商城-学习整理-高级-全文检索-ES(九)

news2024/11/23 10:34:44

目录

  • 一、ES简介
    • 1、网址
    • 2、基本概念
      • 1、Index(索引)
      • 2、Type(类型)
      • 3、Document(文档)
      • 4、倒排索引机制
        • 4.1 正向索引和倒排索引
        • 4.2 正向索引
        • 4.3 倒排索引
    • 3、相关软件及下载地址
      • 3.1 Kibana简介
      • 3.2 logstash简介
  • 二、Docker安装ES
    • 1、下载镜像文件
    • 2、创建实例
      • 1、ElasticSearch
      • 2、Kibana
  • 三、初步检索
    • 1、_cat
    • 2、索引一个文档(保存)
    • 3、查询文档
    • 4、更新文档
    • 5、删除文档&索引
    • 6、bulk 批量 API
    • 7、样本测试数据
  • 四、进阶检索
    • 1、SearchAPI
      • 1)、检索信息
    • 2、Query DSL((domain-specific language 领域特定语言)
      • 1)、基本语法格式
      • 2)、返回部分字段
      • 3)、match【匹配查询】
      • 4)、match_phrase【短语匹配】
      • 5)、multi_match【多字段匹配】
      • 6)、bool【复合查询】
      • 7)、filter【结果过滤】
      • 8)、term
    • 3、Mapping
      • 1)、字段类型
      • 2)、映射
      • 3)、新版本改变
    • 4、分词
      • 1)、安装 ik 分词器
      • 2)、测试分词器
      • 3)、调整虚拟机内存大小
      • 4)、安装nginx
      • 5)、自定义词库
  • 五、Elasticsearch-Rest-Client
    • 1、Rest客户端选型
      • 1)、9300:TCP
      • 2)、9200:HTTP
    • 2、创建检索服务
    • 3、SpringBoot 整合
    • 4、配置
    • 5、使用

一、ES简介

1、网址

https://www.elastic.co/cn/what-is/elasticsearch
Elastic 的底层是开源库 Lucene。但是,你没法直接用 Lucene,必须自己写代码去调用它的接口。Elastic 是 Lucene 的封装,提供了 REST API 的操作接口,开箱即用。
REST API:天然的跨平台。
官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
官方中文:https://www.elastic.co/guide/cn/elasticsearch/guide/current/foreword_id.html
社区中文:
https://es.xiaoleilu.com/index.html
http://doc.codingdict.com/elasticsearch/0/
开源的 Elasticsearch 是目前全文搜索引擎的首选。
它可以快速地储存、搜索和分析海量数据

2、基本概念

1、Index(索引)

动词,相当于 MySQL 中的 insert;
名词,相当于 MySQL 中的 Database

2、Type(类型)

在 Index(索引)中,可以定义一个或多个类型。
类似于 MySQL 中的 Table;每一种类型的数据放在一起;

3、Document(文档)

保存在某个索引(Index)下,某种类型(Type)的一个数据(Document),文档是 JSON 格式的,Document 就像是 MySQL 中的某个 Table 里面的内容;

4、倒排索引机制

4.1 正向索引和倒排索引

正向索引与倒排索引,这是在搜索领域中非常重要的两个名词,正向索引通常用于数据库中,在搜索引擎领域使用的最多的就是倒排索引,我们根据如下两个网页来对这两个概念进行阐述:
html1
我爱我的祖国,我爱编程
html2
我爱编程,我是个快乐的小码农

4.2 正向索引

假设我们使用mysql的全文检索,会对如上两句话分别进行分词处理,那么预计得到的结果如下:
我 爱 爱我 祖国 我的祖国 编程 爱编程 我爱编程
我 我爱 爱 编程 爱编程 我爱编程 快乐 码农 小码农

假设我们现在使用正向索引搜索 编程 这个词,那么会到第一句话中去查找是否包含有 编程 这个关键词,如果有则加入到结果集中;第二句话也是如此。假设现在有成千上百个网页,每个网页非常非常的分词,那么搜索的效率将会非常非常低些。

4.3 倒排索引

倒排索引是按照分词与文档进行映射,我们来看看如果按照倒排索引的效果:
在这里插入图片描述
如果采用倒排索引的方式搜索 编程 这个词,那么会直接找到关键词中查找到 编程 ,然后查找到对应的文档,这就是所谓的倒排索引。

3、相关软件及下载地址

Elasticsearch: https://www.elastic.co/cn/start
Kibana: https://www.elastic.co/cn/start
Logstash: https://www.elastic.co/cn/downloads/logstash

3.1 Kibana简介

Kibana是世界上最受欢迎的开源日志分析平台ELK Stack中的“K” ,它为用户提供了一个工具,用于在存储于Elasticsearch集群中的日志数据进行检索,可视化和构建仪表板。
Kibana的核心功能是数据查询和分析。使用各种方法,用户可以搜索Elasticsearch中索引的数据,以查找其数据中的特定事件或字符串,以进行根本原因分析和诊断。基于这些查询,用户可以使用Kibana的可视化功能,允许用户使用图表,表格,地理图和其他类型的可视化以各种不同的方式可视化数据。

3.2 logstash简介

Logstash是一个开源的服务器端数据处理管道,可以同时从多个数据源获取数据,并对其进行转换,然后将其发送到你最喜欢的“存储”。创建于2009年,于2013年被elasticsearch收购。

二、Docker安装ES

1、下载镜像文件

docker pull elasticsearch:7.4.2 存储和检索数据
docker pull kibana:7.4.2 可视化检索数据
在这里插入图片描述

2、创建实例

1、ElasticSearch

mkdir -p /mydata/elasticsearch/config
mkdir -p /mydata/elasticsearch/data
echo "http.host: 0.0.0.0" >> /mydata/elasticsearch/config/elasticsearch.yml
chmod -R 777 /mydata/elasticsearch/ 保证权限
docker run --name elasticsearch -p 9200:9200 -p 9300:9300 \
-e "discovery.type=single-node" \
-e ES_JAVA_OPTS="-Xms64m -Xmx512m" \
-v /mydata/elasticsearch/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \
-v /mydata/elasticsearch/data:/usr/share/elasticsearch/data \
-v /mydata/elasticsearch/plugins:/usr/share/elasticsearch/plugins \
-d elasticsearch:7.4.2

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

以后再外面装好插件重启即可;
特别注意:
-e ES_JAVA_OPTS=“-Xms64m -Xmx256m” \ 测试环境下,设置 ES 的初始内存和最大内存,否则导致过大启动不了 ES,生产环境也需要指定一下初始内存和最大内容,要不然会全部占用服务器的内存。

/mydata/elasticsearch 下面的权限必须设置为777,要不然会启动失败。
如果启动失败可以看下日志:docker logs CONTAINER ID

2、Kibana

docker run --name kibana -e ELASTICSEARCH_HOSTS=http://192.168.56.10:9200 -p 5601:5601 \
-d kibana:7.4.2

http://192.168.56.10:9200 一定改为自己虚拟机的地址

在这里插入图片描述
在这里插入图片描述

三、初步检索

1、_cat

GET /_cat/nodes:查看所有节点
GET /_cat/health:查看 es 健康状况
GET /_cat/master:查看主节点
GET /_cat/indices:查看所有索引 show databases;
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、索引一个文档(保存)

保存一个数据,保存在哪个索引的哪个类型下,指定用哪个唯一标识
PUT customer/external/1;在 customer 索引下的 external 类型下保存 1 号数据为

PUT customer/external/1
{ "name": "John Doe"
}

PUT 和 POST 都可以,
POST 新增。如果不指定 id,会自动生成 id。指定 id 就会修改这个数据,并新增版本号。
PUT 可以新增可以修改。PUT 必须指定 id;由于 PUT 需要指定 id,我们一般都用来做修改操作,不指定 id 会报错。

3、查询文档

GET customer/external/1
结果:
{ "_index": "customer", //在哪个索引
"_type": "external", //在哪个类型
"_id": "1", //记录 id
"_version": 2, //版本号
"_seq_no": 1, //并发控制字段,每次更新就会+1,用来做乐观锁
"_primary_term": 1, //同上,主分片重新分配,如重启,就会变化
"found": true, "_source": { //真正的内容
"name": "John Doe"
}
}

更新携带 ?if_seq_no=0&if_primary_term=1

4、更新文档

POST customer/external/1/_update
{ "doc":{ "name": "John Doew"
}
}
或者
POST customer/external/1
{ "name": "John Doe2"
}
或者
PUT customer/external/1
{ "name": "John Doe"
}

 不同:POST 操作会对比源文档数据,如果相同不会有什么操作,文档 version 不增加
PUT 操作总会将数据重新保存并增加 version 版本;
带_update 对比元数据如果一样就不进行任何操作。
看场景;
对于大并发更新,不带 update;
对于大并发查询偶尔更新,带 update;对比更新,重新计算分配规则。
 更新同时增加属性
POST customer/external/1/_update
{ “doc”: { “name”: “Jane Doe”, “age”: 20 }
}
PUT 和 POST 不带_update 也可以。

5、删除文档&索引

DELETE customer/external/1
DELETE customer

6、bulk 批量 API

POST customer/external/_bulk
{"index":{"_id":"1"}}
{"name": "John Doe" }
{"index":{"_id":"2"}}
{"name": "Jane Doe" }
语法格式:
{ action: { metadata }}\n
{ request body }\n
{ action: { metadata }}\n
{ request body }\n
复杂实例:
POST /_bulk
{ "delete": { "_index": "website", "_type": "blog", "_id": "123" }}
{ "create": { "_index": "website", "_type": "blog", "_id": "123" }}
{ "title": "My first blog post" }
{ "index": { "_index": "website", "_type": "blog" }}
{ "title": "My second blog post" }
{ "update": { "_index": "website", "_type": "blog", "_id": "123", "_retry_on_conflict" : 3} }
{ "doc" : {"title" : "My updated blog post"} }

在这里插入图片描述
在这里插入图片描述

bulk API 以此按顺序执行所有的 action(动作)。如果一个单个的动作因任何原因而失败,它将继续处理它后面剩余的动作。当 bulk API 返回时,它将提供每个动作的状态(与发送的顺序相同),所以您可以检查是否一个指定的动作是不是失败了。

7、样本测试数据

我准备了一份顾客银行账户信息的虚构的 JSON 文档样本。每个文档都有下列的 schema(模式):

{ "account_number": 0, "balance": 16623, "firstname": "Bradshaw", "lastname": "Mckenzie", "age": 29, "gender": "F", "address": "244 Columbus Place", "employer": "Euron", "email": "bradshawmckenzie@euron.com", "city": "Hobucken", "state": "CO"
}

https://github.com/elastic/elasticsearch/blob/master/docs/src/test/resources/accounts.json?raw=true 导入测试数据
POST bank/account/_bulk
测试数据

四、进阶检索

1、SearchAPI

ES 支持两种基本方式检索 :
 一个是通过使用 REST request URI 发送搜索参数(uri+检索参数)
 另一个是通过使用 REST request body 来发送它们(uri+请求体)

1)、检索信息

 一切检索从_search 开始

GET bank/_search 检索 bank 下所有信息,包括 type 和 docs
GET bank/_search?q=*&sort=account_number:asc 请求参数方式检索
响应结果解释:
took - Elasticsearch 执行搜索的时间(毫秒)
time_out - 告诉我们搜索是否超时
_shards - 告诉我们多少个分片被搜索了,以及统计了成功/失败的搜索分片
hits - 搜索结果
hits.total - 搜索结果
hits.hits - 实际的搜索结果数组(默认为前 10 的文档)
sort - 结果的排序 key(键)(没有则按 score 排序)
score 和 max_score –相关性得分和最高得分(全文检索用)

 uri+请求体进行检索

GET bank/_search
{ "query": { "match_all": {}
},"sort": [
{ "account_number": { "order": "desc"
}
}
]
}

HTTP 客户端工具(POSTMAN),get 请求不能携带请求体,我们变为 post 也是一样的我们 POST 一个 JSON 风格的查询请求体到 _search API。
需要了解,一旦搜索的结果被返回,Elasticsearch 就完成了这次请求,并且不会维护任何服务端的资源或者结果的 cursor(游标).

2、Query DSL((domain-specific language 领域特定语言)

1)、基本语法格式

Elasticsearch 提供了一个可以执行查询的 Json 风格的 DSL(domain-specific language 领域特定语言)。这个被称为 Query DSL。该查询语言非常全面,并且刚开始的时候感觉有点复杂,真正学好它的方法是从一些基础的示例开始的。
 一个查询语句 的典型结构

{
QUERY_NAME: {
ARGUMENT: VALUE, ARGUMENT: VALUE,... }
}
 如果是针对某个字段,那么它的结构如下:
{
QUERY_NAME: {
FIELD_NAME: {
ARGUMENT: VALUE, ARGUMENT: VALUE,... }
}
}
GET bank/_search
{ "query": { "match_all": {}
},"from": 0, "size": 5, "sort": [
{ "account_number": { "order": "desc"
}
}
]
}

 query 定义如何查询,
 match_all 查询类型【代表查询所有的所有】,es 中可以在 query 中组合非常多的查
询类型完成复杂查询
 除了 query 参数之外,我们也可以传递其它的参数以改变查询结果。如 sort,size
 from+size 限定,完成分页功能
 sort 排序,多字段排序,会在前序字段相等时后续字段内部排序,否则以前序为准

2)、返回部分字段

GET bank/_search
{ "query": {
"match_all": {}
},"from": 0, "size": 5, "_source": ["age","balance"]
}

3)、match【匹配查询】

 基本类型(非字符串),精确匹配

GET bank/_search
{ "query": { "match": { "account_number": "20"
}
}
}
match 返回 account_number=20

 字符串,全文检索

GET bank/_search
{ "query": { "match": { "address": "mill"
}
}
}
最终查询出 address 中包含 mill 单词的所有记录
match 当搜索字符串类型的时候,会进行全文检索,并且每条记录有相关性得分。

 字符串,多个单词(分词+全文检索)

GET bank/_search
{ "query": { "match": { "address": "mill road"
}
}
}
最终查询出 address 中包含 mill 或者 road 或者 mill road 的所有记录,并给出相关性得分

4)、match_phrase【短语匹配】

将需要匹配的值当成一个整体单词(不分词)进行检索

GET bank/_search
{ "query": { "match_phrase": { "address": "mill road"
}
}
}
查出 address 中包含 mill road 的所有记录,并给出相关性得分

5)、multi_match【多字段匹配】

GET bank/_search
{ "query": { "multi_match": { "query": "mill", "fields": ["state","address"]
}
}
}
state 或者 address 包含 mill

6)、bool【复合查询】

bool 用来做复合查询:
复合语句可以合并 任何 其它查询语句,包括复合语句,了解这一点是很重要的。这就意味着,复合语句之间可以互相嵌套,可以表达非常复杂的逻辑。

 must:必须达到 must 列举的所有条件
GET bank/_search
{ "query": { "bool": { "must": [
{ "match": { "address": "mill" } },
{ "match": { "gender": "M" } }
]
}
}
}
 should:应该达到 should 列举的条件,如果达到会增加相关文档的评分,并不会改变
查询的结果。如果 query 中只有 should 且只有一种匹配规则,那么 should 的条件就会
被作为默认匹配条件而去改变查询结果
GET bank/_search
{ "query": { "bool": { "must": [
{ "match": { "address": "mill" } }, { "match": { "gender": "M" } }
],"should": [
{"match": { "address": "lane" }}
]
}
}
}
 must_not 必须不是指定的情况
GET bank/_search
{ "query": { "bool": { "must": [
{ "match": { "address": "mill" } }, { "match": { "gender": "M" } }
],"should": [
{"match": { "address": "lane" }}
],"must_not": [
{"match": { "email": "baluba.com" }}
]
}
}
}
address 包含 mill,并且 gender 是 M,如果 address 里面有 lane 最好不过,但是 email 必
须不包含 baluba.com

在这里插入图片描述

7)、filter【结果过滤】

并不是所有的查询都需要产生分数,特别是那些仅用于 “filtering”(过滤)的文档。为了不
计算分数 Elasticsearch 会自动检查场景并且优化查询的执行。
GET bank/_search
{ "query": { "bool": { "must": [
{"match": { "address": "mill"}}
],"filter": { "range": { "balance": { "gte": 10000, "lte": 20000
}
}
}
}
}
}

8)、term

和 match 一样。匹配某个属性的值。全文检索字段用 match,其他非 text 字段匹配用 term。

GET bank/_search
{ "query": { "bool": { "must": [
{"term": { "age": { "value": "28"
}
}}, {"match": { "address": "990 Mill Road"
}}
]
}
}
}

9)、aggregations(执行聚合)
聚合提供了从数据中分组和提取数据的能力。最简单的聚合方法大致等于 SQL GROUP BY 和 SQL 聚合函数。在 Elasticsearch 中,您有执行搜索返回 hits(命中结果),并且同时返回聚合结果,把一个响应中的所有 hits(命中结果)分隔开的能力。这是非常强大且有效的,
您可以执行查询和多个聚合,并且在一次使用中得到各自的(任何一个的)返回结果,使用一次简洁和简化的 API 来避免网络往返。

 搜索 address 中包含 mill 的所有人的年龄分布以及平均年龄,但不显示这些人的详情。
GET bank/_search
{ "query": { "match": { "address": "mill"
}
},"aggs": { "group_by_state": { "terms": { "field": "age"
}
},"avg_age": { "avg": {
"field": "age"
}
}
},"size": 0
}
size:0 不显示搜索数据
aggs:执行聚合。聚合语法如下
"aggs": { "aggs_name 这次聚合的名字,方便展示在结果集中": { "AGG_TYPE 聚合的类型(avg,term,terms)": {}
}
},
复杂:
按照年龄聚合,并且请求这些年龄段的这些人的平均薪资
GET bank/account/_search
{ "query": { "match_all": {}
},"aggs": { "age_avg": { "terms": { "field": "age", "size": 1000
},"aggs": { "banlances_avg": { "avg": { "field": "balance"
}
}
}
}
}
,"size": 1000
}
复杂:查出所有年龄分布,并且这些年龄段中 M 的平均薪资和 F 的平均薪资以及这个年龄
段的总体平均薪资
GET bank/account/_search
{ "query": { "match_all": {}
},"aggs": { "age_agg": { "terms": { "field": "age", "size": 100
},"aggs": { "gender_agg": { "terms": { "field": "gender.keyword", "size": 100
},"aggs": { "balance_avg": { "avg": { "field": "balance"
}
}
}
},"balance_avg":{ "avg": { "field": "balance"
}
}
}
}
}
,"size": 1000
}

3、Mapping

1)、字段类型

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2)、映射

Mapping(映射)
Mapping 是用来定义一个文档(document),以及它所包含的属性(field)是如何存储和索引的。比如,使用 mapping 来定义:
 哪些字符串属性应该被看做全文本属性(full text fields)。
 哪些属性包含数字,日期或者地理位置。
 文档中的所有属性是否都能被索引(_all 配置)。
 日期的格式。
 自定义映射规则来执行动态添加属性。
 查看 mapping 信息:
GET bank/_mapping
 修改 mapping 信息
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
在这里插入图片描述

3)、新版本改变

Es7 及以上移除了 type 的概念。
 关系型数据库中两个数据表示是独立的,即使他们里面有相同名称的列也不影响使用,
但 ES 中不是这样的。elasticsearch 是基于 Lucene 开发的搜索引擎,而 ES 中不同 type
下名称相同的 filed 最终在 Lucene 中的处理方式是一样的。
 两个不同 type 下的两个 user_name,在 ES 同一个索引下其实被认为是同一个 filed,你必须在两个不同的 type 中定义相同的 filed 映射。否则,不同 type 中的相同字段名称就会在处理中出现冲突的情况,导致 Lucene 处理效率下降。
 去掉 type 就是为了提高 ES 处理数据的效率。
Elasticsearch 7.x
 URL 中的 type 参数为可选。比如,索引一个文档不再要求提供文档类型。
Elasticsearch 8.x
 不再支持 URL 中的 type 参数。
解决:
1)、将索引从多类型迁移到单类型,每种类型文档一个独立索引
2)、将已存在的索引下的类型数据,全部迁移到指定位置即可。详见数据迁移

1、创建映射
1、创建索引并指定映射
PUT /my-index
{ "mappings": { "properties": {
"age": { "type": "integer" }, "email": { "type": "keyword" }, "name": { "type": "text" }
}
}
}
2、添加新的字段映射
PUT /my-index/_mapping
{ "properties": { "employee-id": { "type": "keyword", "index": false
}
}
}

3、更新映射
对于已经存在的映射字段,我们不能更新。更新必须创建新的索引进行数据迁移

4、数据迁移
先创建出 new_twitter 的正确映射。然后使用如下方式进行数据迁移
POST _reindex [固定写法]
{ "source": { "index": "twitter"
},"dest": { "index": "new_twitter"
}
}
将旧索引的 type 下的数据进行迁移
POST _reindex
{ "source": {
"index": "twitter", "type": "tweet"
},"dest": { "index": "tweets"
}
}

4、分词

一个 tokenizer(分词器)接收一个字符流,将之分割为独立的 tokens(词元,通常是独立的单词),然后输出 tokens 流。
例如,whitespace tokenizer 遇到空白字符时分割文本。它会将文本 “Quick brown fox!” 分割为 [Quick, brown, fox!]。
该 tokenizer(分词器)还负责记录各个 term(词条)的顺序或 position 位置(用于 phrase 短语和 word proximity 词近邻查询),以及 term(词条)所代表的原始 word(单词)的 start(起始)和 end(结束)的 character offsets(字符偏移量)(用于高亮显示搜索的内容)。
Elasticsearch 提供了很多内置的分词器,可以用来构建 custom analyzers(自定义分词器)。

1)、安装 ik 分词器

注意:不能用默认 elasticsearch-plugin install xxx.zip 进行自动安装
https://github.com/medcl/elasticsearch-analysis-ik/releases?after=v6.4.2 对应 es 版本安装

进入 es 容器内部 plugins 目录
docker exec -it 容器 id /bin/bash
wget
https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.4.2/elasticsearch-anal
ysis-ik-7.4.2.zip
unzip 下载的文件
rm –rf *.zip
mv elasticsearch/ ik
可以确认是否安装好了分词器
cd ../bin
elasticsearch plugin list:即可列出系统的分词器

在这里插入图片描述
在这里插入图片描述
因为容器里面只有核心的软件,因此没有wget,可以直接去外面的安装wget,在外面下载wget,最好不要在容器里面下载,增加容器内容。

yum install wget

在这里插入图片描述
在外面解压好上传上去

在这里插入图片描述
容器一旦启动,最好不要删除里面的挂载目录,要不然就需要重启容器重新挂载一下目录。
在这里插入图片描述
安装好分词器后,需要重新启动一下容器,加载插件。

docker restart elasticsearch

在这里插入图片描述

2)、测试分词器

使用默认
POST _analyze
{ "text": "我是中国人"
}
请观察结果
使用分词器
POST _analyze
{ "analyzer": "ik_smart", "text": "我是中国人"
}
请观察结果
另外一个分词器
ik_max_word
POST _analyze
{ "analyzer": "ik_max_word", "text": "我是中国人"
}

请观察结果
能够看出不同的分词器,分词有明显的区别,所以以后定义一个索引不能再使用默认的 mapping 了,要手工建立 mapping, 因为要选择分词器。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

3)、调整虚拟机内存大小

1、关闭虚拟机
2、打开设置里面的系统,调到3G。
3、然后无界面启动虚拟机,再启动容器。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

4)、安装nginx

先在mydata下面创建nginx目录,以后所有的nginx文件都放到这个目录下面
在这里插入图片描述
 随便启动一个 nginx 实例,只是为了复制出配置

 docker run -p 80:80 --name nginx -d nginx:1.10

本地没有找到镜像会自动下载并启动
在这里插入图片描述

 将容器内的配置文件拷贝到当前目录(别忘了后面的点):

docker container cp nginx:/etc/nginx .  

nginx容器下的/etc/nginx目录下的文件 拷贝到刚才创建的nginx文件夹下
在这里插入图片描述

 修改文件名称:mv nginx conf
把这个 conf 移动到/mydata/nginx 下
在这里插入图片描述

 终止原容器:docker stop nginx
 执行命令删除原容器:docker rm $ContainerId
 创建新的 nginx;执行以下命令

docker run -p 80:80 --name nginx \
-v /mydata/nginx/html:/usr/share/nginx/html \
-v /mydata/nginx/logs:/var/log/nginx \
-v /mydata/nginx/conf:/etc/nginx \
-d nginx:1.10

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

去nginx外部挂载目录,html下,创建index.html,编写html页面,请求就能够默认展示,说明nginx是ok的。(nginx会自动默认访问html文件夹下面的内容,默认访问index.html页面,因此请求http://192.168.56.10:80,就是请求http://192.168.56.10/index.html,80是默认端口含,不展示
在nginx下面的html文件夹下面创建es文件夹,有关的es文件就放到里面,给 nginx 的 html 下面放的所有资源可以直接访问;
在这里插入图片描述
http://192.168.56.10/es/fenci.txt
在这里插入图片描述

5)、自定义词库

修改/usr/share/elasticsearch/plugins/ik/config/中的 IKAnalyzer.cfg.xml
/usr/share/elasticsearch/plugins/ik/config

在这里插入图片描述

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>IK Analyzer 扩展配置</comment>
<!--用户可以在这里配置自己的扩展字典 -->
<entry key="ext_dict"></entry>
<!--用户可以在这里配置自己的扩展停止词字典-->
<entry key="ext_stopwords"></entry>
<!--用户可以在这里配置远程扩展字典 -->
<entry key="remote_ext_dict">http://192.168.128.130/fenci/myword.txt</entry>
<!--用户可以在这里配置远程扩展停止词字典-->
<!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>
原来的 xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>IK Analyzer 扩展配置</comment>
<!--用户可以在这里配置自己的扩展字典 -->
<entry key="ext_dict"></entry>
<!--用户可以在这里配置自己的扩展停止词字典-->
<entry key="ext_stopwords"></entry>
<!--用户可以在这里配置远程扩展字典 -->
<!-- <entry key="remote_ext_dict">words_location</entry> -->
<!--用户可以在这里配置远程扩展停止词字典-->
<!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>

在这里插入图片描述
按照远程扩展字典的路径利用 nginx 发布静态资源,按照请求路径,创建对应的文件夹以及文件,放在nginx 的 html 下
然后重启 es 服务器,重启 nginx。
在这里插入图片描述
修改es一直自动重启,这样修改配置,es就会自动重启:

 docker update  elasticsearch --restart=always

在这里插入图片描述

在 kibana 中测试分词效果
在这里插入图片描述

更新完成后,es 只会对新增的数据用新词分词。历史数据是不会重新分词的。如果想要历史数据重新分词。需要执行:
POST my_index/_update_by_query?conflicts=proceed

五、Elasticsearch-Rest-Client

1、Rest客户端选型

1)、9300:TCP

 spring-data-elasticsearch:transport-api.jar;
 springboot 版本不同, transport-api.jar 不同,不能适配 es 版本
 7.x 已经不建议使用,8 以后就要废弃

2)、9200:HTTP

 JestClient:非官方,更新慢
 RestTemplate:模拟发 HTTP 请求,ES 很多操作需要自己封装,麻烦
 HttpClient:同上
 Elasticsearch-Rest-Client:官方 RestClient,封装了 ES 操作,API 层次分明,上手简单
最终选择 Elasticsearch-Rest-Client(elasticsearch-rest-high-level-client)
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-high.html

2、创建检索服务

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
配置服务注册和配置中心。

3、SpringBoot 整合

<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<version>7.4.2</version>
</dependency>

在这里插入图片描述

发现其中的依赖有6.4.3版本,因为我们是spring-boot下spring-boot-dependencies对es也做了版本管理
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
然后我们在子项目配置中引用的版本设置为7.4.2
在这里插入图片描述
刷新一下,就全部变成7.4.2了在这里插入图片描述

4、配置

@Bean
RestHighLevelClient client() {
RestClientBuilder builder = RestClient.builder(new HttpHost("192.168.56.10", 9200, "http"));
return new RestHighLevelClient(builder);
}

在这里插入图片描述
在这里插入图片描述

5、使用

参照官方文档:
@Test
void test1() throws IOException {
Product product = new Product();
product.setSpuName("华为");
product.setId(10L);
IndexRequest request = new IndexRequest("product").id("20")
.source("spuName","华为","id",20L);
try {
IndexResponse response = client.index(request, RequestOptions.DEFAULT);
System.out.println(request.toString());
IndexResponse response2 = client.index(request, RequestOptions.DEFAULT);
} catch (ElasticsearchException e) {
if (e.status() == RestStatus.CONFLICT) {
}
}
}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/883139.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MySQL运维MySQL读写分离

查看当前从库的状态 一主一从 1 3 上一样的 指定一个逻辑库 逻辑库不用指定逻辑表 当前逻辑库对应的数据节点 用balance2 是随机的

自适应AI chatgpt智能聊天创作官网html源码

我们致力于开发先进的自适应AI智能聊天技术&#xff0c;旨在为用户提供前所未有的聊天体验。通过融合自然语言处理、机器学习和深度学习等领域的顶尖技术&#xff0c;我们的智能聊天系统能够准确理解用户的需求并给出相应的回应。 我们的自适应AI智能聊天系统具备以下核心特点…

21.0 CSS 介绍

1. CSS层叠样式表 1.1 CSS简介 CSS(层叠样式表): 是一种用于描述网页上元素外观和布局的样式标记语言. 它可以与HTML结合使用, 通过为HTML元素添加样式来改变其外观. CSS使用选择器来选择需要应用样式的元素, 并使用属性-值对来定义这些样式.1.2 CSS版本 CSS有多个版本, 每个…

Java | IDEA中 jconsole 不是内部或外部命令,也不是可运行的程序

解决办法&#xff1a; 1.先将Terminal的Shell path 修改为C:\WINDOWS\system32\cmd.exe 2.在检查环境变量中的ComSpec的值 3.找到自己电脑下载的jdk的bin的地址 4.将jdk的bin地址加入到系统变量path中

windows权限维持—SSPHOOKDSRMSIDhistorySkeletonKey

windows权限维持—SSP&HOOK&DSRM&SIDhistory&SkeletonKey 1. 权限维持介绍1.1. 其他 2. 基于验证DLL加载—SPP2.1. 操作演示—临时生效2.1.1. 执行命令2.1.2. 切换用户 2.2. 操作演示—永久生效2.2.1. 上传文件2.2.2. 执行命令2.2.3. 重启生效 2.3. 总结 3. 基…

【Linux】【驱动】杂项设备驱动

【Linux】【驱动】杂项设备驱动 Linux三大设备驱动1. 我们这节课要讲的杂项设备驱动是属于我们这三大设备驱动里面的哪个呢?2.杂项设备除了比字符设备代码简单&#xff0c;还有别的区别吗?3.主设备号和次设备号是什么? 挂载驱动 杂项设备驱动是字符设备驱动的一种&#xff0…

JavaWeb学习-Day03

Ajax 同步与异步 Acios&#xff1a; 前后端分离开发 yapi&#xff1a;(YApi Pro-高效、易用、功能强大的可视化接口管理平台) 前端开发的工程化 Vue项目 template:定义HTML代码&#xff0c;相当于Vue当中的视图部分 script:定义JS代码&#xff0c;Vue当中的数据模型以及当中的…

AutoHotKey+VSCode开发扩展推荐

原来一直用的大众推荐的SciTeAHK版&#xff0c;最近发现VSCode更舒服一些&#xff0c;有几个必装的扩展推荐一下&#xff1a; AutoHotkey Plus 请注意不是AutoHotkey Plus Plus。如果在扩展商店里搜索会有两个&#xff0c;一个是Plus&#xff0c;一个是Plus Plus。我选择Pllus&…

logstash 原理(含部署)

1、ES原理 原理 使⽤filebeat来上传⽇志数据&#xff0c;logstash进⾏⽇志收集与处理&#xff0c;elasticsearch作为⽇志存储与搜索引擎&#xff0c;最后使⽤kibana展现⽇志的可视化输出。所以不难发现&#xff0c;⽇志解析主要还 是logstash做的事情 从上图中可以看到&#x…

音视频技术开发周刊 | 306

每周一期&#xff0c;纵览音视频技术领域的干货。 新闻投稿&#xff1a;contributelivevideostack.com。 人工智能研究人员声称&#xff0c;通过Zoom音频检测击键的准确率为93% 通过记录按键并训练深度学习模型&#xff0c;三位研究人员声称&#xff0c;基于单个按键的声音特征…

前后端分离------后端创建笔记(11)用户删除

B站视频&#xff1a;30-用户删除&结束语_哔哩哔哩_bilibili 1、现在我们要做一个删除的功能 1.1 首先做一个删除的功能接口&#xff0c;第一步先来到后端&#xff0c;做一个删除的接口 2、删除我们用Delete请求 3、方法名我给他改一下 3.1这里给他调一下删除方法&#xf…

【Vue-Router】导航守卫

前置守卫 main.ts import { createApp } from vue import App from ./App.vue import {router} from ./router // import 引入 import ElementPlus from element-plus import element-plus/dist/index.css const app createApp(App) app.use(router) // use 注入 ElementPlu…

《算法竞赛·快冲300题》每日一题:“圆内的最短距离”

《算法竞赛快冲300题》将于2024年出版&#xff0c;是《算法竞赛》的辅助练习册。 所有题目放在自建的OJ New Online Judge。 用C/C、Java、Python三种语言给出代码&#xff0c;以中低档题为主&#xff0c;适合入门、进阶。 文章目录 题目描述题解C代码Java代码Python代码 “ 圆…

第五章 Opencv图像处理框架实战 5-10 文档扫描OCR识别

一、整体流程演示 上一篇我们进行了银行卡数字识别,这次我们利用opnecv等基础图像处理方法实现文档扫描OCR识别,该项目可以对任何一个文档,识别扫描出该文档上所有的文字信息。 为了方便后续程序运行,大家可以在Run->Edit Configuration中配置相关参数,选择相应编译器…

使用PostgreSQL构建强大的Web应用程序:最佳实践和建议

PostgreSQL是一个功能强大的开源关系型数据库,它拥有广泛的用户群和活跃的开发社区。越来越多的Web应用选择PostgreSQL作为数据库 backend。如何充分利用PostgreSQL的特性来构建健壮、高性能的Web应用?本文将给出一些最佳实践和建议。 一、选择合适的PostgreSQL数据类型 Pos…

CentOS系统环境搭建(三)——Centos7安装DockerDocker Compose

centos系统环境搭建专栏&#x1f517;点击跳转 Centos7安装Docker&Docker Compose 使用 yum 安装Docker 内核 [rootVM-4-17-centos ~]# uname -r 3.10.0-1160.88.1.el7.x86_64Docker 要求 CentOS 系统的内核版本高于 3.10 更新 yum yum update安装需要的软件包&#x…

Kubernetes Pod控制器

Pod控制器及其功用 Pod控制器&#xff0c;又称之为工作负载&#xff08;workload&#xff09;&#xff0c;是用于实现管理pod的中间层&#xff0c;确保pod资源符合预期的状态&#xff0c;pod的资源出现故障时&#xff0c;会尝试进行重启&#xff0c;当根据重启策略无效&#xf…

Field injection is not recommended

文章目录 1. 引言2. 不推荐使用Autowired的原因3. Spring提供了三种主要的依赖注入方式3.1. 构造函数注入&#xff08;Constructor Injection&#xff09;3.2. Setter方法注入&#xff08;Setter Injection&#xff09;3.3. 字段注入&#xff08;Field Injection&#xff09; 4…

并发编程系列-CompletableFuture

利用多线程来提升性能&#xff0c;实质上是将顺序执行的操作转化为并行执行。仔细观察后&#xff0c;你还会发现在顺序转并行的过程中&#xff0c;一定会牵扯到异步化。举个例子&#xff0c;现在下面这段示例代码是按顺序执行的&#xff0c;为了优化性能&#xff0c;我们需要将…

管家婆软件被删除了怎样恢复?

一、使用了云服务器 使用了云服务器&#xff0c;数据不会丢失&#xff0c;只需要重新安装就好了。 1、如果使用的是B/S架构的&#xff0c;比如ERP等&#xff0c;我们可以直接把网址复制到浏览器&#xff0c;访问即可。 2、如果使用的是C/S架构的&#xff0c;比如辉煌2&#x…