时间序列去趋势化和傅里叶变换

news2024/12/28 20:54:02

在计算傅里叶变换之前对信号去趋势是一种常见的做法,特别是在处理时间序列时。在这篇文章中,我将从数学和视觉上展示信号去趋势是如何影响傅里叶变换的。

这篇文章的目的是让介绍理解什么是常数和线性去趋势,为什么我们使用它们,以及它们是如何影响信号的傅里叶变换的。

傅里叶变换快速回顾

我们将使用傅里叶变换的如下定义:对于输入序列x[n],当n=0到n时,傅里叶变换的第k个系数为以下复数:

常量去趋势

序列x[n]可以分解如下:将其写成两个信号的和:“常数部分”等于信号的平均值,“平均值周围的可变性”部分给出实际信号与其平均值之间的差值:

对于所有样本n,我们有:

首先,求x均值的傅里叶变换

这是一个简单的序列,所以在k=0处x的均值为0,在其他地方的值也为0。

使用下面代码绘制所有指数也可以看到为什么它们的和总是为0(除了k=0)。

 import numpy as np
 import matplotlib.pyplot as plt
 
 N = 10
 ns = np.arange(N)
 
 fig, axes = plt.subplots(1, N//2+1, figsize=(18,8), sharex=True, sharey=True)
 
 for k in range(0, N//2+1):
     eiks = np.exp(-2*1J*np.pi*ns/N*k)
     pretty_ax(axes[k])
     plot_sum_vector(eiks, axes[k])
     axes[k].set_title(f'k={k}')
     axes[k].set_aspect('equal')
 fig.suptitle(f'Complex plot of the $e^{{-2i\pi kn/N}}$ families')

现在我们把x的傅里叶变换写成这样,分为两部分

分解x的傅里叶变换,结果是2个傅里叶变换的和:“可变性”部分的傅里叶变换,以及k=0时等于平均值的系数。

也就是说x的傅里叶变换等于其可变性在均值附近的傅里叶变换的和,再加上除k = 0处之外的序列,这个序列都为0,所以他的均值是x。

这就常数去趋势,是在进行傅里叶变换之前去除信号的均值。对于傅里叶系数,就傅里叶系数而言,它对应于将k = 0系数设置为0。

k = 0的系数始终等于信号的平均值,可以使用下面方法证明:

线性去趋势

方法与前面相同:将输入信号写为2个部分的和:“线性”部分,以及围绕该线性部分的其余变化:

这里的线性部分是从最小二乘拟合计算。利用指数,可以将线性部分写为:

其中b是信号的平均值。让我们来看看它的傅里叶变换:

线性部分的傅里叶变换为,给定傅里叶变换的线性性质:

线性去趋势包括在进行傅里叶变换之前去除x的线性部分:它从结果中去除aFT(n)+b项,其中a是常数因子(对应于线性拟合的斜率),FT(n)是线性序列[0,1,…]的傅里叶变换,b是信号的平均值(因此第一个傅里叶系数将为0,就像常数去趋势一样)。

python代码

在Python中使用numpy和scipy实现非常简单。

Scipy在它的signal 包中提供了detrend函数,带有一个类型参数来指定我们是想让信号保持常量趋势还是线性趋势。

在下面的例子中,创建了一个长度为20个样本的信号,其中包含一个前导系数为2的线性部分,一个噪声,一个偏移量为4的正弦部分。

 import numpy as np
 from scipy.signal import detrend
 import matplotlib.pyplot as plt
 
 N = 20
 # create a sample signal, with linear, offset, noise and sinus parts
 ys = np.arange(N) * 2 + 4 + np.random.randn(N) + 4*np.sin(2*np.pi*np.arange(N)/5)
 # constant and linear detrend
 ys_c = detrend(ys, type='constant')
 ys_l = detrend(ys, type='linear')
 
 fig, axes = plt.subplots(1, 2)
 
 ax = axes[0]
 ax.plot(ys, label='raw')
 ax.plot(ys_c, label='constant-detrended')
 ax.plot(ys_l, label='linear-detrended')
 ax.legend()
 ax.set_title('Input signal')
 
 ax = axes[1]
 # we use rfft since our input signals are real
 ax.plot(np.abs(np.fft.rfft(ys)))
 ax.plot(np.abs(np.fft.rfft(ys_c)))
 ax.plot(np.abs(np.fft.rfft(ys_l)))
 ax.set_title('Module of Fourier-transform')

在左边我们有原始输入信号,以及它的常数去趋势和线性去趋势版本。

常数去趋势有效地去除信号的平均值,使其在0附近居中。线性去趋势不仅去掉了信号的平均值,而且还去掉了它的线性趋势(又名“直线斜率”)。从视觉上看,在线性去趋势信号上比在原始信号上更容易发现正弦部分。

右边是每个信号的傅里叶变换模块:如果不去除趋势,我们得到蓝色模块。使用常数去趋势法去除平均值可以有效地将0系数设置为0,这在大多数情况下使得图表更容易分析。自线性去趋势的结果是最好的:输出傅里叶系数很好地显示了输出频谱中的频率,线性去趋势的主要优点是它大大减少了频谱泄漏。

线性信号的傅里叶变换

对于不同的K值,我们可以很容易地画出线性信号Kn (K为斜率)的傅里叶变换:

 import numpy as np
 import matplotlib.pyplot as plt
 
 N = 10
 ns = np.arange(N)
 Ks = [-5, 2, 5]
 
 fig, axes = plt.subplots(len(Ks), N//2+1, figsize=(18,8), sharex=True, sharey=True, gridspec_kw={'hspace':0, 'wspace':0})
 
 for i, K in enumerate(Ks):
     xs = K*np.arange(N)
     for k in range(0, N//2+1):
         Zs = xs * np.exp(-2*1J*np.pi*ns/N*k) / N
         ax = axes[i, k]
         pretty_ax(ax)
         plot_sum_vector(Zs, ax)
         ax.set_aspect('equal')
         ax.set_xlabel(f'k={k}')
     axes[i, 0].set_ylabel(f'K={K}')
 fig.tight_layout()

对于给定的k值,用红色箭头表示的傅里叶系数总是对齐的,并且等于一个比例。所以输出频谱中被去掉的部分总是序列[0,1,…N]的傅里叶变换的部分,其比例因子由线性拟合的斜率给出。

总结

在这篇文章中,我们介绍了常量和线性去趋势:它们分别由去除输入信号的平均值或线性拟合组成。在计算傅里叶变换之前的预处理步骤有助于使输出谱更容易解释。

去除信号的平均值使第0个系数为0。结果图更容易检查,因为大多数情况下,平均值与频谱的其余部分相比可能相当大。如果我们去掉这个系数,y轴的尺度就更容易设定。

线性去趋势除了去掉平均值也去掉了信号中的总体趋势,这通常是原始信号的主导部分,这样可以去掉其他成分例如季节行为等,所以如果需要对季节性进行分析还需要另外的处理。

https://avoid.overfit.cn/post/84dd016b15e440c3a9bf8c7c08a4adb4

作者:Yoann Mocquin

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/874846.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CRM系统如何搭建?流程是什么样的?

CRM系统可以提高企业的销售效率和客户满意度,从而增加企业的收入和利润。但是,要想成功地上线CRM系统,需要经过一系列的步骤和流程,下面说说,企业如何上线CRM系统?CRM系统搭建流程。 1、需求分析 需求分析…

记一次物理机安装centos7遇到的问题

首先制作U盘镜像(之前装windows的大白菜之类的就没用了) 用的这个UltraISO制作U盘镜像 然后从U盘启动开始安装, 问题一 安装时报错 dracut-pre-udev[351]:modprobe :ERROR:could not insert ‘floppy’ dracut-pre-udev[351]:modprobe…

Nacos源码 (3) 注册中心

本文将从一个服务注册示例入手,通过阅读客户端、服务端源码,分析服务注册、服务发现原理。 使用的2.0.2的版本。 返回目录 客户端 创建NacosNamingService对象 NacosNamingService nacosNamingService new NacosNamingService(NACOS_HOST);NacosNami…

华为OD机试 - 最长的连续子序列 (Java 2022Q4 100分)

目录 专栏导读一、题目描述二、输入描述三、输出描述四、解题思路五、Java算法源码六、效果展示1、输入2、输出 华为OD机试 2023B卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试(JAVA)真题(A卷B卷)》…

ISIS技术(第三十七课)

1 分享一下华为官网上的一张地图 官网地址:https://support.huawei.com/hedex/hdx.do?docid=EDOC1000105967&id=ZH-CN_CONCEPT_0000001501534705 2 路由的分类 -直连路由 直接连接的路由,且配置了IP地址之后(在同一网段内),就是直连路由。 -非直连路由 -静态路由…

如何在金属制品业运用IPD?

金属制品行业是指以金属材料为原料,通过加工、制造、加工等工艺制造出各种金属制品的企业和产业。这些金属制品包括但不限于机械设备、工具、建筑材料、家具、电子产品、交通运输设备等。金属制品加工业是机械装备行业的一个子行业,包括结构性金属制品制…

SpringBoot对一个URL通过method(GET、POST、PUT、DELETE)实现增删改查操作

目录 1. rest风格基础2. 开启方法3. 实战练习 1. rest风格基础 我们都知道GET、POST、PUT、DELETE分别对应查、增、改、删除 虽然Postman这些工具可以直接发送GET、POST、PUT、DELETE请求。但是RequestMapping并不支持PUT和DELETE请求操作。需要我们手动开启 2. 开启方法 P…

ModaHub魔搭社区:Milvus Cloud素材集合帖,等你查收

Hi~Milvus Cloud 的各位朋友,这是一期 Milvus Cloud 素材弹药库的集中汇总帖。随着向量数据库的火爆,越来越多的伙伴开始关注到向量数据库并开始使用 Milvus Cloud 。 考虑到目前信息获取的渠道多且分散,我们专门为大家整理了一期 Milvus Cloud 信息集合帖,让大家可以在快…

iPhone苹果手机触屏失灵无法关机,如何强制重启

参考:https://zhuanlan.zhihu.com/p/615223121 1,只轻按一下音量上键后快速松开 2,只轻按一下音量下键后快速松开 3,只按住右侧电源键长按不松手,直到手机关机。

Tomcat的多实例和动静分离

目录 一、多实例 二、 nginxtomcat的负载均衡和动静分离 三、Tomcat 客户端->四层代理->七层代理->tomcat服务器 实验: 问题总结: tomcat日志文件:/usr/local/tomcat/logs/catalina.out 一、多实例 在一台服务器上有多个tomc…

python——案例19:九九乘法表

案例19:九九乘法表for i in range(1,10): #i是行,j是列for j in range(1,i1): #确保内循环中的列小于等于列print(%d*%d%2ld%(i,j,i*j),end ) #计算方法,并且确保内容连续print()

2023.8.14论文阅读

文章目录 ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation摘要本文方法实验结果 DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection摘要本文方法实验结果 ESPNet: Efficient Spatial Pyramid of Dilated Convo…

【不限于联想Y9000P电脑关盖再打开时黑屏的解决办法】

不限于联想Y9000P电脑关盖再打开时黑屏的解决办法 问题的前言问题的出现问题拟解决 问题的前言 事情发生在昨天,更新了Win11系统后: 最惹人注目的三处地方就是: 1.可以查看时间的秒数了; 2.右键展示的内容变窄了; 3.按…

JimuReport积木报表 v1.6.0版本发布—免费的可视化报表

项目介绍 一款免费的数据可视化报表,含报表和大屏设计,像搭建积木一样在线设计报表!功能涵盖,数据报表、打印设计、图表报表、大屏设计等! Web 版报表设计器,类似于excel操作风格,通过拖拽完成报…

腾讯会议:云上协奏,远程韶华

腾讯会议的原理及历史 摘要 本论文介绍了腾讯会议的原理和历史。腾讯会议是一款基于云计算和通信技术的在线会议平台,由腾讯公司推出。通过分析腾讯会议的工作原理和演进历史,我们可以深入了解该平台是如何实现高效、便捷、安全的远程协作和沟通的。 1. 引言 近年来,随着…

PostgreSql 备份恢复

一、概述 数据库备份一般可分为物理备份和逻辑备份,其中物理备份又可分为物理冷备和物理热备,下面就各种备份方式进行详细说明(一般情况下,生产环境采取的定时物理热备逻辑备份的方式,均是以下述方式为基础进一步研发编…

Qt开发技术:Q3D图表开发笔记:Q3DSurface三维曲面图介绍、Demo以及代码详解

前言 qt提供了q3d进行三维开发,虽然这个框架没有得到大量运用也不是那么成功,性能上也有很大的欠缺,但是普通的点到为止的应用展示还是可以的。   其中就包括华丽绚烂的三维图表,数据量不大的时候是可以使用的。   前面介绍了…

心法利器[96] | 写了个向量检索的baseline

心法利器 本栏目主要和大家一起讨论近期自己学习的心得和体会,与大家一起成长。具体介绍:仓颉专项:飞机大炮我都会,利器心法我还有。 2022年新一版的文章合集已经发布,累计已经60w字了,获取方式看这里&…

山东布谷科技直播软件源码Nginx服务器横向扩展:搭建更稳定的平台服务

在直播软件源码平台中,服务器扮演着重要的角色,关系着视频传输、数据处理、用户管理等工作的顺利完成。随着互联网的迅猛发展,直播行业也随之崛起,全世界的人们都加入到了直播软件源码平台中,用户流量的增加让渡武器的…

绘画AI工具的介绍与使用----强到离谱-2023年必备免费好用的AI工具

一.绘画AI www.seaart.ai 这个是网站地址,进去之后直接注册登录即可,几乎都是免费使用,不用担心是否要VIP 点击网站进入之后登录,然后进入主页面,一张图片给你介绍清楚主页 我会根据菜单栏来给大家演示,首…