目录
一.认识priority_queue
二. priority_queue的使用
三.仿函数
1.什么是仿函数
2.控制大小堆
3.TopK问题
四.模拟实现priority_queue
1.priority_queue的主要接口框架
2.堆的向上调整算法
3.堆的向下调整算法
4.仿函数控制大小堆
五.priority_queue模拟实现整体代码和测试
一.认识priority_queue
priority_queue----reference
1. 优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的。
2. 此上下文类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶部的元素)。
3. 优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从特定容器的“尾部”弹出,其称为优先队列的顶部。
4. 底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过随机访问迭代器访问,并支持以下操作:
- empty():检测容器是否为空
- size():返回容器中有效元素个数
- front():返回容器中第一个元素的引用
- push_back():在容器尾部插入元素
- pop_back():删除容器尾部元素
5. 标准容器类vector和deque满足这些需求。默认情况下,如果没有为特定的priority_queue类实例化指定容器类,则使用vector。
6. 需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用算法函数make_heap、push_heap和pop_heap来自动完成此操作。
二. priority_queue的使用
优先级队列默认使用vector作为其底层存储数据的容器,在vector上又使用了堆算法将vector中元素构造成堆的结构,因此priority_queue就是堆,所有需要用到堆的位置,都可以考虑使用priority_queue。注意:默认情况下priority_queue是大堆。
函数声明 | 接口说明 |
priority_queue()/priority_queue(first,last) | 构造一个空的优先级队列 |
empty( ) | 检测优先级队列是否为空,是返回true,否则返回 false |
top( ) | 返回优先级队列中最大(最小元素),即堆顶元素 |
push(x) | 在优先级队列中插入元素x |
pop() | 删除优先级队列中最大(最小)元素,即堆顶元素 |
测试:
#include<queue>
#include<iostream>
using namespace std;
int main()
{
//够一个空的优先级队列
priority_queue<int> pri_q;
//插入数据
pri_q.push(2);
pri_q.push(27);
pri_q.push(25);
pri_q.push(244);
pri_q.push(212);
pri_q.push(9);
//连续取出堆顶数据打印
while (!pri_q.empty())
{
cout << pri_q.top()<<' ';
pri_q.pop();
}
return 0;
}
三.仿函数
如果我们像控制优先级队列是大堆排,还是小堆排,就需要我们使用放仿函数去控制。
1.什么是仿函数
首先仿函数是一个类,它重载了括号运算符,在使用的时候,定义出对象,就像函数一样使用。
例如:
//仿函数
template<class T>
struct Add
{
int operator()(int e1, int e2)
{
return e1 + e2;
}
};
int main()
{
Add<int> add;
cout << add(10, 20) << endl;
return 0;
}
2.控制大小堆
在头文件<functional>中包含了两个仿函数,less和granter。
less是判断小于的仿函数,对应堆排出来是大堆,granter是判断大于的仿函数,对应堆排出来是小堆。
#include<queue>
#include<functional>
#include<iostream>
using namespace std;
int main()
{
//小堆
priority_queue<int,vector<int>,greater<int>> small_q;
//插入数据
small_q.push(2);
small_q.push(27);
small_q.push(25);
small_q.push(244);
small_q.push(212);
small_q.push(9);
//连续取出堆顶数据打印
while (!small_q.empty())
{
cout << small_q.top()<<' ';
small_q.pop();
}
cout << endl;
//大堆
priority_queue<int, vector<int>, less<int>> big_q;
//插入数据
big_q.push(2);
big_q.push(27);
big_q.push(25);
big_q.push(244);
big_q.push(212);
big_q.push(9);
//连续取出堆顶数据打印
while (!big_q.empty())
{
cout << big_q.top() << ' ';
big_q.pop();
}
return 0;
}
3.TopK问题
这个问题我们在数据结构二叉树堆的部分已经详细的分析了,感兴趣的可以去看看:数据结构---二叉树---堆
四.模拟实现priority_queue
1.priority_queue的主要接口框架
template<class T, class Continer = vector<T>>
class Priority_queue
{
public:
//插入数据
void push(const T& val)
{
_con.push_back(val);
//向上调整
adjust_up(_con.size() - 1);
}
//删除数据
void pop()
{
std::swap(_con[0], _con[_con.size() - 1]);
_con.pop_back();
//向下调整
adjust_down(0);
}
//返回栈顶数据
const T& top()
{
return _con[0];
}
//判断栈是否为空
bool empty()
{
return _con.empty();
}
private:
Continer _con;//适配容器,默认是vector
};
2.堆的向上调整算法
堆的插入需要保证插入以后还是一个堆,所以这里用到了向上调整算法。
在数组中就是,插入一个数在数组的尾上,再通过向上调整算法,调整到合适的位置。
在以堆的角度来看(小堆)为例,将新插入的值看作孩子与其父亲位置的值比较,如果比父亲位置的值还要小,那就将该值与父亲位置的值进行交换,交换后将父亲位置当作新的孩子,继续与其父亲位置的值比较,这样一直向上比较并交换,直到父亲位置的值比自己小或该位置已经没有父亲了,调整结束。
//向上调整算法
void adjust_up(size_t child)
{
//1.计算父亲
size_t parent = (child - 1) / 2;
while (child > 0)
{
//如果孩子比父亲大,就交换,否则就直接推出
if (_con[parent]< _con[child])
{
swap(_con[parent], _con[child]);
//交换之后,父亲成为新的孩子,继续算新的父亲,直到没有孩子了
child = parent;
parent = (child - 1) / 2;
}
else
{
break;
}
}
}
3.堆的向下调整算法
向下调整算法(大堆为例):从第一个结点开始,找到其孩子结点中较大的一个与父亲位置进行交换,然后将孩子作为新的父亲,再次比较和交换,直到父亲结点比两个结点的值都大或者已经没有孩子了为止。
//向下调整
void adjust_down(size_t parent)
{
//计算出左孩子
size_t child = parent * 2 + 1;
while (child < _con.size())
{
//判断是否有右孩子,右孩子是否比左孩子大
if (child + 1 < _con.size() && _con[child]< _con[child + 1])
{
child++;
}
//较大的孩子如果比父亲大就交换,否则就直接退出循环
if (_con[parent]< _con[child])
{
swap(_con[child], _con[parent]);
}
else
{
break;
}
//孩子成为新的父亲,继续算出新的孩子
parent = child;
child = parent * 2 + 1;
}
}
4.仿函数控制大小堆
//比较小于的仿函数,控制大堆
template<class T>
struct less
{
bool operator()(const T& val1,const T& val2)
{
return val1 < val2;
}
};
//比较大于的仿函数,控制小堆
template<class T>
struct grater
{
bool operator()(const T& val1, const T& val2)
{
return val1 > val2;
}
};
template<class T, class Continer = vector<T>,class Compare =less<T>>//默认大堆
class Priority_queue
{
public:
Compare com;
//插入数据
void push(const T& val)
{
_con.push_back(val);
//向上调整
adjust_up(_con.size() - 1);
}
//删除数据
void pop()
{
std::swap(_con[0], _con[_con.size() - 1]);
_con.pop_back();
//向下调整
adjust_down(0);
}
//返回栈顶数据
const T& top()
{
return _con[0];
}
//判断栈是否为空
bool empty()
{
return _con.empty();
}
private:
Continer _con;//适配容器,默认是vector
};
五.priority_queue模拟实现整体代码和测试
Queue.hpp:
template<class T, class Continer = vector<T>,class Compare =less<T>>
class Priority_queue
{
public:
Compare com;
void push(const T& val)
{
_con.push_back(val);
adjust_up(_con.size()-1);
}
void pop()
{
std::swap(_con[0], _con[_con.size() - 1]);
_con.pop_back();
adjust_down(0);
}
const T& top()
{
return _con[0];
}
size_t size()
{
return _con.size();
}
bool empty()
{
return _con.empty();
}
private:
//向上调整算法
void adjust_up(size_t child)
{
size_t parent = (child - 1) / 2;
while (child > 0)
{
if (com(_con[parent] , _con[child]))
{
swap(_con[parent], _con[child]);
child = parent;
parent = (child - 1) / 2;
}
else
{
break;
}
}
}
//向下调整
void adjust_down(size_t parent)
{
size_t child = parent * 2 + 1;
while (child<_con.size())
{
if (child + 1 < _con.size() && com(_con[child],_con[child + 1]))
{
child++;
}
if (com(_con[parent] , _con[child]))
{
swap(_con[child], _con[parent]);
}
else
{
break;
}
parent = child;
child = parent * 2 + 1;
}
}
private:
Continer _con;
};
}
main:
#include<iostream>
#include<vector>
#include<list>
using std::vector;
using std::list;
using std::cout;
using std::endl;
using std::swap;
#include"Queue.hpp"
using namespace Qikun;
int main()
{
//小堆
Priority_queue<int,std::vector<int>, greater<int>> small_q;
//插入数据
small_q.push(2);
small_q.push(27);
small_q.push(25);
small_q.push(244);
small_q.push(212);
small_q.push(9);
//连续取出堆顶数据打印
std::cout << "小堆:";
while (!small_q.empty())
{
cout << small_q.top()<<' ';
small_q.pop();
}
cout << endl;
//大堆
Priority_queue<int, vector<int>, less<int>> big_q;
//插入数据
big_q.push(2);
big_q.push(27);
big_q.push(25);
big_q.push(244);
big_q.push(212);
big_q.push(9);
//连续取出堆顶数据打印
cout << "大堆:";
while (!big_q.empty())
{
cout << big_q.top() << ' ';
big_q.pop();
}
return 0;
}