结点 2 和结点 5 构建的新的结点 7 存储在动态树组中位置,比权重值为 7 节点的存储位置还靠后,所以,在程序继续选择两个权值最小的结点时,直接选择了的叶子结点 6 和 7 。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/887162.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

“西游记“中的项目管理:如何驾驭你的“取经之路”

​1.​引言 自古以来&#xff0c;文学作品不仅仅是为了娱乐&#xff0c;它们也为我们提供了生活的智慧和经验。中国的古典文学巨著《西游记》便是其中的佼佼者&#xff0c;其中的故事和角色为我们提供了丰富的人生哲理和管理智慧。但你可能会问&#xff0c;一个古老的神话故事…

Windows11 Docker Desktop 启动 -wsl kernel version too low

系统环境&#xff1a;windows11 1&#xff1a;docker下载 Docker: Accelerated Container Application Development 下载后双击安装即可 安装后启动Docker提示&#xff1a;Docker Desktop -wsl kernel version too low 处理起来也是非常方便 1:管理员身份启动&#xff1a;…

Python 处理 Excel 表格的 14 个常用操作

目录 1. 安装依赖库 2. 导入库 3. 读取Excel文件 4. 写入Excel文件 5. 创建工作表 6. 访问工作表 7. 读取单元格数据 8. 写入单元格数据 9. 获取行数和列数 10. 过滤数据 11. 排序数据 12. 添加新行 13. 删除行或列 14. 计算汇总统计 总结 无论是数据分析师、财…

CoordAtt注意力网络结构

源码&#xff1a; import torch import torch.nn as nn import math import torch.nn.functional as Fclass h_sigmoid(nn.Module):def __init__(self, inplaceTrue):super(h_sigmoid, self).__init__()self.relu nn.ReLU6(inplaceinplace)def forward(self, x):return self.…

杂记 | 记录一次使用docker安装gitlab-runner的过程(馋哭了)

文章目录 01 前情提要02 编写docker-compose.yml03 启动与注册04 流水线部署 01 前情提要 前不久使用docker部署好了自己的gitlab服务&#xff0c;简直香惨了。 上集传送门&#xff1a;记录一次使用Docker安装gitlab-ce的过程&#xff08;含配置交换内存&#xff09; 现在&am…

postgresql的在windows下的安装

postgresql的在windows下的安装 下载安装步骤超级用户设置密码本地化设置安装信息安装完成 查看postgresql服务pgAdmin的使用打开命令 行工具查询数据库版本 创建数据库 下载 官网地址 https://www.postgresql.org/ 下载页面 https://www.postgresql.org/download/ windows下…

Spring Boot 中的 AOP,到底是 JDK 动态代理还是 Cglib 动态代理

大家都知道&#xff0c;AOP 底层是动态代理&#xff0c;而 Java 中的动态代理有两种实现方式&#xff1a; 基于 JDK 的动态代理 基于 Cglib 的动态代理 这两者最大的区别在于基于 JDK 的动态代理需要被代理的对象有接口&#xff0c;而基于 Cglib 的动态代理并不需要被代理对…

TiDB数据库从入门到精通系列之六:使用 TiCDC 将 TiDB 的数据同步到 Apache Kafka

TiDB数据库从入门到精通系列之六&#xff1a;使用 TiCDC 将 TiDB 的数据同步到 Apache Kafka 一、技术流程二、搭建环境三、创建Kafka changefeed四、写入数据以产生变更日志五、配置 Flink 消费 Kafka 数据 一、技术流程 快速搭建 TiCDC 集群、Kafka 集群和 Flink 集群创建 c…

离谱的Bug

离谱的 Bug Bug 情况发现 Bug修改 Bug其他感受历史 Bug火星Spirit号Mars Global Surveyor任务 Bug 情况 有一次&#xff0c;我在开发一个网页应用程序时&#xff0c;遇到了一个令人目瞪口呆的Bug。这个Bug出现在一个特定的页面上&#xff0c;当用户点击某个按钮时&#xff0c;…

07微服务的事务管理机制

一句话导读 在单体应用程序中&#xff0c;事务通常是在单个数据库或单个操作系统中管理的&#xff0c;而在微服务架构中&#xff0c;事务需要跨越多个服务和数据库&#xff0c;这就使得事务管理变得更加复杂和困难。 目录 一句话导读 一、微服务事务管理的定义和意义 二、微…

ORCA优化器浅析——CDXLScalar Base class for representing scalar DXL operators

CDXLScalar类作为Base class for representing scalar DXL operators&#xff0c;该类只是定义一些接口&#xff0c;其中实现了GetDXLOperatorType函数&#xff0c;其返回EdxloptypeScalar&#xff0c;代表scalar DXL operators。 class CDXLScalar : public CDXLOperator{ pr…

迅捷视频工具箱:多功能音视频处理软件

这是一款以视频剪辑、视频转换、屏幕录像等特色功能为主&#xff0c;同时附带有视频压缩、视频分割、视频合并等常用视频处理功能为主的视频编辑软件。该软件操作简单易用&#xff0c;即使没有视频处理经验的用户也可以轻松上手。将视频添加到工具箱对应功能后&#xff0c;简单…

01- vdom 和模板编译源码

组件渲染的过程 template --> ast --> render --> vDom --> 真实的Dom --> 页面 Runtime-Compiler和Runtime-Only的区别 - 简书 编译步骤 模板编译是Vue中比较核心的一部分。关于 Vue 编译原理这块的整体逻辑主要分三个部分&#xff0c;也可以说是分三步&am…

sklearn机器学习库(二)sklearn中的随机森林

sklearn机器学习库(二)sklearn中的随机森林 集成算法会考虑多个评估器的建模结果&#xff0c;汇总之后得到一个综合的结果&#xff0c;以此来获取比单个模型更好的回归或分类表现。 多个模型集成成为的模型叫做集成评估器&#xff08;ensemble estimator&#xff09;&#xf…

RabbitMq-1基础概念

RabbitMq-----分布式中的一种通信手段 1. MQ的基本概念&#xff08;message queue,消息队列&#xff09; mq:消息队列&#xff0c;存储消息的中间件 分布式系统通信的两种方式&#xff1a;直接远程调用&#xff0c;借助第三方完成间接通信 消息的发送方是生产者&#xff0c…

爬虫逆向实战(九)--猿人学第十三题

一、数据接口分析 主页地址&#xff1a;猿人学第十三题 1、抓包 通过抓包可以发现数据接口是api/match/13 2、判断是否有加密参数 请求参数是否加密&#xff1f; 无请求头是否加密&#xff1f; 无响应是否加密&#xff1f; 无cookie是否加密&#xff1f; 在“cookie”模块…

python数据分析需要学哪些,python数据分析要学多久

大家好&#xff0c;小编为大家解答python数据分析应该学什么软件的问题。很多人还不知道python数据分析需要什么基础&#xff0c;现在让我们一起来看看吧&#xff01; 根据调查结果&#xff0c;十大最常用的数据工具中有八个来自或利用Python。Python广泛应用于所有数据科学领域…

STM32 FLASH 读写数据

1. 《STM32 中文参考手册》&#xff0c;需要查看芯片数据手册&#xff0c;代码起始地址一般都是0x8000 0000&#xff0c;这是存放整个项目代码的起始地址 2. 编译信息查看代码大小&#xff0c;修改代码后第一次编译后会有这个提示信息 2.1 修改代码后编译&#xff0c;会有提示…

物联网在制造业中的应用

制造业目前正在经历第四次工业革命&#xff0c;物联网、人工智能和机器人等技术进步正在推动行业的发展。研究表明&#xff0c;到2024年&#xff0c;全球制造商将在物联网解决方案上投资700亿美元&#xff0c;许多制造商正在实施物联网设备&#xff0c;以利用预测性维护和复杂的…

优化GitHub网站访问慢的问题

方法一、修改host文件解决 大型网站服务器都不会是只有一台服务器,而是多台服务器组成的集群一起对外提供服务。 使用站长工具测速&#xff0c;找一个速度比较快的服务器。 图中可以看到140.82.121.4这个ip比较快&#xff0c; 下面修改hosts: Mac 在 /etc/hosts 中&#x…