Java——线程睡眠全方位解析

news2024/11/25 22:46:42

线程睡眠的方法:

在 Java 中,让线程休眠的方法有很多,这些方法大致可以分为两类,一类是设置时间,在一段时间后自动唤醒,而另一个类是提供了一对休眠和唤醒的方法,在线程休眠之后,可以在任意时间对线程进行唤醒。

线程睡眠的方法有以下 5 个:

  • Thread.sleep
  • TimeUnit
  • wait
  • Condition
  • LockSupport

其中 sleep 和 TimeUnit 是让线程睡眠一段时间后自动唤醒,而 wait、Condition、LockSupport 提供了一对休眠和唤醒线程的方法,可以实现任意时刻唤醒某个线程。

方法1:Thread.sleep

Thread类的sleep()方法用于在指定的时间内睡眠线程。

java中sleep()方法的语法
Thread类为睡眠线程提供了两种方法:


public static void sleep(long miliseconds)throws InterruptedException
public static void sleep(long miliseconds, int nanos)throws InterruptedException

以上程序的执行结果如下图所示: 

class TestSleepMethod1 extends Thread {
    public void run() {
        for (int i = 1; i < 5; i++) {
            try {
                Thread.sleep(500);
            } catch (InterruptedException e) {
                System.out.println(e);
            }
            System.out.println(i);
        }
    }

    public static void main(String args[]) {
        TestSleepMethod1 t1 = new TestSleepMethod1();
        TestSleepMethod1 t2 = new TestSleepMethod1();

        t1.start();
        t2.start();
    }
}

以上程序的执行结果如下所示:

1 1 2 2 3 3 4 4

方法2:TimeUnit

sleep 方法因为要传递一个毫秒类型的参数,因此在设置大一点的时间时比较麻烦,比如设置 1 小时或 1 天时,此时我们就可以使用 TimeUnit 来替代 sleep 方法实现休眠。 

TimeUnit 的功能和 sleep 一样,让线程休眠 N 个单位时间之后自动唤醒它的基础用法如下:

以上程序的执行结果如下图所示: 

Thread t1 = new Thread() {
    @Override
    public void run() {
        System.out.println("线程执行:" + LocalDateTime.now());
        try {
            TimeUnit.SECONDS.sleep(1); // 休眠 1s
            //TimeUnit.DAYS.sleep(1); // 休眠 1 天
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("线程结束:" + LocalDateTime.now());
    }
};
t1.start();

 当我们查看 TimeUnit 源码时就会发现,它的底层是基于 Thread.sleep 方法实现的,其实现源码如下: 

方法3:wait

wait/notify/notifyAll 都来自于 Object 类,其中:

  • wait() / wait(long timeout):表示让当前线程进入休眠状态。
  • notify():唤醒当前对象上的一个休眠线程。
  • notifyAll():唤醒当前对象上的所有休眠线程。

其中 wait() 方法表示让当前线程无限期等待下去,直到遇到 notify/notifyAll 方法时才会被唤醒,而 wait(long timeout) 表示接收一个 long 类型的超时时间,如果没有遇到 notify/notifyAll 会在 long 毫秒之后自动唤醒,如果遇到了 notify/notifyAll 方法会立即被唤醒。 它的基础用法如下:

Object lock = new Object();
new Thread(() -> {
    synchronized (lock) {
        try {
            // 让当前线程休眠
            lock.wait();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}).start();
synchronized (lock) {
    lock.notify(); // 唤醒当前对象上一个休眠线程
    // lock.notifyAll(); // 唤醒当前对象上所有休眠的线程
}

需要注意的是 wait/notify/notifyAll 在使用时必须要配合 synchronized 一起使用,否则程序执行会报错。

方法4:Condition

Condition 作为 wait 的升级版,它提供的常用方法有以下几个:

  • await():让当前线程进入等待状态,直到被通知(signal)或者被中断时才会继续执行。
  • awaitUninterruptibly():让当前线程进入等待状态,直到被通知才会被唤醒,它对线程的中断通知不做响应。
  • await(long time, TimeUnit unit):在 await() 方法的基础上添加了超时时间,如果过了超时时间还没有遇到唤醒方法则会自动唤醒并恢复执行。
  • awaitUntil(Date deadline):让当前线程进入等待状态,如果没有遇到唤醒方法也会在设置的时间之后自动唤醒。
  • signal():唤醒一个等待在 Condition 上的线程。
  • signalAll():唤醒等待在 Condition 上所有的线程。

它的基本用法如下:

import java.time.LocalDateTime;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class ConditionExample {
    public static void main(String[] args) throws InterruptedException {
        // 创建锁
        final Lock lock = new ReentrantLock();
        // 创建 Condition
        final Condition condition = lock.newCondition();
        new Thread(() -> {
            System.out.println("线程执行:" + LocalDateTime.now());
            lock.lock(); // 得到锁
            try {
                // 休眠线程
                condition.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally {
                lock.unlock(); // 释放锁
            }
            System.out.println("线程结束:" + LocalDateTime.now());
        }).start();
        Thread.sleep(1000);
        lock.lock(); // 得到锁
        try {
            // 唤醒线程
            condition.signal();
        } finally {
            lock.unlock(); // 释放锁
        }
    }
}

相比于 wait 方法,Condition 对象更加灵活,因为它可以在一把锁上定义多个 Condition 对象进行使用,

如下代码所示:

// 创建锁
final Lock lock = new ReentrantLock();
// 创建 Condition 1
final Condition condition = lock.newCondition();
// 创建 Condition 2
final Condition condition2 = lock.newCondition();
// ......

方法5:LockSupport

LockSupport 是更加底层的操作线程休眠和唤醒的对象,它提供了两个常用的方法:

  • LockSupport.park():休眠当前线程。
  • LockSupport.unpark(Thread thread):唤醒一个指定的线程。

它的基础用法如下:

Thread t1 = new Thread(() -> {

    System.out.println("线程1休眠");

    LockSupport.park(); // 休眠线程

    System.out.println("线程1执行结束");

}, "线程1");

t1.start();


Thread t2 = new Thread(() -> {

    System.out.println("线程2休眠");

    LockSupport.park(); // 休眠线程

    System.out.println("线程2执行结束");

}, "线程2");

t2.start();


Thread t3 = new Thread(() -> {

    try {

        Thread.sleep(1000);

    } catch (InterruptedException e) {

        e.printStackTrace();

    }

    System.out.println("唤醒线程1");

    LockSupport.unpark(t1); // 唤醒线程1

}, "线程3");

t3.start();

以上程序的执行结果如下图所示:

方法总结

Thread.sleep 和 TimeUnit 是让线程休眠并在一段时间后自动唤醒,而 wait、Condition、LockSupport 提供了休眠和唤醒线程的方法,其中 Condition 为 wait 方法的升级版,而 LockSupport 是更底层的让线程休眠和唤醒的方法,它可以实现唤醒某个指定的线程,这是其它方法所不具备的(功能)。

线程睡眠的作用

线程睡眠可以有效的控制线程的执行时间,可以让CPU资源分配更加均衡,提高程序的运行效率和稳定性。

在并发编程中,线程经常会被调度器打断,通过线程睡眠,可以让该线程“放弃”一段时间的CPU执行权,避免CPU资源浪费和竞争。另外,线程睡眠还可以用来模拟线程执行中的等待时间,例如Java中的定时器和倒计时器的实现,都离不开线程睡眠。

线程睡眠的注意事项

在使用线程睡眠时,需要注意以下几个问题:

1. InterruptedException异常

在调用线程睡眠方法时,需要捕获InterruptedException异常。InterruptedException是一个检查异常,它是在调用线程的interrupt()方法后,抛出的一种异常。

Thread t = new Thread(new Runnable() {
        @Override
        public void run() {
            try {
                Thread.sleep(3000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    });

    t.start();

    // 主线程等待子线程执行完毕
    try {
        t.join();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }

2. 线程睡眠不会释放锁

在线程睡眠期间,该线程所持有的锁并不会被释放,因此,其他线程仍将被阻塞。

 synchronized (obj) {
        System.out.println("获取obj锁");
        try {
            Thread.sleep(5000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("释放obj锁");
    }

3. 睡眠时间应尽量短

线程睡眠的时间应尽量短,可以根据实际需要调整线程睡眠的时间。如果睡眠时间过长,会导致程序的响应时间变慢,影响用户体验。另外,需要避免不必要的线程睡眠,以免影响程序的运行效率。

4. 时间单位要选对

在使用TimeUnit.MILLISECONDS.sleep()方法时,需要选择正确的时间单位,比如:TimeUnit.SECONDS、TimeUnit.MINUTES、TimeUnit.HOURS等。

  try {
        TimeUnit.SECONDS.sleep(1);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }

5. 线程睡眠不能保证精确

线程睡眠的时间并不能保证精确,它受到操作系统和虚拟机的干扰,可能会比预期的时间长一些,因此在实际使用中,需要考虑误差范围。

线程睡眠的应用场景

线程睡眠在实际应用中广泛使用,以下是一些常见的应用场景:

1. 定时器和倒计时器

定时器和倒计时器是一种常见的实现方式,可以通过线程睡眠和计时器来实现。例如,以下代码实现了一个简单的倒计时器。

  for (int i = 10; i >= 0; i--) {
        System.out.println("倒计时:" + i);
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

2. 多线程并发控制

线程睡眠可以用来控制多个线程的并发,例如通过线程睡眠,可以让多个线程按顺序执行,而不会发生同时执行的情况。

Thread t1 = new Thread(new Runnable() {
        @Override
        public void run() {
            synchronized (obj) {
                System.out.println("t1获取obj锁");
                try {
                    Thread.sleep(5000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println("t1释放obj锁");
            }
        }
    });

    Thread t2 = new Thread(new Runnable() {
        @Override
        public void run() {
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            synchronized (obj) {
                System.out.println("t2获取obj锁");
            }
        }
    });

    t1.start();
    t2.start();

    // 主线程等待子线程执行完毕
    try {
        t1.join();
        t2.join();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }

3. 提高程序的运行效率

线程睡眠可以有效的控制线程的执行时间,可以让CPU资源分配更加均衡,提高程序的运行效率和稳定性。例如,以下代码使用线程睡眠优化了图片加载的过程。

long start = System.currentTimeMillis();
    loadImages();
    long end = System.currentTimeMillis();
    System.out.println("图片加载耗时:" + (end - start) + "ms");

    private void loadImages() {
        for (int i = 0; i < imageUrls.length; i++) {
            loadSingleImage(imageUrls[i]);
            try {
                Thread.sleep(500);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }

总结:

线程睡眠作为并发编程的重要一环,不仅可以有效的控制线程的执行时间,还可以提高程序的运行效率和稳定性,因此在实际开发中,需要合理的应用线程睡眠技术。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/872924.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

七牛云如何绑定自定义域名-小白操作说明——七牛云对象储存kodo

七牛云如何绑定自定义域名 **温馨提示&#xff1a;使用加速cdn自定义域名是必须要https的&#xff0c;也就是必须ssl证书&#xff0c;否则类似视频mp4 之类会无法使用。 ​ 编辑切换为居中 添加图片注释&#xff0c;不超过 140 字&#xff08;可选&#xff09; 点击首页——…

Android12之MediaCodec用法套路(三十四)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生从来没有捷径,只有行动才是治疗恐惧和懒惰的唯一良药. 更多原创,欢迎关注:Android…

动态链接(8/11)

静态链接的缺点&#xff1a;生成的可执行文件体积较大&#xff0c;当多个程序引用相同的公共代码时&#xff0c;这些公共代码会多次加载到内存&#xff0c;浪费内存资源。 为了解决这个问题&#xff0c;动态链接对静态链接做了一些优化&#xff1a;对一些公用的代码&#xff0…

邻接表创建无向表(C++ 代码)

#include<iostream>//邻接表创建无向表 #define MVNum 100 using namespace std; typedef char VerTexType; typedef struct Arcnode//边节点 {int adjvex;//该边所指向的顶点的位置struct Arcnode* nextarc;//指向下一条边的指针 }Arcnode; typedef struct vnode//顶点节…

【数据结构】二叉树篇| 纲领思路02+刷题

博主简介&#xff1a;努力学习的22级计算机科学与技术本科生一枚&#x1f338;博主主页&#xff1a; 是瑶瑶子啦每日一言&#x1f33c;: 所谓自由&#xff0c;不是随心所欲&#xff0c;而是自我主宰。——康德 目录 一、前言二、刷题1、翻转二叉树 2、二叉树的层序遍历✨3、 二…

SpringMVC 详细教程及源码讲解

目录 一、SpringMVC简介1. 什么是MVC&#xff1f;2.什么是SpringMVC?3.SpringMVC的特点&#xff1f; 二、SpringMVC入门案列1. 开发环境2. 创建Maven工程2.1 添加web模块2.2 引入依赖 3. 配置web.xml3.1 默认配置方式3.2 扩展配置方式 4.创建请求控制器5. 创建SpringMVC的配置…

基于ChatGLM的Deepin文档问答Bot

一、背景介绍 题目来源&#xff1a;2023全国大学生计算机系统能力大赛操作系统设计赛-功能挑战赛题目地址&#xff1a;proj225-document-question-answering-bot题目描述&#xff1a;https://wiki.deepin.org 上有900多条deepin系统相关的中文教程和词条&#xff0c;请编写能根…

【第358场周赛】翻倍以链表形式表示的数字,Java解密。

LeetCode 第358场周赛 恒生专场。 文章目录 剑指Offer:翻倍以链表形式表示的数字示例:限制:解题思路:剑指Offer:翻倍以链表形式表示的数字 【题目描述】 给你一个 非空 链表的头节点 head ,表示一个不含前导零的非负数整数。 将链表 翻倍 后,返回头节点 head 。 示例…

django——创建 Django 项目和 APP

2.创建 Django 项目和 APP 命令&#xff1a; 创建Django项目 django-admin startproject name 创建子应用 python manager.py startapp name 2.1 创建工程 在使用Flask框架时&#xff0c;项目工程目录的组织与创建是需要我们自己手动创建完成的。 在django中&#xff0c;…

第四课 学习动词短语

文章目录 前言动词短语动副词组及物动副词组实义动词副词介词动宾词组固定特殊可分开动词短语时态变化规则 一、动副词组1、go ahead 先走&#xff0c;进行 不及物go along 前进&#xff0c;向前走&#xff0c;与....一道去go away 走开&#xff0c;离去&#xff0c;逃走&#…

全网最全的接口自动化测试教程

为什么要做接口自动化 相对于UI自动化而言&#xff0c;接口自动化具有更大的价值。 为了优化转化路径或者提升用户体验&#xff0c;APP/web界面的按钮控件和布局几乎每个版本都会发生一次变化&#xff0c;导致自动化的代码频繁变更&#xff0c;没有起到减少工作量的效果。 而…

用友 U8 CRM 任意文件上传+读取漏洞复现(HW0day)

0x01 产品简介 用友U8 CRM客户关系管理系统是一款专业的企业级CRM软件&#xff0c;旨在帮助企业高效管理客户关系、提升销售业绩和提供优质的客户服务。 0x02 漏洞概述 用友 U8 CRM客户关系管理系统 getemaildata.php 文件存在任意文件上传和任意文件读取漏洞&#xff0c;攻击…

RK3399平台开发系列讲解(入门篇)Linux内核常见的规则

🚀返回专栏总目录 文章目录 一、编码风格二、内核结构分配和初始化三、面向对象的思想沉淀、分享、成长,让自己和他人都能有所收获!😄 📢 本篇将介绍在内核代码的演化过程中应该遵守标准规则 一、编码风格 参考一下内核编码风格手册,它位于内核源代码树的 Documentat…

Flink 火焰图

方式一 使用 Flink Web UI 的 Flame Graph Flink 自己也支持了 Task 粒度的 Flame Graphs 功能,并且可以细化到 subtask 粒度。 第一步:配置启用功能 Flink 作业动态参数里增加配置:“rest.flamegraph.enabled”: “true” 并重启作业。当前该功能没有默认开启,因为这个功…

ROS2 学习(一)介绍,环境搭建,以及个人安装的一些建议

ROS2 学习 学习自b站课程&#xff1a;https://www.bilibili.com/video/BV16B4y1Q7jQ?p1 &#xff08;up主&#xff1a;古月居GYH&#xff09; ROS 介绍 Robot OS&#xff0c;为机器人开发提供了相对完善的 middleware&#xff0c;工具&#xff0c;软件等。 ROS1 对嵌入式设…

ProsperEx 的野望:借势 RWA 浪潮,构建全新的链上衍生品体系

真实资产代币化&#xff08;RWA&#xff09;并不是一个新概念了&#xff0c;以 USDT、USDC、DAI 等一系列美元稳定币是行业内最早的 RWA 概念资产&#xff0c;这些资产以美元为价值基础通过不同信用的机制&#xff0c;将其价值映射至链上&#xff0c;并以加密货币的形式体现&am…

关于memset的小实验

关于memset的小实验 memset是包含在<string.h>的函数&#xff0c;用来给字符数组赋值。然而人们常常把它拿来给整型变量赋值。 void *MEMSET (void *dstpp, int c, size_t len)memset是一个返回通用指针的函数&#xff0c;返回的地址便是输入的地址 int c表示对这块内…

Linux学习之awk函数

awk里边的函数分为内置函数和自定义函数。 内置函数有下边的几种&#xff1a; 算术函数&#xff08;arithmetic&#xff09; 字符串函数&#xff08;string&#xff09; 输入/输出函数和通用函数&#xff08;input/output, and general&#xff09; 自定义函数格式如下&#xf…

企业计算机服务器中了360后缀勒索病毒怎么办,勒索病毒解密数据恢复

随着计算机技术的不断发展&#xff0c;企业的办公系统得到了很大提升&#xff0c;但是随之而来的网络安全威胁也不断增加&#xff0c;勒索病毒的攻击事件时有发生。近期&#xff0c;我们收到某地连锁超市的求助&#xff0c;企业的计算机服务器遭到了360后缀勒索病毒攻击&#x…

【算法题】螺旋矩阵III (求解n阶蛇形矩阵)

一、问题的提出 n阶蛇形矩阵的特点是按照图1所示的方式排列元素。n阶蛇形矩阵是指矩阵的大小为nn&#xff0c;其中n为正整数。 题目背景 一个 n 行 n 列的螺旋矩阵可由如图1所示的方法生成&#xff0c;观察图片&#xff0c;找出填数规律。填数规则为从 1 开始填到 nn。 图1 …