YOLOV8/YOLOv7/YOLOv5改进:引入GAMAttention注意力机制

news2024/11/23 8:37:22

为了提高各种计算机视觉任务的性能,人们研究了各种注意机制。然而,以往的方法忽略了保留通道和空间方面的信息以增强跨维度交互的重要性。因此,我们提出了一种全局调度机制,通过减少信息缩减和放大全局交互表示来提高深度神经网络的性能。我们沿着卷积空间注意子模块引入了用于通道注意的多层感知器3D置换。
 

GAMAttention注意力机制原理图

 对于ImageNet-1K,我们将图像预处理为224×224(He et al.[2016])。我们包括ResNet18和ResNet50(He et al.[2016]),以验证不同网络深度的方法推广。对于ResNet50,我们将其与群卷积进行了比较,以防止参数显著增加。我们将起始学习率设置为0.1,并每隔30个阶段降低一次。我们总共使用90个训练时段。在空间注意子模块中,我们将第一个块的第一步从1切换到2,以匹配特征的大小。为了进行公平比较,CBAM保留了其他设置,包括在空间注意子模块中使用最大池。3 MobileNet V2是用于图像分类的最高效的轻量级模型之一。我们对MobileNet V2使用相同的ResNet设置,只是使用了0.045的初始学习率和4×10的权重衰减−5.对ImageNet-1K的评估如表所示。它表明GAM可以稳定地提高不同神经架构的性能。尤其是对于ResNet18,GAM以更少的参数和更好的效率优于ABN。
 

YOLOV5 修改代码

1.1增加以下GAMAttention.yaml文件

# YOLOv5 🚀 by YOLOAir, GPL-3.0 license

# parameters
nc: 10  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

# anchors
anchors:
  #- [5,6, 7,9, 12,10]      # P2/4
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 backbone
backbone:
  # [from, number, module, args]               # [c=channels,module,kernlsize,strides]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2           [c=3,64*0.5=32,3]
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4    
   [-1, 3, C3, [128]],                                
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8            
   [-1, 6, C3, [256]],                         
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16       
   [-1, 9, C3, [512]],                     
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]], 
   [-1, 1, GAMAttention, [1024,1024]], #9
   [-1, 1, SPPF, [1024,5]], #10
  ]

# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]], 
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 14
  
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 18 (P3/8-small)
   
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 15], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 21 (P4/16-medium)       [256, 256, 1, False] 

   [-1, 1, Conv, [512, 3, 2]],                           #[256, 256, 3, 2] 
   [[-1, 11], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 24 (P5/32-large)       [512, 512, 1, False]
 
   [[18, 21, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]


1.2common.py配置


  import numpy as np
import torch
from torch import nn
from torch.nn import init

class GAMAttention(nn.Module):
       #https://paperswithcode.com/paper/global-attention-mechanism-retain-information
    def __init__(self, c1, c2, group=True,rate=4):
        super(GAMAttention, self).__init__()
        
        self.channel_attention = nn.Sequential(
            nn.Linear(c1, int(c1 / rate)),
            nn.ReLU(inplace=True),
            nn.Linear(int(c1 / rate), c1)
        )
        self.spatial_attention = nn.Sequential(
            nn.Conv2d(c1, c1//rate, kernel_size=7, padding=3,groups=rate)if group else nn.Conv2d(c1, int(c1 / rate), kernel_size=7, padding=3), 
            nn.BatchNorm2d(int(c1 /rate)),
            nn.ReLU(inplace=True),
            nn.Conv2d(c1//rate, c2, kernel_size=7, padding=3,groups=rate) if group else nn.Conv2d(int(c1 / rate), c2, kernel_size=7, padding=3), 
            nn.BatchNorm2d(c2)
        )

    def forward(self, x):
        b, c, h, w = x.shape
        x_permute = x.permute(0, 2, 3, 1).view(b, -1, c)
        x_att_permute = self.channel_attention(x_permute).view(b, h, w, c)
        x_channel_att = x_att_permute.permute(0, 3, 1, 2)
        x = x * x_channel_att
 
        x_spatial_att = self.spatial_attention(x).sigmoid()
        x_spatial_att=channel_shuffle(x_spatial_att,4) #last shuffle 
        out = x * x_spatial_att
        return out  

def channel_shuffle(x, groups=2):   ##shuffle channel 
        #RESHAPE----->transpose------->Flatten 
        B, C, H, W = x.size()
        out = x.view(B, groups, C // groups, H, W).permute(0, 2, 1, 3, 4).contiguous()
        out=out.view(B, C, H, W) 
        return out

1.3yolo.py配置

在 models/yolo.py文件夹下

定位到parse_model函数中

elif m is GAMAttention:
    c1, c2 = ch[f], args[0]
    if c2 != no:
        c2 = make_divisible(c2 * gw, 8)

2.1 YOLOv7 yaml

其他部分同v5

# YOLOv7 🚀, GPL-3.0 license
# parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# anchors
anchors:
  - [12,16, 19,36, 40,28]  # P3/8
  - [36,75, 76,55, 72,146]  # P4/16
  - [142,110, 192,243, 459,401]  # P5/32

# yolov7 backbone by yoloair
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [32, 3, 1]],  # 0
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4 
   [-1, 1, CNeB, [128]], 
   [-1, 1, Conv, [256, 3, 2]], 
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 16-P3/8
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]],
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],          
   [-1, 1, MP, []],
   [-1, 1, Conv, [512, 1, 1]],
   [-3, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, -3], 1, Concat, [1]],
   [-1, 1, CNeB, [1024]],
   [-1, 1, Conv, [256, 3, 1]],
  ]

# yolov7 head by yoloair
head:
  [[-1, 1, SPPCSPC, [512]],
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [31, 1, Conv, [256, 1, 1]],
   [[-1, -2], 1, Concat, [1]],
   [-1, 1, C3C2, [128]],
   [-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [18, 1, Conv, [128, 1, 1]],
   [[-1, -2], 1, Concat, [1]],
   [-1, 1, C3C2, [128]],
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, GAMAttention, [128]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3, 44], 1, Concat, [1]],
   [-1, 1, C3C2, [256]], 
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]], 
   [[-1, -3, 39], 1, Concat, [1]],
   [-1, 3, C3C2, [512]],

# 检测头 -----------------------------
   [49, 1, RepConv, [256, 3, 1]],
   [55, 1, RepConv, [512, 3, 1]],
   [61, 1, RepConv, [1024, 3, 1]],

   [[62,63,64], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

如果没有C3C2模块的可以自己换回原本的

v8和v5是一样的配置方式

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/874119.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

6914. 翻倍以链表形式表示的数字

题目描述: 给你一个 非空 链表的头节点 head ,表示一个不含前导零的非负数整数。 将链表 翻倍 后,返回头节点 head 。 示例: 解题思路: 先计算第一位是否超出位数,超出新建存储该数值,再逐个翻倍…

JZ34二叉树中和为某一值的路径

题目地址:二叉树中和为某一值的路径(二)_牛客题霸_牛客网 题目回顾: 解题思路: 这里求的是和为某一值的路径,要用dfs算法,也就是说这里使用深度优先搜索算法。 从根节点开始向左右子树进行递归操作,在递…

Baumer工业相机堡盟工业相机如何通过BGAPI SDK设置相机的固定帧率(C++)

Baumer工业相机堡盟工业相机如何通过BGAPI SDK设置相机的固定帧率(C) Baumer工业相机Baumer工业相机的固定帧率功能的技术背景CameraExplorer如何查看相机固定帧率功能在BGAPI SDK里通过函数设置相机固定帧率 Baumer工业相机通过BGAPI SDK设置相机固定帧…

ORCA优化器浅析——CDXLScalarFilter Class for DXL filter operators

CDXLScalarFilter CDXLScalarFilter为Class for representing DXL filter operators。CDXLScalarFilter相对于CDXLScalar没有增加其他数据成员。 class CDXLScalarFilter : public CDXLScalar{ private: CDXLScalarFilter(CDXLScalarFilter &); // private copy ctor pub…

初识C语言(3)

什么是C语言 1.第一个C语言程序 2.数据类型 3.变量、常量 4.字符串转义字符注释 5.选择语句 6.循环语句 7.函数 8.数组 9.操作符 10.常见关键字 11.define 定义常量和宏 12.指针 13.结构体 这一篇文章我们从常见关键字开始说起,也是…

[PaddlePaddle] [学习笔记] [上] 计算机视觉(卷积、卷积核、卷积计算、padding计算、BN、缩放、平移、Dropout)

1. 计算机视觉的发展历程 计算机视觉作为一门让机器学会如何去“看”的学科,具体的说,就是让机器去识别摄像机拍摄的图片或视频中的物体,检测出物体所在的位置,并对目标物体进行跟踪,从而理解并描述出图片或视频里的场…

2023年国赛数学建模思路 - 复盘:人力资源安排的最优化模型

文章目录 0 赛题思路1 描述2 问题概括3 建模过程3.1 边界说明3.2 符号约定3.3 分析3.4 模型建立3.5 模型求解 4 模型评价与推广5 实现代码 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 描述 …

Spring 使用注解开发、代理模式、AOP

使用注解开发 在Spring4之后&#xff0c;要使用注解开发&#xff0c;必须要保证AOP的包导入了 项目搭建&#xff1a; 在配置文件中导入约束&#xff0c;增加注解支持 <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.spri…

LangChain手记 Memory

整理并翻译自DeepLearning.AILangChain的官方课程&#xff1a;Memory Memory 使用open ai的API调用GPT都是单次调用&#xff0c;所以模型并不记得之前的对话&#xff0c;多轮对话的实现其实是将前面轮次的对话过程保留&#xff0c;在下次对话时作为输入的message数组的一部分&…

6.1 安全漏洞与网络攻击

数据参考&#xff1a;CISP官方 目录 安全漏洞及产生原因信息收集与分析网络攻击实施后门设置与痕迹清除 一、安全漏洞及产生原因 什么是安全漏洞 安全漏洞也称脆弱性&#xff0c;是计算机系统存在的缺陷 漏洞的形式 安全漏洞以不同形式存在漏洞数量逐年递增 漏洞产生的…

python编程小游戏简单的,python小游戏编程100例

大家好&#xff0c;给大家分享一下python编程小游戏简单的&#xff0c;很多人还不知道这一点。下面详细解释一下。现在让我们来看看&#xff01; 不会python就不能用python开发入门级的小游戏&#xff1f; 当然不是&#xff0c;我收集了十个python入门小游戏的源码和教程&#…

基于Yolov5与LabelImg训练自己数据的完整流程

基于Yolov5与LabelImg训练自己数据的完整流程 1. 创建虚拟环境2. 通过git 安装 ultralytics3. 下载yolov54. 安装labelImg标注软件5. 使用labelImg进行标注&#xff0c;图片使用上面的coco1285.1 点击“打开目录”选择存储图像的文件夹进行标注&#xff0c;右下角会出现图像列表…

用 React+ts 实现无缝滚动的走马灯

一、走马灯的作用 走马灯是一种常见的网页交互组件&#xff0c;可以展示多张图片或者内容&#xff0c;通过自动播放或者手动切换的方式&#xff0c;让用户能够方便地浏览多张图片或者内容。 本次实现的不是轮播图而是像传送带一样的无限滚动的形式。 二、需求梳理 走马灯可设…

MySQL中的锁机制

抛砖引玉&#xff1a;多个查询需要在同一时刻进行数据的修改&#xff0c;就会产生并发控制的问题。我们需要如何避免写个问题从而保证我们的数据库数据不会被破坏。 锁的概念 读锁是共享的互相不阻塞的。多个事务在听一时刻可以同时读取同一资源&#xff0c;而相互不干扰。 写…

mysql 习题总结

1.select sex,avg(salsry) as 平均薪资 from emp group by sex; 2.select depart,sum(salsry) from emp group by depart; 3.select depart ,sum(salary) from emp group by depart order by sum(salary) desc limit 1,1; 4.select name from emp group by name having count(n…

NAS搭建指南一——服务器的选择与搭建

一、服务器的选择 有自己的本地的公网 IP 的请跳过此篇文章按需求选择一个云服务器&#xff0c;目的就是为了进行 frp 的搭建&#xff0c;完成内网穿透我选择的是腾讯云服务器&#xff0c;我的配置如下&#xff0c;仅供参考&#xff1a; 4. 腾讯云服务器官网地址 二、服务器…

Axure RP移动端高保真CRM办公客户管理系统原型模板及元件库

Axure RP移动端高保真CRM办公客户管理系统原型模板及元件库&#xff0c;一套典型的移动端办公工具型APP Axure RP原型模板&#xff0c;可根据实际的产品需求进行扩展&#xff0c;也可以作为移动端原型设计的参考案例。为提升本作品参考价值&#xff0c;在模板设计过程中尽量追求…

Docker简介与安装步骤

Docker简介与安装步骤 一、Docker简介 1、是什么&#xff1f; 解决了运行环境和配置问题的软件容器&#xff0c; 方便做持续集成并有助于整体发布的容器虚拟化技术。 问题&#xff1a;为什么会有docker出现 假定您在开发一个项目&#xff0c;您使用的是一台笔记本电脑而且您…

Vue+ElementUI实现选择指定行导出Excel

这里记录一下&#xff0c;今天写项目时 的一个需求&#xff0c;就是通过复选框选中指定行然后导出表格中选中行的Excel表格 然后这里介绍一个工具箱(模板)&#xff1a;vue-element-admin 将它拉取后&#xff0c;运行就可以看到如下界面&#xff1a; 这里面的很多功能都已经实现…

【NLP】训练LLM的不同方式

一、说明 在大型语言模型&#xff08;LLM&#xff09;领域&#xff0c;有各种各样的 训练机制&#xff0c;具有不同的手段&#xff0c;要求和目标。由于它们服务于不同的目的&#xff0c;因此重要的是不要将它们相互混淆&#xff0c;并了解它们适用的不同场景。 在本文中&#…