Attention is all you need ---Transformer

news2024/11/23 23:43:43

大语言模型已经在很多领域大显身手,其应用包括只能写作、音乐创作、知识问答、聊天、客服、广告文案、论文、新闻、小说创作、润色、会议/文章摘要等等领域。在商业上模型即产品、服务即产品、插件即产品,任何形态的用户可触及的都可以是产品,商业付费一般都是会员制或者按次收费。当前大预言模型的核心结构是基于Transformer。

大模型之所以效果超出预期,一个很重要的原因是模型大到一定程度之后会发生质变,模型的记忆性和泛化性可以兼得。而Transformer可以令模型很大,大到在NLP领域模型可以发生质变,这使得应用得以井喷式出现在各个领域,但是也有一些问题存在需要进一步解决,这类大模型本质上是内容生成,生成的内容因符合如下三原则:
有用的(Helpful);
可信的(Honest);
无害的(Harmless)

仅仅基于Transformer框架的大预言模型(又称pretraining model)还不足以完全满足商业应用要求,业界的发展放到后续博客展开,本篇先谈谈大语言模型的核心架构Transformer。

Transformer 源于谷歌Brain 2017年针对机器翻译任务提出的,《Attention is all you need》论文详细解释了网络结构,在这个之前网络结构多采用RNN、CNN、LSTM、GRU等网络形式,这篇文章提出了一个新的核心结构-Transformer,其针对RNN网络在机器翻译上的弱点重新设计的结构,传统的Encoder-Decoder架构在建模过程中,下一个时刻的计算过程会依赖于上一个时刻的输出,而这种固有的属性就限制了传统的Encoder-Decoder模型就不能以并行的方式进行计算。

本文源码已托管到 github link地址

模型结构介绍

谷歌提出的Transformer也是包括Encoder和decoder两个部分,只是这两个部分核心是Attention结构,而非CNN、LSTM、GRU等这些结构。

对于Encoder,包含两层,一个self-attention层和一个前馈神经网络,self-attention能帮助当前节点不仅仅只关注当前的词,从而能获取到上下文的语义。Decoder也包含encoder提到的两层网络,但是在这两层中间还有一层attention层,帮助当前节点获取到当前需要关注的重点内容。
在这里插入图片描述
Transformer 模型架构
模型需要对输入的数据进行一个embedding操作(图中红色框框),Attention虽然可以提取出关注的信息,但是没有时序信息,而Position Encoding正是将时序信息转为位置信息来实现的,enmbedding结束之后加上位置编码,然后再输入到encoder层,self-attention处理完数据后把数据送给前馈神经网络(蓝色Feed Forward),前馈神经网络的计算可以并行,得到的输出会输入到下一个encoder。
请添加图片描述

  • Encoder 编码器
    • Multi-Head Attention
      • 多头自注意力机制,可以通过输入信息并行计算出查询-键-值(Query-Key-Value),来让后续的网络使用context来知道当前运算需要关注哪些信息。注意这里的计算QKV的矩阵也是网络参数的一部分,通过训练可以让网络的注意力更有效且集中。因为NLP领域都是时序上因果的,因而改进模型采用了因果多头自注意力模型。
    • Add 残差连接
      • 这里主要残差连接的主要作用是利用恒等映射来训练更深层的网络(输入和输出恒等),多头注意力和层归一化,前馈神经网络和层归一化,两部分均采用了残差连接。
    • Norm 层归一化
      • Layer Normalization 的作用是把神经网络中以样本维度为一层来进行归一化运算,以起到加快训练速度,加速收敛的作用。新的改进都是将Layer Normalization放在前面而非后面。
    • Feed Forward 前馈神经网络
      • 将通过了注意力层之后通过加权机制提取出的所关注信息,根据关注的信息在语义空间中做转换。
      • 因此MLP将Multi-Head Attention得到的向量再投影到一个更大的空间(论文里将空间放大了4倍)在那个大空间里可以更方便地提取需要的信息(使用Relu激活函数),最后再投影回token向量原来的空间。
  • Decoder
    • 和 Encoder基本一样,组成分为Masked Multi-Head Attention,Masked Encoder-Decoder Attention(这一层就是连接编码器和解码器的注意力层,后续由于GPT只用了编码器,因此删除了这一层。)和Feed Forward神经网络,三个部分的每一个部分,都有一个残差连接,后接一个Layer Normalization。下面介绍Decoder的Masked Self-Attention和Encoder-Decoder Attention两部分,
    • Masked Multi-Head Attention
      • Self-Attention的机制有一个问题,在训练过程中的完整标注数据都会暴露在 Decoder 中,这显然是不对的,我们需要对 Decoder 的输入进行一些处理,该处理被称为 Mask,将数据有选择的暴露给Decoder(在GPT中相当于遮住了后面的所有数据,由网络依次生成)。
    • Multi-Head Attention
    • Add 残差连接
    • Norm 层归一化
    • Feed Forward 前馈神经网络
  • 线性层和Softmax
    经过编码器和解码器最后是一层全连接层和SoftMax( 后面改进的大语言模型采用Gaussian Error Linear Units function)。线性层是一个简单的全连接的神经网络,它将解码器堆栈生成的向量投影到一个更大的向量,称为logits向量。Softmax层(Softmax 是用于多类分类问题的激活函数)将向量转换为概率(全部为正值,总和为1.0)。选择概率最高的单元,并生成与其关联的单词作为此时间步的输出。

模型Pytorch实现

红色部分input&output embedding。

class Embedder(nn.Module):
    def __init__(self, vocab_size, d_model):
        super().__init__()
        self.embed = nn.Embedding(vocab_size, d_model)

    def forward(self, x):
        #[123, 0, 23, 5] -> [[..512..], [...512...], ...]
        return self.embed(x)

位置编码

如下代码所示,其值会和上面的embedding相加后输入编解码模块。

class PositionalEncoder(nn.Module):

 def __init__(self, d_model: int, max_seq_len: int = 80):
     super().__init__()
     self.d_model = d_model

     #Create constant positional encoding matrix
     pos_matrix = torch.zeros(max_seq_len, d_model)

     # for pos in range(max_seq_len):
     #     for i in range(0, d_model, 2):
     #         pe_matrix[pos, i] = math.sin(pos/1000**(2*i/d_model))
     #         pe_matrix[pos, i+1] = math.cos(pos/1000**(2*i/d_model))
     #
     # pos_matrix = pe_matrix.unsqueeze(0) # Add one dimension for batch size

     den = torch.exp(-torch.arange(0, d_model, 2) * math.log(1000) / d_model)
     pos = torch.arange(0, max_seq_len).reshape(max_seq_len, 1)
     pos_matrix[:, 1::2] = torch.cos(pos * den)
     pos_matrix[:, 0::2] = torch.sin(pos * den)
     pos_matrix = pos_matrix.unsqueeze(0)


     self.register_buffer('pe', pos_matrix) #Register as persistent buffer

 def forward(self, x):
     # x is a sentence after embedding with dim (batch, number of words, vector dimension)
     seq_len = x.size()[1]
     x = x + self.pe[:, :seq_len]
     return x

self-attention

在这里插入图片描述

## Scaled Dot-Product Attention layer
def scaled_dot_product_attention(q, k, v, mask=None, dropout=None):
    # Shape of q and k are the same, both are (batch_size, seq_len, d_k)
    # Shape of v is (batch_size, seq_len, d_v)
    attention_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(q.shape[-1]) # size (bath_size, seq_len, d_k)

    # Apply mask to scores
    # <pad>
    if mask is not None:
        attention_scores = attention_scores.masked_fill(mask == 0, value=-1e9)

    # Softmax along the last dimension
    attention_weights = F.softmax(attention_scores, dim=-1)

    if dropout is not None:
        attention_weights = dropout(attention_weights)

    output = torch.matmul(attention_weights, v)
    return output

Multi-Head Attention layer

在这里插入图片描述

# Multi-Head Attention layer
class MultiHeadAttention(nn.Module):
    def __init__(self, n_heads, d_model, dropout=0.1):
        super().__init__()

        self.n_heads = n_heads
        self.d_model = d_model
        self.d_k = self.d_v = d_model // n_heads

        # self attention linear layers
        #Linear layers for q, k, v vectors generation in different heads
        self.q_linear_layers = []
        self.k_linear_layers = []
        self.v_linear_layers = []
        for i in range(n_heads):
            self.q_linear_layers.append(nn.Linear(d_model, self.d_k))
            self.k_linear_layers.append(nn.Linear(d_model, self.d_k))
            self.v_linear_layers.append(nn.Linear(d_model, self.d_v))

        self.dropout = nn.Dropout(dropout)
        self.out = nn.Linear(n_heads*self.d_v, d_model)

    def forward(self, q, k, v, mask=None):
        multi_head_attention_outputs = []
        for q_linear, k_linear, v_linear in zip(self.q_linear_layers,
                                                self.k_linear_layers,
                                                self.v_linear_layers):
            new_q = q_linear(q) # size: (batch_size, seq_len, d_k)
            new_k = q_linear(k) # size: (batch_size, seq_len, d_k)
            new_v = q_linear(v) # size: (batch_size, seq_len, d_v)

            # Scaled Dot-Product attention
            head_v = scaled_dot_product_attention(new_q, new_k, new_v, mask, self.dropout) # (batch_size, seq_len,
            multi_head_attention_outputs.append(head_v)

        # Concat
        # import pdb; pdb.set_trace()
        concat = torch.cat(multi_head_attention_outputs, -1) # (batch_size, seq_len, n_heads*d_v)

        # Linear layer to recover to original shap
        output = self.out(concat) # (batch_size, seq_len, d_model)

        return output

翻译实例

这里github链接
以英语到法语的翻译实例展示Transformer这篇文章所述网络模型结构和其用法。Python安装版本信息如下:

Python 3.7.16
torch==2.0.1
torchdata==0.6.1
torchtext==0.15.2
spacy==3.6.0
numpy==1.25.2
pandas
times
portalocker==2.7.0

数据处理

分词和词映射为张量化的数字

使用torchtext提供的工具比较方便创建一个便于处理迭代的语音翻译模型的数据集,首先是从原始文本分词、构建词汇表以及标记为数字化张量。尽管torchtext提供了基本的英语分词支持,但是这里的翻译中除了英语还有法语,因而使用了分词python库Spacy。

首先是创建环境,接下来是下载英语和法语的分词器,因为这是一个很小的例子,因而使用新闻的spacy语言处理模型即可:

#python3 -m spacy download en_core_web_sm
#python3 -m spacy download fr_core_news_sm

如下图所示:
请添加图片描述

接下来是将数据进行分词,然后将词映射为张量化的数字

#Data processing
import spacy
from torchtext.data.utils import get_tokenizer
from collections import Counter
import io
from torchtext.vocab import vocab

src_data_path = 'data/english.txt'
trg_data_path = 'data/french.txt'

en_tokenizer = get_tokenizer('spacy', language='en_core_web_sm')
fr_tokenizer = get_tokenizer('spacy', language='fr_core_news_sm')


def build_vocab(filepath, tokenizer):
    counter = Counter()
    with io.open(filepath, encoding="utf8") as f:
        for string_ in f:
            counter.update(tokenizer(string_))
    return vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])

en_vocab = build_vocab(src_data_path, en_tokenizer)
fr_vocab = build_vocab(trg_data_path, fr_tokenizer)

def data_process(src_path, trg_path):
    raw_en_iter = iter(io.open(src_path, encoding="utf8"))
    raw_fr_iter = iter(io.open(trg_path, encoding="utf8"))
    data = []
    for (raw_en, raw_fr) in zip (raw_en_iter, raw_fr_iter):
        en_tensor_ = torch.tensor([en_vocab[token] for token in en_tokenizer(raw_en)], dtype=torch.long)
        fr_tensor_ = torch.tensor([fr_vocab[token] for token in fr_tokenizer(raw_fr)], dtype= torch.long)
        data.append((en_tensor_, fr_tensor_))
    return data

train_data = data_process(src_data_path, trg_data_path)

DataLoader

DataLoader是torch.utils.data提供的方法,其将数据集和采样器组合在一起,为给定的数据集提供可迭代的对象。DataLoader 支持单进程或多进程加载、自定义加载顺序和可选的自动批处理(合并)和内存固定的映射式和可迭代式数据集。
collate_fn(可选),它将样本列表合并以形成张量的小批量。在使用映射样式数据集的批量加载时使用。

#Train transformer
d_model= 512
n_heads = 8
N = 6
src_vocab_size = len(en_vocab.vocab)
trg_vocab_size = len(fr_vocab.vocab)

BATH_SIZE = 32
PAD_IDX = en_vocab['<pad>']
BOS_IDX = en_vocab['<bos>']
EOS_IDX = en_vocab['<eos>']

from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader

def generate_batch(data_batch):
    en_batch, fr_batch = [], []
    for (en_item, fr_item) in data_batch:
        en_batch.append(torch.cat([torch.tensor([BOS_IDX]), en_item, torch.tensor([EOS_IDX])], dim=0))
        fr_batch.append(torch.cat([torch.tensor([BOS_IDX]), fr_item, torch.tensor([EOS_IDX])], dim=0))
    en_batch = pad_sequence(en_batch, padding_value=PAD_IDX)
    fr_batch = pad_sequence(fr_batch, padding_value=PAD_IDX)
    return en_batch, fr_batch

train_iter = DataLoader(train_data, batch_size=BATH_SIZE, shuffle=True, collate_fn=generate_batch)

训练的输出如下:
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/866132.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

docker实现Nginx

文章目录 1.docker 安装2.docker环境实现Nginx 1.docker 安装 1.使用环境为红帽8.1,添加源 yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo2.安装 yum install docker-ce docker-ce-cli containerd.io显示出错 Docker C…

强化学习-信任区域策略优化和近端策略优化(第7章)

来源书籍&#xff1a; TENSORFLOW REINFORCEMENT LEARNING QUICK START GUIDE 《TensorFlow强化学习快速入门指南-使用Python动手搭建自学习的智能体》 著者&#xff1a;[美]考希克巴拉克里希南&#xff08;Kaushik Balakrishnan&#xff09; 译者&#xff1a;赵卫东 出版…

JSP的文件扩展名必须是.jsp吗

并不是 打开Tomcat目录下conf目录下的web.xml 也就是说,映射路径为xxx.jsp或者xxx.jspx就会访问jsp 可以修改

前后端分离------后端创建笔记(上)

本文章转载于【SpringBootVue】全网最简单但实用的前后端分离项目实战笔记 - 前端_大菜007的博客-CSDN博客 仅用于学习和讨论&#xff0c;如有侵权请联系 源码&#xff1a;https://gitee.com/green_vegetables/x-admin-project.git 素材&#xff1a;https://pan.baidu.com/s/…

Mysql:Access denied for user ‘root‘@‘localhost‘ (using password:YES)解决方案

最近在配置Maven以及Mybatis时&#xff0c;连接localhost数据库时出现无法连接&#xff0c;用cmd测试时报错&#xff1a;Access denied for user ‘ODBC’‘localhost’ (using password: NO)&#xff0c;这个意思就是不允许远程访问&#xff0c;一开始笔者进入mysql试了一下是…

计算机网络:网络字节序

目录 一、字节序1.字节序概念2.字节序的理解&#xff08;1&#xff09;大端模式存储数据&#xff08;2&#xff09;小端模式存储数据 二、网络字节序 一、字节序 1.字节序概念 字节序&#xff1a;内存中存储多字节数据的顺序。 难道存储数据还要看顺序吗&#xff1f; yes。内…

maven是什么?安装+配置

目录 1.什么是maven&#xff1f; 1.2.maven的核心功能是什么&#xff1f; 2.Maven安装配置 2.1Maven的安装 2.2Maven环境配置 1.配置 MAVEN_HOME &#xff0c;变量值就是你的 maven 安装的路径&#xff08;bin 目录之前一级目录&#xff09; 2.将MAVEN_HOME 添加到Path系…

路由导航守卫中document.title = to.meta.title的作用以及路由跳转修改页面title

目录 &#x1f53d; document.title to.meta.title的作用 &#x1f53d; Vue路由跳转时如何更改页面title &#x1f53d; document.title to.meta.title的作用 路由导航守卫如下&#xff1a; router.beforeEach(async (to, from, next) > {document.title to.meta.ti…

“一日之际在于晨”,欢迎莅临WAVE SUMMIT上午场:Arm 虚拟硬件早餐交流会

8月16日&#xff0c;盛夏的北京将迎来第九届WAVE SUMMIT深度学习开发者大会。在峰会主论坛正式开启前&#xff0c;让我们先用一份精美的元气早餐&#xff0c;和一场“Arm虚拟硬件交流会”&#xff0c;唤醒各位开发小伙伴的开发魂&#xff01; 8月16日&#xff0c;WAVE SUMMIT大…

湘大 XTU OJ 1097 排序 题解:c++ 函数库的使用 快速排序 归并排序 冒泡排序

一、链接 1097 排序 二、题目 Description N个整数&#xff0c;将其排序输出。 输入 第一行是一个整数K&#xff08;1<K<20&#xff09;&#xff0c;表示有多少个样例&#xff0c;每个样例的第一行是一个整数N&#xff08;1<N<1,000&#xff09;和一个字符X&…

136.只出现一次的数字+26.删除有序数组中的重复项

目录 一、136.只出现一次的数字 二、代码 三、26删除有序数组中的重复项 四、代码 一、136.只出现一次的数字 136. 只出现一次的数字 - 力扣&#xff08;LeetCode&#xff09; 二、代码 交换律&#xff1a;a ^ b ^ c <> a ^ c ^ b 任何数与0异或为任何数 0 ^ n >…

第三篇|金融人数据来源有哪些

数据对于金融行业真的很重要&#xff0c;那么金融人有哪些途径查数据呢&#xff1f; 国内&#xff1a; 1. 国家统计局 这个应该是无论什么行业都使用最频繁的网站&#xff0c;每个月都会固定发上个月资产投资数据 、工业增加值和利润数据等常规数据&#xff0c;其他数据也会…

日常BUG—— maven编译报错

&#x1f61c;作 者&#xff1a;是江迪呀✒️本文关键词&#xff1a;日常BUG、BUG、问题分析☀️每日 一言 &#xff1a;存在错误说明你在进步&#xff01; 一、问题描述 一个maven项目在由于在代码中书写了如下代码&#xff1a; public static ConcurrentMap<…

若依如何使用(基本环境的配置)

本文章转载于公众号&#xff1a;王清江唷,仅用于学习和讨论&#xff0c;如有侵权请联系 QQ交流群&#xff1a;298405437 本人QQ&#xff1a;4206359 具体视频地址:8 跑后端_哔哩哔哩_bilibili 1、Ruoyi-Vue是什么&#xff1f; 借用官网原话来解释&#xff1a; 一直想做一款…

28.Netty源码之缓存一致性协议

Mpsc Queue 基础知识 Mpsc 的全称是 Multi Producer Single Consumer&#xff0c;多生产者单消费者。Mpsc Queue 可以保证多个生产者同时访问队列是线程安全的&#xff0c;而且同一时刻只允许一个消费者从队列中读取数据。 Netty Reactor 线程中任务队列 taskQueue 必须满足多个…

【input】关于input 元素的type类型及相关作用

传统类型&#xff1a; text&#xff1a;用于输入单行文本。 <input type"text" name"username">password&#xff1a;用于输入密码&#xff0c;输入的内容会被隐藏。 <input type"password" name"password">checkbox&a…

计算机网络 网络层 IPv4地址

A类地址第一位固定0 B类10 其下同理

matlab使用教程(13)—稀疏矩阵创建和使用

使用稀疏矩阵存储包含众多零值元素的数据&#xff0c;可以节省大量内存并加快该数据的处理速度。sparse 是一种属性&#xff0c;可以将该属性分配给由 double 或 logical 元素组成的任何二维 MATLAB 矩阵。通过 sparse 属性&#xff0c;MATLAB 可以&#xff1a; • 仅存储矩…

Vector - CAPL - 诊断模块函数(流控制帧续)

目录 CanTpGetFirstSequenceNumber & CanTpSetFirstSequenceNumber 代码示例 CanTpIsUseFlowControlSTmin & CanTpIsUseFlowControlSTmin & CanTpUseFlowControlSTmin CanTpIsUseFlowControlFrames & CanTpUseFlowControlFrames 代码示例 CanTpSetFlowC…

网神 SecGate 3600 防火墙任意文件上传漏洞

网神 SecGate 3600 防火墙任意文件上传漏洞 一、 产品简介二、 漏洞概述三、 影响范围四、 复现环境五、 漏洞复现PoC上传哥斯拉马子小龙POC检测: 六、 修复建议 免责声明&#xff1a;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具…