信息与通信工程面试准备——数学知识|正态分布|中心极限定理

news2024/11/18 13:58:23

 

目录

 正态分布

正态分布的参数

正态分布的第一个参数是均值

正态分布的第二个参数是标准差SD

所有正态分布的共同特征

标准正态分布:正态分布的特例

中心极限定理

理解定义

示例# 1

示例# 2

知道样本均值总是正态分布的实际含义是什么?


 正态分布

        正态分布也被称为高斯分布或钟形曲线(因为它看起来像一个钟),这是统计学中最重要的概率分布,就像我们在大自然中经常看到的那样,它有点神奇。例如,身高、体重、血压、测量误差、智商得分等都服从正态分布。

        还有一个跟它相关的,并且非常重要的概念,叫中心极限定理,我们后面会提到。

        由上图可得一个正常变量的值是如何分布的。这是一个对称分布,其中大多数观测值聚集在具有最高发生概率的中心峰(均值/平均值)附近,并且当我们在两个方向上都偏离中心峰时,我们看到曲线尾部出现值的可能性越来越小。此图描绘了一个群体的智商水平,可以理解,智商水平非常低或智商水平很高的人很少见,并且大多数人都处于平均智商得分范围内。 

正态分布的参数

        正态分布总是以平均值为中心,而曲线的宽度则由标准差(SD)决定。

        这是两个正态分布,x轴上的高度单位是英寸,y轴上是特定高度对应的人数。

        1. 婴儿的平均身高为20英寸(50cm),标准差为0.6英寸(1.5cm)

        2. 成年人的平均分布为70英寸(175cm),标准差为4英寸(10cm)

        了解正态分布标准差的意义在于,它遵循一个经验法则,即大约95%的测量值落在均值附近的+/- 2倍个标准差之间。

        推论:95%的人口落在平均值+/- 2*SD之间

        1. 95%的婴儿身高在20 +/- 1.2英寸之间

        2. 95%的成年人身高测量值在70 +/- 8英寸之间

正态分布的第一个参数是均值

        均值或平均值是正态分布的集中趋势,它决定了曲线峰值的位置。平均值的变化导致曲线沿x轴水平移动。

正态分布的第二个参数是标准差SD

        标准差是正态分布变异性的量度,它决定了曲线的宽度。SD值的变化导致曲线变得更窄或更宽,并对曲线的高度产生反比例的影响。

        更紧的曲线(较小的宽度)->更高的高度

        更宽的曲线(更高的宽度)->更短的高度

        现在,你已经了解了正态分布曲线的所有基础知识。让我们继续学习与之相关的其他重要信息。

所有正态分布的共同特征

        1. 它们都是对称的

        2. 平均值=中位数

        3. 根据经验法则,我们可以确定正态分布曲线离均值标准差范围内的数据百分比。

        通过一个示例,这一点将变得更加清楚。

        让我们来看一个披萨外卖的例子。假设一家披萨餐厅的平均配送时间为30分钟,标准偏差为5分钟。根据经验法则,我们可以确定68%的交付时间在25-35分钟(30 +/- 5)之间,95%在20-40分钟(30 +/- 2*5)之间,99.7%在15-45分钟(30 +/-3*5)之间。

标准正态分布:正态分布的特例

        如前所述,正态分布根据参数值(平均值和标准差)有许多不同的形状。标准正态分布是正态分布的一个特例,均值为0,标准差为1。这个分布也称为Z分布。标准正态分布上的值称为标准分数Z分数。标准分数表示某一特定观测值高于或低于平均值的SD数。

        例如,标准得分为1.5表示观察到的结果比平均值高1.5个标准差。另一方面,负分数表示低于平均值的值。平均值的Z分数为0。


中心极限定理

         中心极限定理(CLT)指出,如果样本量足够大,则变量均值的采样分布将近似于正态分布,而与该变量在总体中的分布无关。

理解定义

示例# 1

        选取一个均匀分布[0,1],它被称为均匀分布,因为在0和1之间选择值的概率相等,因此它的概率密度函数(PDF)是水平的直线。现在,让我们假设我们从这个分布中随机抽取20个样本(绿点)并计算这些样本的均值,我们得到一个值,在这个例子中是0.5,用虚线表示。让我们把这个平均值画在直方图上。由于这个柱状图到目前为止只有一个平均值,它并没有告诉我们任何其他信息(左图)。继续从相同的分布中提取更多的随机样本,计算各自的平均值并将这些平均值绘制在直方图上,我们开始得到一个有趣的结果。

        随着我们从均匀分布中抽取越来越多的随机样本,并在直方图上绘制样本均值,我们得到一个正态分布结果如下(见右曲线)。

推论:我们从均匀的数据分布开始,但是从中抽取的样本均值是正态分布。

示例# 2

        在第二个例子中,让我们按照与第一个例子相同的步骤,唯一的不同是我们这次要从指数分布中提取样本。

        我们将再次随机抽取20个样本,计算样本的均值,并将其绘制在直方图上。计算100这样的样本的均值并将其画在直方图上,这样的分布对我们来说并不陌生。样本均值是正态分布!

推论:我们从指数数据分布开始,但从中抽取样本的均值得到正态分布。

        我们从指数数据分布开始,但是从中抽取的样本均值得到正态分布。因此,它在这一点上变得非常直观,中心极限定理意味着什么?

        中心极限定理意味着即使数据分布不是正态的,从中抽取的样本均值的分布也是正态的。

知道样本均值总是正态分布的实际含义是什么?

        在分析领域,我们每天都会遇到各种各样的数据,而源数据的分布并不总是被我们所知道的,但是,因为我们了解中心极限定理,所以我们甚至不需要关心源数据的分布,因为我们总是可以得到正态分布。

        为了使中心极限定理能够起作用,我们必须能够计算出样本的平均值。有一个分布称为柯西分布,没有样本均值,从而中心极限定理论并不适用于它,但除了柯西分布,我没有遇到除中心极限定理以外的任何其他分布。)

下面是了解均值正态分布的实际含义:

1. 我们可以用均值的正态分布来分配置信区间。

2. 我们可以进行T检验(即两个样本均值之间是否存在差异)

3. 我们可以进行方差分析(即3个或更多样本的均值之间是否存在差异)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/886682.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python发送QQ邮件

使用Python的smtplib可以发送QQ邮件,代码如下 #!/usr/bin/python3 import smtplib from email.mime.text import MIMEText from email.header import Headersender 111qq.com # 发送邮箱 receivers [222qq.com] # 接收邮箱 auth_code "abc" # 授权…

流媒体服务-传输延时(SEI插帧)

什么是延时 很多小伙伴认为,当推流端和拉流端显示的时间不一致,即为延时。 其实这种看法是比较片面的,不同的播放器,对同一路流进行测试,可能会得到不同的结果。 一般来说,延时为以下几个部分的累加组成 …

最近抖音很火的情侣飞行棋

最近抖音很火的情侣飞行棋 最近抖音很火的情侣飞行棋,这款情侣飞行棋提供了丰富的游戏玩法,可以为情侣、朋友或家人带来欢乐的游戏体验。扫码进行体验识别 无论是在家中,还是在聚会、旅行等场合,都可以轻松启动该网站&#xff0c…

为何千万别学网络安全专业(网络安全小白避坑的建议解析)

前言: 近年来,随着国家对网络安全的战略关注和新基建的持续投入,网络安全专业成为一个热门话题。然而,好专业不一定就能找到好工作,对于想从事网络安全专业的小白们,需要持谨慎态度,避免走一些…

案例:用户登录/注册

文章目录 技术框架说明登录案例1.需求分析2.环境准备2.1 前端页面2.2 创建数据表及对应的实体类2.3 导入mybatis坐标,MySQL坐标2.4 配置文件及接口 3. 用户名密码校验4. 前端配置5.Servlet编写 注册案例1.需求分析2.配置用户接口3. 测试添加用户4. 前端配置5. servl…

【概念理解】STM32中的sprintf()函数

sprintf()函数 这个函数在 stdio.h中;可以将格式化的数据写入到一个字符串缓冲区中。 int sprintf(char *str, const char *format, ...);str:指向字符数组的指针,即用于存储格式化后字符串的缓冲区。format:格式化字符串&#…

通过nvm切换nodejs版本

下载: 1.下载nvm地址: https://github.com/coreybutler/nvm-windows/releases 下载该安装包,下载后无需配置就可以使用,十分方便。 简单说明一些包: nvm - noinstall.zip : 这个是绿色免安装版本&#…

c++ std::shared_ptr的线程安全问题(race condition)

有 3 个 shared_ptr 对象 x、g、n; 两个工作线程: void main(){shared_ptr g(new Foo); // 线程之间共享的 shared_ptr shared_ptr x; // 线程 A 的局部变量 shared_ptr n(new Foo); // 线程 B 的局部变量std::thread([&]{x g; }).detach();std::thread([&…

分布式 - 消息队列Kafka:Kafka 消费者的消费位移

文章目录 01. Kafka 分区位移02. Kafka 消费位移03. kafka 消费位移的作用04. Kafka 消费位移的提交05. kafka 消费位移的存储位置06. Kafka 消费位移与消费者提交的位移07. kafka 消费位移的提交时机08. Kafka 维护消费状态跟踪的方法 01. Kafka 分区位移 对于Kafka中的分区而…

每日一题——移动零

移动零 题目链接 思路——双指针 如果可以开辟额外的空间,那这题十分好做。我们开辟和nums同样大小的空间,将遍历数组,将非零元素从头放置,将零从后往前放置,这样就可以将所有的零放到后面,同时保证非零元…

安全狗获批成为算网融合产业及标准推进委员会伙伴单位

近日,安全狗获批成为中国通信标准化协会算网融合产业及标准推进委员会伙伴单位。 据悉,中国通信标准化协会算网融合产业及标准推进委员会,致力于算网融合、数字化转型、SDN/NFV、SD-WAN、新基建、信息安全、边缘计算、高性能计算领域及典型应…

品牌营销|所有产品都值得用 AI 再做一遍

微软 CEO Satya Nadella 曾经说过:“所有的产品都值得用 AI 重做一遍。” AI 大模型的出现,开启了一个全新的智能化时代,重新定义了人机交互。这让生成式 AI 技术变得「触手可得」,也让各行业看到 AGI 驱动商业增长的更大可能性。…

基于注册中心如何实现全链路灰度

1. 为什么需要服务发现? 2. 微服务注册中心 3. 基于注册中心如何实现全链路灰度 4. GRPC 如何结合注册中心 GRPC服务发现与全链路灰度 为什么需要服务发现? 服务拆分 配置调用 如果有很多服务怎么办? 服务注册 服务发现 注册中心的架构 配置与使用 常见的…

西瓜书之神经网络

一,神经元模型 所谓神经网络, 目前用得最广泛的一个定义是“神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所做出的交互反应”。 M-P神经元 M-P神经元:接收n个输入(…

存算分离实践:构建轻量、云中立的大数据平台

今天我们将分享社区用户多点 DMALL 的案例。多点 DMALL 是亚洲领先的全渠道数字零售解决方案服务商,目前已与 380 家零售企业达成合作,覆盖 6 个国家和地区。 面对 B 端客户日益增长的企业数据,存算一体的架构显得力不从心。计算资源冗余浪费…

CAS问题汇总

CAS的执行流程? CAS比较比替换的大致流程是这样的: 首先它有三个参数 : V 内存值 A 预期的旧值 B 新值比较V的值与A的值是否相等如果相等的话,则将V的值替换成B,否则就提示修改失败。 一般正常情况的话就是没有其他线程修改内存…

解决内网GitLab 社区版 15.11.13项目拉取失败

问题描述 GitLab 社区版 发布不久,搭建在内网拉取项目报错,可能提示 unable to access https://github.comxxxxxxxxxxx: Failed to connect to xxxxxxxxxxxxxGit clone error - Invalid argument error:14077438:SSL routines:SSL23_GET_S 15.11.13ht…

工业互联网产业联盟发布《2023可信工业数据流通应用案例集》

导读 随着新一代信息技术与制造业的深度融合发展,全球工业数据应用已经进入纵深发展的新阶段,数据作为新型生产要素和重要战略资源,正在制造业数字化转型过程中发挥出更大的作用。在这一进程中,工业数据的流通共享受到广泛关注。…

深入探索JavaEE单体架构、微服务架构与云原生架构

课程链接: 链接: https://pan.baidu.com/s/1xSI1ofwYXfqOchfwszCZnA?pwd4s99 提取码: 4s99 复制这段内容后打开百度网盘手机App,操作更方便哦 --来自百度网盘超级会员v4的分享 课程介绍: 🔍【00】模块零:开营直播&a…

LeetCode集

目录 1、算法1.1 排序1.1.1 冒泡排序1.1.1.1 简单交换排序1.1.1.2 冒泡排序 1.1.2 简单选择排序1.1.3 直接插入排序1.1.4 希尔排序1.1.5 堆排序1.1.6 归并排序1.1.7 快速排序 1.1 位运算/二进制1.1.1 Java中的正数、负数1.1.2 Java中的位运算1.1.3 比特位计数1.1.4 2的幂1.1.5 …