图神经网络 day2 图的分类

news2025/1/22 14:40:32

图神经网络基础算法

  • 1 GCN
  • 2 GraphSAGE
    • 2.1 采样:采样固定长度的邻居
    • 2.2 聚合
    • 2.3 GraphSAGE_minibatch
    • 2.4 GraphSAGE_embedding
  • 3 GAT
  • 4. 图网络的分类
    • 4.1 递归图神经网络 RGNN
    • 4.2 图卷积神经网络GCN
    • 4.3 图注意力网络 GAT
    • 4.4 图自动编码 GAE
    • 4.5 图时空网络 GSTN
    • 4.6 图生成网络 GGN
    • 4.7 图强化学些 GRL
    • 4.8 图对抗方法GAM
    • 4.9 更通用的框架
      • 4.9.1 消息传递网络 MPNN
      • 4.9.2 非局部神经网络 NLNN
      • 4.9.3 图神经网络 GN
        • MPNN应用于GN
        • NLNN应用于GN
    • 4.10 其他图
        • 1. 异构图
        • 2. 二部图
        • 3. 多维图
        • 4. 符号图
        • 5. 超图
        • 6. 动态图

1 GCN

公式:

image-20230731152025610

image-20230731154432175

image-20230731154641628

节点的特征从C维(X1)——》F维(Z1),并 进行softmax操作,得到每一个节点对应的label(Y1)

2 GraphSAGE

image-20230731164704170

image-20230815093721585

实例:

  1. 聚合周围邻居信息(领域特征),下图是求平均值
  2. 把邻居信息拼接到一起,再经过一个可学习的w参数

image-20230815093816863

2.1 采样:采样固定长度的邻居

image-20230815094233042

节点4是单向的,所以不考虑

image-20230815094435073

2.2 聚合

要满足以下性质:

  1. 聚合函数是对称的
  2. 聚合函数的输入和顺序是不变的

image-20230815094642143

2.3 GraphSAGE_minibatch

Minbatch : GraphSAGE采用聚合邻居,和GCN使用全图方式,变成采样。这样在minbatch下,可以不使用全图信息,这使得在大规模图上训练变得可行。把大图转换成小图

image-20230815095311066

例子

image-20230815095447037

image-20230815095835128

2.4 GraphSAGE_embedding

image-20230815100141336

作者提出的假设:如果这两个节点很近,那么他们的表征应该是相似的,反之,则他们的表征会有所不同

3 GAT

image-20230815140838605

求得节点i和周围节点的attention系数,再通过系数与邻居节点加权求和,那么就求得了该节点聚合周围节点后的特征。

image-20230815141100183

多头注意力机制

image-20230815141418872

三个节点表示了三类特征

image-20230815141634715

4. 图网络的分类

image-20230815142038642

image-20230815142124149

image-20230815142218084

4.1 递归图神经网络 RGNN

image-20230815170529400

递归和卷积都是学习特征,很明显,卷积图神经网络的卷积层参数可以是不一致的的

4.2 图卷积神经网络GCN

image-20230815170644973

得到节点有序序列

4.3 图注意力网络 GAT

4.4 图自动编码 GAE

GAE:encoder用GCN替换,得出的特征矩阵Z,decoder替换成Z的转置,通过转置生成的图与原图比较得出最小化结构性误差,通过最小损失函数可以得出GCN的参数

image-20230815171957587

VAE课程,李宏毅老师课程∶
https://www.bilibili.com/video/BV1tZ4y1L7gu?from=search&seid=15594710630639930905

4.5 图时空网络 GSTN

同时考虑图的空间性和时间维度·比如在交通邻域中﹐速度传感器会随时间变化的时间维度﹐不同的传感器之间也会形成连接的空间维度的边。
当前的许多方法都应用GCN来捕获图的依赖性,使用一些RNN或CNN对时间依赖性建模。

4.6 图生成网络 GGN

通过RNN或者GAN的方式生成网络。图生成网络的
一个有前途的应用领域是化合物合成。在化学图中﹐原子被视为节点﹐化学键被视为边·任务是发现具有某些化学和物理性质的新的可合成分子。

4.7 图强化学些 GRL

通过RNN或者GAN的方式生成网络。图生成网络的
一个有前途的应用领域是化合物合成。在化学图中﹐原子被视为节点﹐化学键被视为边·任务是发现具有某些化学和物理性质的新的可合成分子。

4.8 图对抗方法GAM

GAN的思想﹐生成器生成样本﹐分类器去判别样本。

4.9 更通用的框架

  1. MPNN∶图神经网络和图卷积/ Message Passing Neural Networks
  2. NLNN︰统一Attention/ Non-local Neural Networks
  3. GN︰统一以上/ Graph Networks

image-20230815172729741

image-20230815172736534

4.9.1 消息传递网络 MPNN

image-20230815172851410

Mt:聚合周围邻居信息

Ut:更新节点在下一层的特征表示

前面这两部分就跟GraphSAGE相似;最后,组合在一起就成了图的表示y hat。

4.9.2 非局部神经网络 NLNN

image-20230815173337490

f()求的就是节点i和相邻节点的attention系数,再求g()得出的该节点的特征,再归一化就是下一层的特征表示yi‘。

4.9.3 图神经网络 GN

image-20230815173741029

一个GN块包含三个更新函数函数φ和三个聚合函数ρ,各符号意义如下图所示:

image-20230815173909499

一个例子:Vsk:sender node;Vrk:receiver node;

image-20230815174209304

计算流程如下:

image-20230815174139184

整个算法的流程:

image-20230815174727391

MPNN应用于GN

image-20230815175350153

NLNN应用于GN

image-20230815175511573

4.10 其他图

image-20230815175928347

1. 异构图

不同节点构成的图

image-20230815180118699

2. 二部图

将图中节点分为两部分,每一边不跟自己相连

image-20230815180156598

3. 多维图

多种关系所组成的图

image-20230815180243234

4. 符号图

图之间的连接有正反符号

image-20230815180318206

5. 超图

一条边包含两个以上的节点。每个边所包含的顶点个数都是相同且为k个的,就可以被称为k阶超图,常见的图就是2阶超图。

image-20230815180426199

6. 动态图

image-20230815180457324

上面提到的图是静态的,观察时节点之间的连接是固定的。但是,在许多实际应用中,随着新节点被添加到图中,图在不断发展,并且新边也在不断出现。例如,在诸如Facebook的在线社交网络中,用户可以不断与他人建立友谊,新用户也可以随时加入Facebook。这些类型的演化图可以表示为动态图,其中每个节点或边都与时间戳关联。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/883572.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

echarts 柱状图-折线图-饼图的基础使用

上图示例图表展示相关配置: var myChart echarts.init(this.$refs.firstMain);myChart.setOption({legend: { // 图例设置top: "15%",type: "scroll",orient: "vertical",//图例列表的布局朝向。left: "right",pageIconCo…

【Docker】 Docker-Composite 启动 WordPress

引 本文将使用流行的博客搭建工具 WordPress 搭建一个私人博客站点。部署过程中使用到了 Docker 、MySQL 。站点搭建完成后经行了发布文章的体验。 WordPress WordPress 是一个广泛使用的开源内容管理系统(CMS),用于构建和管理网站、博客和…

ChatGPT​保密吗?它有哪些潜在风险?如何规避?

自2022年11月公开发布以来,ChatGPT已成为许多企业和个人的必备工具,但随着该技术越来越多地融入我们的日常生活,人们很自然地想知道:ChatGPT是否是保密的。 问:ChatGPT保密吗? 答:否&#xff0…

MIUI免费字体更换

一、打开主题壁纸 二、选择 热销字 三、点击右上角 搜索 四、输入 字体 可以看到,免费的字体没多少,此时这里可以输入其他关键词:拼音、手写等,看个人需求进行筛选免费即可 关键词有以下这些,但不局限这些哈 五、点击…

linux系统服务学习(六)FTP服务学习

文章目录 FTP、NFS、SAMBA系统服务一、FTP服务概述1、FTP服务介绍2、FTP服务的客户端工具3、FTP的两种运行模式(了解)☆ 主动模式☆ 被动模式 4、搭建FTP服务(重要)5、FTP的配置文件详解(重要) 二、FTP任务…

共读《科研论文配图绘制指南--基于Python》学习重点

Book 《科研论文配图绘制指南–基于Python》 特别提示 学习内容(书籍前3章)开营时在群内以PDF形式发放 课程背景 系统地介绍基于Python的科研论文配图的绘制技巧,提高科研工作者的绘图效率; 100多种图形的详细绘制方法&#…

STM32F103-OLED使用教程

目录 1. OLED屏介绍2. OLED如何显示一个点3. 配置OLED屏幕4. OLED显示字符串和汉字5. OLED屏幕显示图片6. 总结 1. OLED屏介绍 OLED(Organic Light Emitting Diode):有机发光二极管OLED显示屏:性能优异的新型显示屏,具…

Vue组件(详解)

目录 组件: 全局组件: 在HTML页面声明template: 局部组件: 局部组件第一种方式: 局部组件第二种方式: 插槽slot: 匿名插槽: 具名插槽: 父子组件通信&#xff1…

【双指针_和为 s 的两个数_C++】

和为s的两个数字 class Solution { public:vector<int> twoSum(vector<int>& nums, int target) {int n nums.size();int left 0;int right n-1;while(left<right){if(nums[left]nums[right]>target) right--;else if(nums[left]nums[right]<tar…

Postman接口自动化测试实例

一.实例背景 在实际业务中&#xff0c;经常会出现让用户输入用户密码进行验证的场景。而为了安全&#xff0c;一般都会先请求后台服务器获取一个随机数做为盐值&#xff0c;然后将盐值和用户输入的密码通过前端的加密算法生成加密后串传给后台服务器&#xff0c;后台服务器接到…

车载以太网物理层

车载以太网物理层 O S I 参考模型的第 1 层&#xff08; 最底层&#xff09;。负责逻辑信号&#xff08; 比特流&#xff09;与物理信号&#xff08;电信号、光信号&#xff09;之间的互相转换&#xff0c;通过传输介质为数据链路层提供物理连接。 车载以太网与传统以太网相比…

matlab使用教程(16)—图论中图的定义与修改

1.修改现有图的节点和边 此示例演示如何使用 addedge 、 rmedge 、 addnode 、 rmnode 、 findedge 、 findnode 及 subgraph 函数访问和修改 graph 或 digraph 对象中的节点和/或边。 1.1 添加节点 创建一个包含四个节点和四条边的图。s 和 t 中的对应元素用于指定每条…

【教程】零成本将小米净化器改造为无叶风扇

某宝某多上&#xff0c;就这么点破塑料&#xff0c;就要买79&#xff1f;&#xff01;&#xff01; 我这枚韭菜可不上当。咱自己做一个&#xff01; 真香~

BBS项目day02、注册、登录(登录之随机验证码)、修改密码、退出登录、密码加密加盐

一、注册 1.注册之前端页面 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>注册页面</title><!--动态引入文件-->{% load static %}<script src"{% static js/jquery.min.js %…

jquery技术学习2

移动节点 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>移动节点</title><script type"text/javascript" src"../script/jquery-3.6.0.min.js"></script>&l…

【Spring】深入理解 Spring 事务及其传播机制

文章目录 一、Spring 事务是什么二、Spring 中事务的实现方法2.1 Spring 编程式事务&#xff08;手动&#xff09;2.1.1 编程式事务的使用演示2.1.2 编程式事务存在的问题 2.2 Spring 声明式事务&#xff08;自动&#xff09;2.2.1 Transactional 作用范围2.2.2 Transactional …

化繁为简,使用Hibernate Validator实现参数校验

前言 在之前的悦享校园的开发中使用了SSM框架&#xff0c;由于当时并没有使用参数参数校验工具&#xff0c;方法的入参判断使用了大量的if else语句&#xff0c;代码十分臃肿&#xff0c;因此最近在重构代码时&#xff0c;将框架改为SpringBoot后&#xff0c;引入了Hibernate V…

HCIP MPLS实验

MPLS实验 拓扑MPLS VPN配置PE与PE间建立MP-BPG邻居关系R7访问R2,R3,R4环回 拓扑 MPLS VPN配置 首先可以用OSPF协议将R2,R3,R4跑通&#xff0c;然后配置MPLS [R2]mpls lsr-id 2.2.2.2 定义MPLS的router-id&#xff0c;要为本地设备的真实ip地址&#xff0c;且邻居可达&#…

机器学习算法之-逻辑回归(2)

为什么需要逻辑回归 拟合效果太好 特征与标签之间的线性关系极强的数据&#xff0c;比如金融领域中的 信用卡欺诈&#xff0c;评分卡制作&#xff0c;电商中的营销预测等等相关的数据&#xff0c;都是逻辑回归的强项。虽然现在有了梯度提升树GDBT&#xff0c;比逻辑回归效果更…

【学习FreeRTOS】第8章——FreeRTOS列表和列表项

1.列表和列表项的简介 列表是 FreeRTOS 中的一个数据结构&#xff0c;概念上和链表有点类似&#xff0c;列表被用来跟踪 FreeRTOS中的任务。列表项就是存放在列表中的项目。 列表相当于链表&#xff0c;列表项相当于节点&#xff0c;FreeRTOS 中的列表是一个双向环形链表列表的…