PyTorch翻译官网教程-LANGUAGE MODELING WITH NN.TRANSFORMER AND TORCHTEXT

news2025/1/8 4:35:15

官网链接

Language Modeling with nn.Transformer and torchtext — PyTorch Tutorials 2.0.1+cu117 documentation

使用 NN.TRANSFORMER 和 TORCHTEXT进行语言建模

这是一个关于训练模型使用nn.Transformer来预测序列中的下一个单词的教程。

PyTorch 1.2版本包含了一个基于论文Attention is All You Need的标准transformer模块。与循环神经网络(RNNs)相比,transformer模型已被证明在许多序列对序列任务中具有更高的质量,同时具有更高的并发性。

nn.Transformer 模块完全依赖于注意力机制(作为nn.MultiheadAttention实现)来绘制输入和输出之间的全局依赖关系。nn.Transformer 模块是高度模块化的,这样一个单一的组件(例如,nn.TransformerEncoder)可以很容易地使用/组合。

定义模型

在本教程中,我们在语言建模任务上训练一个nn.TransformerEncoder模型。请注意,本教程不包括nn.TransformerDecoder的训练,如上图右半部分所示。语言建模任务是为给定单词(或单词序列)跟随单词序列的可能性分配一个概率。首先将一系列标记传递给源文本嵌入层,然后是一个位置编码器来解释单词的顺序(请参阅下一段了解更多细节)。nn.TransformerEncoder 由nn.TransformerEncoderLayer的多个层组成。除了输入序列外,还需要一个方形注意掩码,因为在nn.TransformerDecoder中的自注意层只允许参与序列中较早的位置。对于语言建模任务,应掩盖未来位置上的任何标记。为了生成输出词的概率分布,nn.TransformerEncoder 模型的输出通过一个线性层来输出非规范化的对数。这里没有应用log-softmax函数,因为稍后会使用CrossEntropyLoss,它要求输入是非标准化的对数。

import math
import os
from tempfile import TemporaryDirectory
from typing import Tuple

import torch
from torch import nn, Tensor
from torch.nn import TransformerEncoder, TransformerEncoderLayer
from torch.utils.data import dataset

class TransformerModel(nn.Module):

    def __init__(self, ntoken: int, d_model: int, nhead: int, d_hid: int,
                 nlayers: int, dropout: float = 0.5):
        super().__init__()
        self.model_type = 'Transformer'
        self.pos_encoder = PositionalEncoding(d_model, dropout)
        encoder_layers = TransformerEncoderLayer(d_model, nhead, d_hid, dropout)
        self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
        self.embedding = nn.Embedding(ntoken, d_model)
        self.d_model = d_model
        self.linear = nn.Linear(d_model, ntoken)

        self.init_weights()

    def init_weights(self) -> None:
        initrange = 0.1
        self.embedding.weight.data.uniform_(-initrange, initrange)
        self.linear.bias.data.zero_()
        self.linear.weight.data.uniform_(-initrange, initrange)

    def forward(self, src: Tensor, src_mask: Tensor = None) -> Tensor:
        """
        Arguments:
            src: Tensor, shape ``[seq_len, batch_size]``
            src_mask: Tensor, shape ``[seq_len, seq_len]``

        Returns:
            output Tensor of shape ``[seq_len, batch_size, ntoken]``
        """
        src = self.embedding(src) * math.sqrt(self.d_model)
        src = self.pos_encoder(src)
        output = self.transformer_encoder(src, src_mask)
        output = self.linear(output)
        return output

PositionalEncoding模块注入一些关于序列中记号的相对或绝对位置的信息。位置编码器与文本嵌入层具有相同的维数,因此两者可以相加。这里,我们使用不同频率的正弦和余弦函数。

class PositionalEncoding(nn.Module):

    def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000):
        super().__init__()
        self.dropout = nn.Dropout(p=dropout)

        position = torch.arange(max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
        pe = torch.zeros(max_len, 1, d_model)
        pe[:, 0, 0::2] = torch.sin(position * div_term)
        pe[:, 0, 1::2] = torch.cos(position * div_term)
        self.register_buffer('pe', pe)

    def forward(self, x: Tensor) -> Tensor:
        """
        Arguments:
            x: Tensor, shape ``[seq_len, batch_size, embedding_dim]``
        """
        x = x + self.pe[:x.size(0)]
        return self.dropout(x)

加载和批处理数据

本教程使用torchtext生成Wikitext-2数据集。要访问torchtext数据集,请按照GitHub - pytorch/data: A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries. 的说明安装torchdata.

%%bash
pip install portalocker
pip install torchdata

词汇对象是基于训练数据集构建的,用于将令牌数值化为张量。Wikitext-2将稀疏令牌表示为unk。给定顺序数据的一维向量,batchify() 方法将数据排列到batch_size列中。如果数据没有均匀地分成batch_size列,那么数据将被裁剪。例如,以字母表为数据(总长度为26),batch_size=4,我们将字母表分成长度为6的序列,得到4个这样的序列。

批处理支持更多的并行处理。然而,批处理意味着模型独立处理每一列。在上面的例子中,G和F的依赖关系是无法学习的。

from torchtext.datasets import WikiText2
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator

train_iter = WikiText2(split='train')
tokenizer = get_tokenizer('basic_english')
vocab = build_vocab_from_iterator(map(tokenizer, train_iter), specials=['<unk>'])
vocab.set_default_index(vocab['<unk>'])

def data_process(raw_text_iter: dataset.IterableDataset) -> Tensor:
    """Converts raw text into a flat Tensor."""
    data = [torch.tensor(vocab(tokenizer(item)), dtype=torch.long) for item in raw_text_iter]
    return torch.cat(tuple(filter(lambda t: t.numel() > 0, data)))

# ``train_iter`` was "consumed" by the process of building the vocab,
# so we have to create it again
train_iter, val_iter, test_iter = WikiText2()
train_data = data_process(train_iter)
val_data = data_process(val_iter)
test_data = data_process(test_iter)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def batchify(data: Tensor, bsz: int) -> Tensor:
    """Divides the data into ``bsz`` separate sequences, removing extra elements
    that wouldn't cleanly fit.

    Arguments:
        data: Tensor, shape ``[N]``
        bsz: int, batch size

    Returns:
        Tensor of shape ``[N // bsz, bsz]``
    """
    seq_len = data.size(0) // bsz
    data = data[:seq_len * bsz]
    data = data.view(bsz, seq_len).t().contiguous()
    return data.to(device)

batch_size = 20
eval_batch_size = 10
train_data = batchify(train_data, batch_size)  # shape ``[seq_len, batch_size]``
val_data = batchify(val_data, eval_batch_size)
test_data = batchify(test_data, eval_batch_size)

函数生成输入和目标序列

get_batch() transformer模型生成一对输入-目标序列。它将源数据细分为长度为bptt的块。对于语言建模任务,模型需要以下单词作为目标。例如,如果bptt值为2,那么当i = 0时,我们将得到以下两个变量:

应该注意的是,数据块的维度是0,与Transformer模型中的S维度一致。批次维度N 的维度是1.

bptt = 35
def get_batch(source: Tensor, i: int) -> Tuple[Tensor, Tensor]:
    """
    Args:
        source: Tensor, shape ``[full_seq_len, batch_size]``
        i: int

    Returns:
        tuple (data, target), where data has shape ``[seq_len, batch_size]`` and
        target has shape ``[seq_len * batch_size]``
    """
    seq_len = min(bptt, len(source) - 1 - i)
    data = source[i:i+seq_len]
    target = source[i+1:i+1+seq_len].reshape(-1)
    return data, target

初始化实例

模型超参数定义如下。词汇表大小等于词汇表对象的长度。

ntokens = len(vocab)  # size of vocabulary
emsize = 200  # embedding dimension
d_hid = 200  # dimension of the feedforward network model in ``nn.TransformerEncoder``
nlayers = 2  # number of ``nn.TransformerEncoderLayer`` in ``nn.TransformerEncoder``
nhead = 2  # number of heads in ``nn.MultiheadAttention``
dropout = 0.2  # dropout probability
model = TransformerModel(ntokens, emsize, nhead, d_hid, nlayers, dropout).to(device)

运行模型

我们将CrossEntropyLoss与 SGD (随机梯度下降)优化器一起使用。学习率最初设置为5.0,并遵循StepLR 计划。在训练期间,我们使用nn.utils.clip_grad_norm_ 防止梯度爆炸。

import time

criterion = nn.CrossEntropyLoss()
lr = 5.0  # learning rate
optimizer = torch.optim.SGD(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95)

def train(model: nn.Module) -> None:
    model.train()  # turn on train mode
    total_loss = 0.
    log_interval = 200
    start_time = time.time()

    num_batches = len(train_data) // bptt
    for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)):
        data, targets = get_batch(train_data, i)
        output = model(data)
        output_flat = output.view(-1, ntokens)
        loss = criterion(output_flat, targets)

        optimizer.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
        optimizer.step()

        total_loss += loss.item()
        if batch % log_interval == 0 and batch > 0:
            lr = scheduler.get_last_lr()[0]
            ms_per_batch = (time.time() - start_time) * 1000 / log_interval
            cur_loss = total_loss / log_interval
            ppl = math.exp(cur_loss)
            print(f'| epoch {epoch:3d} | {batch:5d}/{num_batches:5d} batches | '
                  f'lr {lr:02.2f} | ms/batch {ms_per_batch:5.2f} | '
                  f'loss {cur_loss:5.2f} | ppl {ppl:8.2f}')
            total_loss = 0
            start_time = time.time()

def evaluate(model: nn.Module, eval_data: Tensor) -> float:
    model.eval()  # turn on evaluation mode
    total_loss = 0.
    with torch.no_grad():
        for i in range(0, eval_data.size(0) - 1, bptt):
            data, targets = get_batch(eval_data, i)
            seq_len = data.size(0)
            output = model(data)
            output_flat = output.view(-1, ntokens)
            total_loss += seq_len * criterion(output_flat, targets).item()
    return total_loss / (len(eval_data) - 1)

循环epochs,如果验证损失是目前为止我们看到的最好的,那么保存模型。在每个epoch之后调整学习速率。

best_val_loss = float('inf')
epochs = 3

with TemporaryDirectory() as tempdir:
    best_model_params_path = os.path.join(tempdir, "best_model_params.pt")

    for epoch in range(1, epochs + 1):
        epoch_start_time = time.time()
        train(model)
        val_loss = evaluate(model, val_data)
        val_ppl = math.exp(val_loss)
        elapsed = time.time() - epoch_start_time
        print('-' * 89)
        print(f'| end of epoch {epoch:3d} | time: {elapsed:5.2f}s | '
            f'valid loss {val_loss:5.2f} | valid ppl {val_ppl:8.2f}')
        print('-' * 89)

        if val_loss < best_val_loss:
            best_val_loss = val_loss
            torch.save(model.state_dict(), best_model_params_path)

        scheduler.step()
    model.load_state_dict(torch.load(best_model_params_path)) # load best model states

输出

| epoch   1 |   200/ 2928 batches | lr 5.00 | ms/batch 31.00 | loss  8.15 | ppl  3449.06
| epoch   1 |   400/ 2928 batches | lr 5.00 | ms/batch 28.73 | loss  6.25 | ppl   517.05
| epoch   1 |   600/ 2928 batches | lr 5.00 | ms/batch 28.56 | loss  5.61 | ppl   274.25
| epoch   1 |   800/ 2928 batches | lr 5.00 | ms/batch 28.42 | loss  5.31 | ppl   202.30
| epoch   1 |  1000/ 2928 batches | lr 5.00 | ms/batch 28.33 | loss  4.95 | ppl   140.81
| epoch   1 |  1200/ 2928 batches | lr 5.00 | ms/batch 28.28 | loss  4.55 | ppl    94.20
| epoch   1 |  1400/ 2928 batches | lr 5.00 | ms/batch 28.36 | loss  4.21 | ppl    67.25
| epoch   1 |  1600/ 2928 batches | lr 5.00 | ms/batch 28.45 | loss  3.99 | ppl    54.28
| epoch   1 |  1800/ 2928 batches | lr 5.00 | ms/batch 28.65 | loss  3.74 | ppl    41.89
| epoch   1 |  2000/ 2928 batches | lr 5.00 | ms/batch 28.56 | loss  3.66 | ppl    38.71
| epoch   1 |  2200/ 2928 batches | lr 5.00 | ms/batch 28.67 | loss  3.48 | ppl    32.44
| epoch   1 |  2400/ 2928 batches | lr 5.00 | ms/batch 28.74 | loss  3.49 | ppl    32.78
| epoch   1 |  2600/ 2928 batches | lr 5.00 | ms/batch 28.60 | loss  3.38 | ppl    29.50
| epoch   1 |  2800/ 2928 batches | lr 5.00 | ms/batch 28.46 | loss  3.29 | ppl    26.94
-----------------------------------------------------------------------------------------
| end of epoch   1 | time: 86.92s | valid loss  2.06 | valid ppl     7.88
-----------------------------------------------------------------------------------------
| epoch   2 |   200/ 2928 batches | lr 4.75 | ms/batch 28.88 | loss  3.10 | ppl    22.18
| epoch   2 |   400/ 2928 batches | lr 4.75 | ms/batch 28.50 | loss  3.02 | ppl    20.55
| epoch   2 |   600/ 2928 batches | lr 4.75 | ms/batch 28.65 | loss  2.86 | ppl    17.50
| epoch   2 |   800/ 2928 batches | lr 4.75 | ms/batch 28.68 | loss  2.85 | ppl    17.28
| epoch   2 |  1000/ 2928 batches | lr 4.75 | ms/batch 28.59 | loss  2.67 | ppl    14.43
| epoch   2 |  1200/ 2928 batches | lr 4.75 | ms/batch 28.55 | loss  2.68 | ppl    14.57
| epoch   2 |  1400/ 2928 batches | lr 4.75 | ms/batch 28.51 | loss  2.72 | ppl    15.13
| epoch   2 |  1600/ 2928 batches | lr 4.75 | ms/batch 28.44 | loss  2.69 | ppl    14.71
| epoch   2 |  1800/ 2928 batches | lr 4.75 | ms/batch 28.46 | loss  2.60 | ppl    13.51
| epoch   2 |  2000/ 2928 batches | lr 4.75 | ms/batch 28.51 | loss  2.61 | ppl    13.60
| epoch   2 |  2200/ 2928 batches | lr 4.75 | ms/batch 28.64 | loss  2.57 | ppl    13.04
| epoch   2 |  2400/ 2928 batches | lr 4.75 | ms/batch 28.67 | loss  2.57 | ppl    13.08
| epoch   2 |  2600/ 2928 batches | lr 4.75 | ms/batch 28.56 | loss  2.57 | ppl    13.05
| epoch   2 |  2800/ 2928 batches | lr 4.75 | ms/batch 28.61 | loss  2.55 | ppl    12.81
-----------------------------------------------------------------------------------------
| end of epoch   2 | time: 86.63s | valid loss  1.83 | valid ppl     6.24
-----------------------------------------------------------------------------------------
| epoch   3 |   200/ 2928 batches | lr 4.51 | ms/batch 28.71 | loss  2.43 | ppl    11.35
| epoch   3 |   400/ 2928 batches | lr 4.51 | ms/batch 28.82 | loss  2.37 | ppl    10.65
| epoch   3 |   600/ 2928 batches | lr 4.51 | ms/batch 28.67 | loss  2.27 | ppl     9.64
| epoch   3 |   800/ 2928 batches | lr 4.51 | ms/batch 28.74 | loss  2.29 | ppl     9.83
| epoch   3 |  1000/ 2928 batches | lr 4.51 | ms/batch 28.55 | loss  2.22 | ppl     9.22
| epoch   3 |  1200/ 2928 batches | lr 4.51 | ms/batch 28.73 | loss  2.25 | ppl     9.48
| epoch   3 |  1400/ 2928 batches | lr 4.51 | ms/batch 28.57 | loss  2.29 | ppl     9.89
| epoch   3 |  1600/ 2928 batches | lr 4.51 | ms/batch 28.73 | loss  2.36 | ppl    10.62
| epoch   3 |  1800/ 2928 batches | lr 4.51 | ms/batch 28.52 | loss  2.20 | ppl     9.07
| epoch   3 |  2000/ 2928 batches | lr 4.51 | ms/batch 28.61 | loss  2.26 | ppl     9.57
| epoch   3 |  2200/ 2928 batches | lr 4.51 | ms/batch 28.53 | loss  2.20 | ppl     9.03
| epoch   3 |  2400/ 2928 batches | lr 4.51 | ms/batch 28.45 | loss  2.23 | ppl     9.26
| epoch   3 |  2600/ 2928 batches | lr 4.51 | ms/batch 28.56 | loss  2.21 | ppl     9.13
| epoch   3 |  2800/ 2928 batches | lr 4.51 | ms/batch 28.54 | loss  2.31 | ppl    10.03
-----------------------------------------------------------------------------------------
| end of epoch   3 | time: 86.63s | valid loss  1.28 | valid ppl     3.60
-----------------------------------------------------------------------------------------

在测试数据集上评估最佳模型

test_loss = evaluate(model, test_data)
test_ppl = math.exp(test_loss)
print('=' * 89)
print(f'| End of training | test loss {test_loss:5.2f} | '
      f'test ppl {test_ppl:8.2f}')
print('=' * 89)

输出

=========================================================================================
| End of training | test loss  1.26 | test ppl     3.54
=========================================================================================

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/868199.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

对于生产者消费者/shutdown/close的补充

信号量解决生产者消费者/读写者问题_右大臣的博客-CSDN博客 一点补充 模拟简单的string&#xff0c;循环队列&#xff0c;vector_右大臣的博客-CSDN博客 补充总结 写一个循环队列 用个循环队列去表示class myqueue{ vector<int>qq capacity 容量 front 头 rear 尾…

Python web实战之Django 的 WebSocket 支持详解

关键词&#xff1a;Python, Django, WebSocket, Web 如何使用 Django 实现 WebSocket 功能&#xff1f;本文将详细介绍 WebSocket 的概念、Django 的 WebSocket 支持以及如何利用它来创建动态、响应式的 Web 应用。 1. WebSocket 简介 1.1 什么是 WebSocket&#xff1f; 在 W…

阿里云Windows服务器怎么安装多个网站?

本文阿里云百科介绍如何在Windows Server 2012 R2 64位系统的ECS实例上使用IIS服务器搭建多个Web站点。本教程适用于熟悉Windows操作系统&#xff0c;希望合理利用资源、统一管理站点以提高运维效率的用户。比如&#xff0c;您可以在一台云服务器上配置多个不同分类的博客平台或…

前端跨域问题解决方法

跨域是WEB浏览器专有的同源限制访问策略。(后台接口调用和postman等工具会出现) 跨源资源共享&#xff08;CORS&#xff0c;或通俗地译为跨域资源共享&#xff09;是一种基于 HTTP 头的机制&#xff0c;该机制通过允许服务器标示除了它自己以外的其他源&#xff08;域、协议或端…

分类预测 | Matlab实现基于TSOA-CNN-GRU-Attention的数据分类预测

分类预测 | Matlab实现基于TSOA-CNN-GRU-Attention的数据分类预测 目录 分类预测 | Matlab实现基于TSOA-CNN-GRU-Attention的数据分类预测效果一览基本介绍研究内容程序设计参考资料 效果一览 基本介绍 Matlab实现分类预测 | Matlab实现基于TSOA-CNN-GRU-Attention的数据分类预…

Windows电脑快速搭建FTP服务教程

FTP介绍 FTP&#xff08;File Transfer Protocol&#xff09;是一种用于在计算机网络上进行文件传输的标准协议。它提供了一种可靠的、基于客户端-服务器模型的方式来将文件从一个主机传输到另一个主机。在本文中&#xff0c;我将详细介绍FTP的工作原理、数据传输模式以及常见…

FLatten Transformer 简化版Transformer

今天在找论文时&#xff0c;看到一篇比较新奇的论文&#xff0c;在这里跟大家分享一下&#xff0c;希望可以给一些人提供一些思路。虽然现在Transformer 比较火&#xff0c;在分割上面也应用的比较多&#xff0c;但是我一直不喜欢用&#xff0c;其中一个原因是结构太复杂了&…

【JavaWeb】MySQL基础操作

1 通用语法规则 SQL语句可以单行或者多行书写&#xff0c;以分号结尾SQL语句不区分大小写&#xff0c;关键字建议使用大写单行注释 --注释内容&#xff08;通用&#xff09; # 注释内容&#xff08;MySQL独有&#xff09;多行注释 /* 注释内容 */ 2 语句 数据库 -- 查…

OpenCV实例(八)车牌字符识别技术(一)模式识别

车牌字符识别技术&#xff08;一&#xff09;模式识别 1.模式识别流程2. 模式识别方式 影响并导致汽车牌照内字符出现缺损、污染、模糊等情况的常见因素有照相机的性能、采集车辆图像时光照的差异、汽车牌照的清洁度等。为了提高汽车牌照字符识别的准确率&#xff0c;本节将把英…

开发过程中遇到的问题以及解决方法

巩固基础&#xff0c;砥砺前行 。 只有不断重复&#xff0c;才能做到超越自己。 能坚持把简单的事情做到极致&#xff0c;也是不容易的。 开发过程中遇到的问题以及解决方法 简单易用的git命令 git命令&#xff1a; 查看有几个分支&#xff1a;git branch -a 切换分支&#…

深入浅出cgroup

一、什么是cgroup Cgroup是linux内核用来控制系统资源的机制&#xff0c;它将操作系统中的所有进程以组为单位划分&#xff0c;给这一组进程定义对某一类资源特定的访问权限。Cgroup用子系统&#xff08;subsystem&#xff09;来描述所能控制的系统资源&#xff0c;子系统具有…

四、Netty

目录 4.1 原生IO存在的问题4.2 Netty官网说明4.3 Netty的优点4.4 Netty的版本 4.1 原生IO存在的问题 4.2 Netty官网说明 https://netty.io/ 4.3 Netty的优点 4.4 Netty的版本 netty 下载地址&#xff1a;

android 如何分析应用的内存(十八)终章——使用Perfetto查看内存与调用栈之间的泄露

android 如何分析应用的内存&#xff08;十八&#xff09; 在前面两篇文章中&#xff0c;先是介绍了如何用AS查看Android的堆内存&#xff0c;然后介绍了使用MAT查看 Android的堆内存。AS能够满足基本的内存分析需求&#xff0c;但是无法进行多个堆的综合比较&#xff0c;因此…

OptaPlanner笔记1

1.1 什么是OptaPlanner 每个组织都面临规划问题&#xff1a;为产品或服务提供有限的受约束的资源&#xff08;员工、资产、时间和金钱&#xff09;。OptaPlanner用来优化这种规划&#xff0c;以实现用更少的资源来做更多的业务。 这被称为Constraint Satisfaction Programming…

使用maven打包时如何跳过test,有三种方式

方式一 针对spring项目&#xff1a; <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId> <configuration> <skipTests>true</skipTests> </configuration> …

Vim学习(三)—— Git Repo Gerrit

Git、Gerrit、Repo三者的概念及使用 三者各自作用&#xff1a; git&#xff1a;版本管理库&#xff0c;在git库中没有中心服务器的概念&#xff0c;真正的分布式。 repo&#xff1a;repo就是多个git库的管理工具。如果是多个git库同时管理&#xff0c;可以使用repo。当然使用…

探讨uniapp的navigator 页面跳转问题

navigator 页面跳转。该组件类似HTML中的<a>组件&#xff0c;但只能跳转本地页面。目标页面必须在pages.json中注册。 "tabBar": {"color": "#7A7E83","selectedColor": "#3cc51f","borderStyle": "bl…

五、Netty高性能架构设计

目录 5.1 线程模型基本介绍5.2 传统阻塞I/O服务模型5.2.1 工作原理5.2.2 阻塞IO模型特点5.2.3 阻塞IO存在的问题 5.3 Reactor模式5.3.1 针对传统阻塞IO服务模型的2个缺点&#xff0c;解决方案5.3.2 IO复用 线程池&#xff0c;就是Reactor模式设计的基本思想 5.1 线程模型基本介…

蓝桥杯-统计子矩阵

统计子矩阵 题目链接 思路&#xff1a; 使用前缀和滑动窗口 &#xff0c;可以先计算出纵向或横向的前缀和&#xff0c;matrix[i][j]表示前i行第j列之和 然后遍历上边界top和下边界buttom&#xff0c;再这个上下边界内使用滑动窗口&#xff0c;由于前面维护了纵向前缀和&…

榜单!全年或超150万辆!行泊一体系统方案供应商TOP10出炉

作为域控集中架构下的产物&#xff0c;智能驾驶赛道的行泊一体方案正在成为市场的主流配置&#xff0c;同时&#xff0c;各类计算&#xff08;芯片&#xff09;方案也都在发力这个细分赛道。 高工智能汽车研究院认为&#xff0c;和NOA不同&#xff0c;作为高低速组合功能的行泊…