OpenCV-Python中的图像处理-图像直方图

news2025/1/20 3:51:47

OpenCV-Python中的图像处理-图像直方图

  • 图像直方图
    • 统计直方图
    • 绘制直方图
      • Matplotlib绘制灰度直方图
      • Matplotlib绘制RGB直方图
    • 使用掩膜统计直方图
    • 直方图均衡化
      • Numpy图像直方图均衡化
      • OpenCV中的直方图均衡化
      • CLAHE 有限对比适应性直方图均衡化
    • 2D直方图
      • OpenCV中的2D直方图
      • Numpy中2D直方图
    • 直方图反射投影
      • Numpy 中的直方图反射投影算法
      • OpenCV中的直方图反射投影算法

图像直方图

  • 通过直方图你可以对整幅图像的灰度分布有一个整体的了解。直方图的 x 轴是灰度值( 0 到 255), y 轴是图片中具有同一个灰度的点的数目。
  • BINS:上面的直方图显示了每个灰度值对应的像素数。如果像素值为 0到255,你就需要 256 个数来显示上面的直方图。但是,如果你不需要知道每一个像素值的像素点数目的,而只希望知道两个像素值之间的像素点数目怎么办呢?举例来说,我们想知道像素值在 0 到 15 之间的像素点的数目,接着是 16 到31,…, 240 到 255。我们只需要 16 个值来绘制直方图。
  • DIMS:表示我们收集数据的参数数目。在本例中,我们对收集到的数据只考虑一件事:灰度值。所以这里就是 1。
  • RANGE:就是要统计的灰度值范围,一般来说为 [0, 256],也就是说所有的灰度值。

统计直方图

  • cv2.calcHist():OpenCV统计直方图
    cv2:calcHist(images; channels; mask; histSize; ranges[; hist[; accumulate]])
    1. images: 原图像(图像格式为 uint8 或 float32)。当传入函数时应该
      用中括号 [] 括起来,例如: [img]。
    2. channels: 同样需要用中括号括起来,它会告诉函数我们要统计那幅图
      像的直方图。如果输入图像是灰度图,它的值就是 [0];如果是彩色图像
      的话,传入的参数可以是 [0], [1], [2] 它们分别对应着通道 B, G, R。
    3. mask: 掩模图像。要统计整幅图像的直方图就把它设为 None。但是如
      果你想统计图像某一部分的直方图的话,你就需要制作一个掩模图像,并
      使用它。(后边有例子)
    4. histSize:BIN 的数目。也应该用中括号括起来,例如: [256]。
    5. ranges: 像素值范围,通常为 [0, 256]

    img = cv2.imread(‘home.jpg’,0)
    #别忘了中括号 [img],[0],None,[256],[0,256],只有 mask 没有中括号
    hist = cv2.calcHist([img],[0],None,[256],[0,256])
    hist 是一个 256x1 的数组,每一个值代表了与次灰度值对应的像素点数目。

  • np.histogram():Numpy统计直方图
  • np.bincount():Numpy统计直方图(一维直方图,速度快)

#img.ravel() 将图像转成一维数组,这里没有中括号。
hist,bins = np.histogram(img.ravel(),256,[0,256])
Numpy 还 有 一 个 函 数 np.bincount(), 它 的 运 行 速 度 是
np.histgram 的 十 倍。 所 以 对 于 一 维 直 方 图, 我 们 最 好 使 用 这 个函 >数。 使 用 np.bincount 时 别 忘 了 设 置 minlength=256。
hist=np.bincount(img.ravel(), minlength=256)

绘制直方图

Matplotlib绘制灰度直方图

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('./resource/opencv/image/leuvenA.jpg', cv2.IMREAD_GRAYSCALE)
plt.hist(img.ravel(), 256, [0, 256])
plt.show()

在这里插入图片描述
在这里插入图片描述

Matplotlib绘制RGB直方图

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('./resource/opencv/image/leuvenA.jpg', cv2.IMREAD_COLOR)

color = ('b', 'g', 'r')

for i, col in enumerate(color):
    histr = cv2.calcHist([img], [i], None, [256], [0, 256])
    plt.plot(histr, color = col)
    plt.xlim([0, 256])
plt.show()

在这里插入图片描述

使用掩膜统计直方图

要统计图像某个局部区域的直方图只需要构建一副掩模图像。将要统计的部分设置成白色,其余部分为黑色,就构成了一副掩模图像。然后把这个掩模图像传给函数就可以了。

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('./resource/opencv/image/leuvenA.jpg', cv2.IMREAD_GRAYSCALE)
h,w = img.shape
print(h,w)

# create mask
mask = np.zeros(img.shape[:2], np.uint8)
mask[100:400, 100:500] = 255
masked_img = cv2.bitwise_and(img, img, mask = mask)

hist_full = cv2.calcHist([img], [0], None, [256], [0, 256])
hist_mask = cv2.calcHist([img], [0], mask, [256], [0, 256])

plt.subplot(221), plt.imshow(img, 'gray')
plt.subplot(222), plt.imshow(mask, 'gray')
plt.subplot(223), plt.imshow(masked_img, 'gray')
plt.subplot(224), plt.plot(hist_full, 'r'), plt.plot(hist_mask, 'b')
plt.xlim([0, 256])
plt.show()

红色线是整幅图的直方图,蓝色线是掩膜之后的直方图:
在这里插入图片描述

直方图均衡化

  • 如果一副图像中的大多是像素点的像素值都集中在一个像素值范围之内会怎样呢?例如,如果一幅图片整体很亮,那所有的像素值应该都会很高。但是一副高质量的图像的像素值分布应该很广泛。所以你应该把它的直方图做一个横向拉伸(如下图),这就是直方图均衡化要做的事情。通常情况下这种操作会改善图像的对比度。在这里插入图片描述

  • 直方图均衡化处理可以提高图像的清晰度

Numpy图像直方图均衡化

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('./resource/opencv/image/leuvenA.jpg', cv2.IMREAD_GRAYSCALE)

# 1.使用Numpy统计原图直方图
# flatten() 将数组变成一维
hist, bins = np.histogram(img.flatten(), 256, [0, 256])
# 计算累积分布图
cdf = hist.cumsum()
cdf_normalized = cdf * hist.max() / cdf.max()


# 2.使用Numpy直方图均衡化处理
# 构建 Numpy 掩模数组, cdf 为原数组,当数组元素为 0 时,掩盖(计算时被忽略)。
cdf_m = np.ma.masked_equal(cdf, 0)
cdf_m = (cdf_m - cdf_m.min()) *255/(cdf_m.max() - cdf_m.min())
# 对被掩盖的元素赋值,这里赋值为 0
cdf = np.ma.filled(cdf_m, 0).astype('uint8')
# 现在就获得了一个表,我们可以通过查表得知与输入像素对应的输出像素的值。我们只需要把这种变换应用到图像上就可以了
img2 = cdf[img]

# 3. 绘制原图直方图
plt.subplot(221), plt.imshow(cv2.cvtColor(img, cv2.COLOR_GRAY2RGB))
plt.subplot(222)
plt.plot(cdf_normalized, color='b')
plt.hist(img.flatten(), 256, [0, 256], color='r')
plt.xlim([0, 256])
plt.legend(('cdf', 'histogram'), loc='upper left')

# 4.绘制均衡化直方图
plt.subplot(223), plt.imshow(cv2.cvtColor(img2, cv2.COLOR_GRAY2RGB))
plt.subplot(224)
plt.plot(cdf_m, color='g')
plt.hist(img2.flatten(), 256, [0, 256], color='r')
plt.xlim([0, 256])
plt.legend(('cdf', 'histogram'), loc='upper left')

plt.show()

在这里插入图片描述

OpenCV中的直方图均衡化

OpenCV 中的直方图均衡化函数为 cv2.equalizeHist()。这个函数的输入图片仅仅是一副灰度图像,输出结果是直方图均衡化之后的图像。

import numpy as np
import cv2

img = cv2.imread('./resource/opencv/image/leuvenA.jpg', cv2.IMREAD_GRAYSCALE)
# 直方图均衡化
equ = cv2.equalizeHist(img)
# 图像拼接,左边原图,右边直方图均衡化之后的图像
res = np.hstack((img, equ))

cv2.imshow('img', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

左边原图,右边直方图均衡化之后的图像
在这里插入图片描述

CLAHE 有限对比适应性直方图均衡化

文章上边做的直方图均衡化会改变整个图像的对比度,但是在很多情况下,这样做的效果并不好。例如,下图分别是输入图像和进行直方图均衡化之后的输出图像。的确在进行完直方图均衡化之后,图片背景的对比度被改变了。但是你再
对比一下两幅图像中雕像的面图,由于太亮我们丢失了很多信息。
在这里插入图片描述
为了解决这个问题,我们需要使用自适应的直方图均衡化。这种情况下,整幅图像会被分成很多小块,这些小块被称为“tiles”(在 OpenCV 中 tiles 的大小默认是 8x8),然后再对每一个小块分别进行直方图均衡化(跟前面类似)。所以在每一个的区域中,直方图会集中在某一个小的区域中(除非有噪声干扰)。如果有噪声的话,噪声会被放大。为了避免这种情况的出现要使用对比度限制。对于每个小块来说,如果直方图中的 bin 超过对比度的上限的话,就把其中的像素点均匀分散到其他 bins 中,然后在进行直方图均衡化。最后,为了去除每一个小块之间“人造的”(由于算法造成)边界,再使用双线性差值,对小块进行缝合。

import numpy as np
import cv2
from matplotlib import pyplot as plt


img = cv2.imread('./resource/opencv/image/clahe_2.jpg', cv2.IMREAD_GRAYSCALE)

# 均衡化处理
equ = cv2.equalizeHist(img)

# 自适应均衡化处理
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
cl1 = clahe.apply(img)

# 绘制图像
plt.subplot(131), plt.imshow(cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)), plt.title('img')
plt.subplot(132), plt.imshow(cv2.cvtColor(equ, cv2.COLOR_GRAY2RGB)), plt.title('equ')
plt.subplot(133), plt.imshow(cv2.cvtColor(cl1, cv2.COLOR_GRAY2RGB)), plt.title('cl1')
plt.show()

在这里插入图片描述

2D直方图

在前面的文章介绍了如何绘制一维直方图,之所以称为一维,是因为我们只考虑了图像的一个特征:灰度值。但是在 2D 直方图中我们就要考虑两个图像特征。对于彩色图像的直方图通常情况下我们需要考虑每个的颜色( Hue)和饱和度( Saturation)。根据这两个特征绘制 2D 直方图。

OpenCV中的2D直方图

使用函数 cv2.calcHist() 来计算直方图既简单又方便。如果要绘制颜色直方图的话,我们首先需要将图像的颜色空间从 BGR 转换到 HSV。(记住,计算一维直方图,要从 BGR 转换到 HSV)。计算 2D 直方图,函数的参数要做如下修改:

  • channels=[0, 1] 因为我们需要同时处理 H 和 S 两个通道。
  • bins=[180, 256]H 通道为 180, S 通道为 256。
  • range=[0, 180, 0, 256]H 的取值范围在 0 到 180, S 的取值范围在 0 到 256。
import numpy as np
import cv2
from matplotlib import pyplot as plt


img = cv2.imread('./resource/opencv/image/home.jpg', cv2.IMREAD_COLOR)
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
hist = cv2.calcHist([hsv], [0, 1], None, [180, 256], [0, 180, 0, 256])

plt.subplot(121), plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), 'gray')
plt.subplot(122), plt.imshow(hist, interpolation = 'nearest')
plt.show()


在这里插入图片描述

Numpy中2D直方图

Numpy 同样提供了绘制 2D 直方图的函数:

  • np.histogram():一维直方图
  • np.histogram2d():二纬直方图
import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('./resource/opencv/image/home.jpg', cv2.IMREAD_COLOR)
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)#分离通道
hist, xbins, ybins = np.histogram2d(h.ravel(),s.ravel(),[180,256],[[0,180],[0,256]])

plt.subplot(131), plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.subplot(132), plt.imshow(hist)
plt.show()

在这里插入图片描述

直方图反射投影

  • 直方图反向投影是由 Michael J. Swain 和 Dana H. Ballard 在他们的文章“Indexing via color histograms”中提出。
  • 它可以用来做图像分割,或者在图像中找寻我们感兴趣的部分。简单来说,它会输出与输入图像(待搜索)同样大小的图像,其中的每一个像素值代表了输入图像上对应点属于目标对象的概率。用更简单的话来解释,输出图像中像素值越高(越白)的点就越可能代表我们要搜索的目标(在输入图像所在的位置)。这是一个直观的解释。直方图投影经常与 camshift算法等一起使用。
  • 我们应该怎样来实现这个算法呢?首先我们要为一张包含我们要查找目标的图像创建直方图(在我们的示例中,我们要查找的是草地,其他的都不要)。我们要查找的对象要尽量占满这张图像(换句话说,这张图像上最好是有且仅有我们要查找的对象)。最好使用颜色直方图,因为一个物体的颜色要比它的灰度能更好的被用来进行图像分割与对象识别。接着我们再把这个颜色直方图投影到输入图像中寻找我们的目标,也就是找到输入图像中的每一个像素点的像素值在直方图中对应的概率,这样我们就得到一个概率图像,最后设置适当的阈值对概率图像进行二值化,就这么简单。

Numpy 中的直方图反射投影算法

首先,我们要创建两幅颜色直方图,目标图像的直方图( ‘M’),(待搜索)输入图像的直方图( ‘I’)。

import numpy as np
import cv2
from matplotlib import pyplot as plt

roi = cv2.imread('./resource/opencv/image/target.jpg', cv2.IMREAD_COLOR)
hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)

target = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_COLOR)
hsvt = cv2.cvtColor(target, cv2.COLOR_BGR2HSV)

M = cv2.calcHist([hsv],  [0, 1], None, [180, 256], [0, 180, 0, 256])
I = cv2.calcHist([hsvt], [0, 1], None, [180, 256], [0, 180, 0, 256])

# 计算比值: R = M/I 。反向投影 R,也就是根据 R 这个”调色板“创建一
# 副新的图像,其中的每一个像素代表这个点就是目标的概率。
# 例如 B (x; y) = R [h (x; y) ; s (x; y)],
# 其中 h 为点( x, y)处的 hue 值, s 为点( x, y)处的
# saturation 值。最后加入再一个条件 B (x; y) = min [B (x; y) ; 1]
R = M/I

h, s, v = cv2.split(hsvt)
B = R[h.ravel(), s.ravel()]
B = np.minimum(B, 1)
B = B.reshape(hsvt.shape[:2])

# 现在使用一个圆盘算子做卷积, B = D × B,其中 D 为卷积核
disc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5))
B = cv2.filter2D(B, -1, disc)
B = np.uint8(B)

# 归一化处理
cv2.normalize(B,B,0,255,cv2.NORM_MINMAX)
ret, thresh = cv2.threshold(B, 50, 255, 0)
# 别忘了是三通道图像,因此这里使用 merge 变成 3 通道
thresh = cv2.merge((thresh,thresh,thresh))
res = cv2.bitwise_and(target, thresh)

res = np.hstack((target, thresh, res))
cv2.imshow('img', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

程序运行结果:
在这里插入图片描述
target.jpg:是另外一副图草地区域的一块截图
在这里插入图片描述
messi5.jpg:
在这里插入图片描述

OpenCV中的直方图反射投影算法

OpenCV 提供的函数 cv2.calcBackProject() 可以用来做直方图反向投影。它的参数与函数 cv2.calcHist 的参数基本相同。其中的一个参数是我们要查找目标的直方图。同样再使用目标的直方图做反向投影之前我们应该先对其做归一化处理。返回的结果是一个概率图像,我们再使用一个圆盘形卷积核对其做卷操作,最后使用阈值进行二值化。

import cv2
import numpy as np

roi = cv2.imread('./resource/opencv/image/target.jpg', cv2.IMREAD_COLOR)
hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)

target = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_COLOR)
hsvt = cv2.cvtColor(target, cv2.COLOR_BGR2HSV)

# calculating object histogram
roihist = cv2.calcHist([hsv], [0,1], None, [180, 256], [0, 180, 0, 256])

# normalize histogram and apply backprojection
# 归一化:原始图像,结果图像,映射到结果图像中的最小值,最大值,归一化类型
#cv2.NORM_MINMAX 对数组的所有值进行转化,使它们线性映射到最小值和最大值之间
# 归一化之后的直方图便于显示,归一化之后就成了 0 到 255 之间的数了
cv2.normalize(roihist, roihist, 0, 255, cv2.NORM_MINMAX)
dst = cv2.calcBackProject([hsvt], [0, 1], roihist, [0, 180, 0, 256], 1)

# Now convolute with circular disc
# 此处卷积可以把分散的点连在一起
disc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5))
dst = cv2.filter2D(dst, -1, disc)

# threshold and binary AND
ret, thresh = cv2.threshold(dst, 50, 255, 0)
# 别忘了是三通道图像,因此这里使用 merge 变成 3 通道
thresh = cv2.merge((thresh,thresh,thresh))
res = cv2.bitwise_and(target, thresh)

res = np.hstack((target, thresh, res))
cv2.imshow('img', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

程序运行结果:
在这里插入图片描述
target.jpg:是另外一副图草地区域的一块截图
在这里插入图片描述
messi5.jpg:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/884171.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于Python科研论文绘制学习 - task1

绘制原则 必要性(避免图多字少) 易读性(完整准确的标题、标签) 一致性(配图需要和上下文一致) 尝试运行代码的时候出现了很多bug,基本都是围绕Scienceplots库的,在更新pip、pandas…

Gin安装解决国内go 与 热加载

get 方式安装超时问题,国内直接用官网推荐的下面这个命令大概率是安装不成功的 go get -u github.com/gin-gonic/gin 可以在你的项目目录下执行下面几个命令: 比如我的项目在E:\Oproject\zl cmd E:\Oproject\zl>就在目录下执行 go env -w GO111…

HCIP学习--MPLS

MPLS-多协议标签交换 标签交换 基于2.5层的标签号进行路由行为,开始传输数据包的时候需要查询两张表,一个路由表一个ARP表然后人们就想可不可以少查点表,然后MPLS就出现了,MPLS就是是在数据包的2.5层压入一个标签号,路由器基于2…

人大进仓数据库ksql命令基础

测试环境信息: 系统为银河麒麟V10 数据库为Kingbase ES V8 数据库安装目录为/opt/Kingbase/ES/V8 ksql命令位于/opt/Kingbase/ES/V8/Server/bin下 使用--help获取帮助 续上图 1.查看数据库列表 ./ksql -U system -l 2.查看数据库版本 ./ksql -V 3.连接指定的数据库tes…

计算机技术综合布线实训室建设方案

一、计算机技术综合布线系统概述 综合布线是指在建筑物或办公室内部,将各种通信设备(如计算机、电话、视频监控、音频设备等)通过统一的电缆系统连接起来的一种网络布线方式。它是构建局域网(LAN)和数据中心基础设施的…

Revit SDK 介绍:PanelSchedule 配电盘明细表

前言 这个例子介绍 Revit 的配电盘明细表,PanelSchedule。Revit 的电器专业在国内用的并不是十分广泛,但从功能上来说还是比较完整的。 内容 这个例子里有三个命令: PanelScheduleExport - 导出配电盘明细表InstanceViewCreation - 创建配…

HTML5的介绍和基本框架

目录 HTML5 HTML5介绍 HTML5的DOCTYPE声明 HTML5基本骨架 html标签 head标签 body标签 title标签 meta标签 在vscode中写出第一个小框架 HTML5 HTML5介绍 HTML5是用来描述网页的一种语言,被称为超文本标记语言。用HTML5编写的文件,后缀以.ht…

JVM编译优化

即时编译器 HotSpot虚拟机中内置了两个即时编译器,分别称为Client Compiler和Server Compiler,或者简称为C1编译器和C2编译器。Java8默认开启Server模式。用户可以使用“-client”或“-server”参数去指定编译模式。 C1编译器启动速度快,关注局部简单可靠的优化,比如方法…

【八大排序】-- 计数排序(动图演示)

计数排序介绍 计数排序是一个非基于比较的排序算法。它的优势在于在对一定范围内的整数排序时,它的复杂度为Ο(nk)(其中k是整数的范围),快于任何比较排序算法。 当然这是一种牺牲空间换取时间的做法,而且当O(k)>O(n…

Java反序列化漏洞笔记

前言 作为Java安全方面的盲对Java反序列化各种链方面了解的并不多,但是这些链条又极为重要,有助于更好的理解各种漏洞的产出和原理,因此以下笔记开始从底慢慢学起。 为什么会产生安全问题? 服务器反序列化数据时,客…

OpenCV-Python中的图像处理-模板匹配

OpenCV-Python中的图像处理-模板匹配 模板匹配单对象的模板匹配多对象的模板匹配 模板匹配 使用模板匹配可以在一幅图像中查找目标函数: cv2.matchTemplate(), cv2.minMaxLoc()模板匹配是用来在一副大图中搜寻查找模版图像位置的方法。 OpenCV 为我们提…

行业追踪,2023-08-15

自动复盘 2023-08-15 凡所有相,皆是虚妄。若见诸相非相,即见如来。 k 线图是最好的老师,每天持续发布板块的rps排名,追踪板块,板块来开仓,板块去清仓,丢弃自以为是的想法,板块去留让…

3. 爬取自己CSDN博客列表(自动方式)(分页查询)(网站反爬虫策略,需要在代码中添加合适的请求头User-Agent,否则response返回空)

文章目录 步骤打开谷歌浏览器输入网址按F12进入调试界面点击网络,清除历史消息按F5刷新页面找到接口(community/home-api/v1/get-business-list)接口解读 撰写代码获取博客列表先明确返回信息格式json字段解读 Apipost测试接口编写python代码…

浅谈 EMP-SSL + 代码解读:自监督对比学习的一种极简主义风

论文链接:https://arxiv.org/pdf/2304.03977.pdf 代码:https://github.com/tsb0601/EMP-SSL 其他学习链接:突破自监督学习效率极限!马毅、LeCun联合发布EMP-SSL:无需花哨trick,30个epoch即可实现SOTA 主要…

从0到1:通用后台管理系统 Vue3使用wangEditor

那么这一节我们在编辑公司信息的弹窗中使用富文本插件wangEditor官网 Vue3使用wangEditor 安装wangEditor在弹窗中引入wangEditor结构api接口部分editor组件script部分怎么去修改富文本的编辑器? 案例内效果: 安装wangEditor npm install wangeditor/…

【D3.js 01】

D3.js 01 说在前面1 概述2 配置Web环境3 HTML4 SVG5 DOM6 JS7 常用接口8 D3语法基础9 使用D3查询SVG10 使用D3设置SVG中属性11 修改整组属性12 使用D3添加与删除SVG元素13 数据读取 —— CSV数据14 D3.js的数值计算15 比例尺Scale - LinearScale - Band 16 引入坐标轴17 DATA-J…

通过网络和SD卡连接开发板

SD卡 有时候相关代码改动以后想验证能否正常工作,如果编译代码又需要好久,所以可以通过SD卡拷贝到板子里验证: 将SD卡插入读卡器,将读卡器插入ubuntu主机上,将相关带动的代码文件拷贝到SD卡中。假设你的板子已经具备…

LLMs大模型plugin开发实战

一、概述 ChatGPT是通用语言大模型,如果用户想要在与大模型进行交互时能够使用到企业私有的数据,那么可以通过开发plugin(插件)的方式来实现,另外GPT3.5模型的训练数据是截止到2021年9月,如果想让模型能够…

leetcode228. 汇总区间

题目 给定一个 无重复元素 的 有序 整数数组 nums 。 返回 恰好覆盖数组中所有数字 的 最小有序 区间范围列表 。也就是说,nums 的每个元素都恰好被某个区间范围所覆盖,并且不存在属于某个范围但不属于 nums 的数字 x 。 列表中的每个区间范围 [a,b]…

python矩阵形状和乘法

python矩阵的形状 A np.array([[[1],[2],[3]],[[4],[5],[6]]])AA np.array([[1,2,3],[4,5,6]])print(A) print(A.shape) print(AA) print(AA.shape)python矩阵的乘法 A np.array([[1, 2, 3, 4],[1, 2, 3, 4],[1, 1, 1, 1],[1, 1, 1, 1]]) B np.array([[1],[2],[1],[2]])C …