#python# #Matplotlib# 常用可视化图形

news2024/11/24 17:19:13

工作中,我们经常需要将数据可视化,分享一些Matplotlib图的汇总,在数据分析与可视化中是非常有用。 如下协一些常用图形。

安装相关插件

python3 pip3 install scipy 
python3 pip3 install pandas 
python3 pip3 install matplotlib 
python3 pip3 install numpy
python3 pip3 install basemap 
python3 pip3 install seaborn
python3 pip3 install statsmodels
python3 pip3 install joypy 

01_散点图

Scatteplot是用于研究两个变量之间关系的经典和基本图。如果数据中有多个组,则可能需要以不同颜色可视化每个组。在Matplotlib,你可以方便地使用。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines

# Import dataset 
midwest = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/midwest_filter.csv")
 
# Prepare Data 
# Create as many colors as there are unique midwest['category']
categories = np.unique(midwest['category'])
colors = [plt.cm.tab10(i/float(len(categories)-1)) for i in range(len(categories))]
 
# Draw Plot for Each Category
plt.figure(figsize=(16, 10), dpi= 80, facecolor='w', edgecolor='k')
 
for i, category in enumerate(categories):
    plt.scatter('area', 'poptotal', 
                data=midwest.loc[midwest.category==category, :], 
                s=20, c=colors[i], label=str(category))
 
# Decorations
plt.gca().set(xlim=(0.0, 0.1), ylim=(0, 90000),
              xlabel='Area', ylabel='Population')
 
plt.xticks(fontsize=12); plt.yticks(fontsize=12)
plt.title("Scatterplot of Midwest Area vs Population", fontsize=22)
plt.legend(fontsize=12)    
plt.show()

 

 

02_带边界的气泡图

有时,你希望在边界内显示一组点以强调其重要性。在此示例中,你将从应该被环绕的数据帧中获取记录,并将其传递给下面的代码中描述的记录。encircle()

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns
from matplotlib import patches
from scipy.spatial import ConvexHull
import warnings; warnings.simplefilter('ignore')
sns.set_style("white")
 
# Step 1: Prepare Data
midwest = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/midwest_filter.csv")
 
# As many colors as there are unique midwest['category']
categories = np.unique(midwest['category'])
colors = [plt.cm.tab10(i/float(len(categories)-1)) for i in range(len(categories))]
 
# Step 2: Draw Scatterplot with unique color for each category
fig = plt.figure(figsize=(16, 10), dpi= 80, facecolor='w', edgecolor='k')    
 
for i, category in enumerate(categories):
    plt.scatter('area', 'poptotal', data=midwest.loc[midwest.category==category, :], s='dot_size', c=colors[i], label=str(category), edgecolors='black', linewidths=.5)
 
# Step 3: Encircling
# https://stackoverflow.com/questions/44575681/how-do-i-encircle-different-data-sets-in-scatter-plot
def encircle(x,y, ax=None, **kw):
    if not ax: ax=plt.gca()
    p = np.c_[x,y]
    hull = ConvexHull(p)
    poly = plt.Polygon(p[hull.vertices,:], **kw)
    ax.add_patch(poly)
 
# Select data to be encircled
midwest_encircle_data = midwest.loc[midwest.state=='IN', :]                         
 
# Draw polygon surrounding vertices    
encircle(midwest_encircle_data.area, midwest_encircle_data.poptotal, ec="k", fc="gold", alpha=0.1)
encircle(midwest_encircle_data.area, midwest_encircle_data.poptotal, ec="firebrick", fc="none", linewidth=1.5)
 
# Step 4: Decorations
plt.gca().set(xlim=(0.0, 0.1), ylim=(0, 90000),
              xlabel='Area', ylabel='Population')
 
plt.xticks(fontsize=12); plt.yticks(fontsize=12)
plt.title("Bubble Plot with Encircling", fontsize=22)
plt.legend(fontsize=12)    
plt.show()


 

03_带线性回归最佳拟合线的散点图

 如果你想了解两个变量如何相互改变,那么最合适的线就是要走的路。下图显示了数据中各组之间最佳拟合线的差异。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns

# Import Data
df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")
df_select = df.loc[df.cyl.isin([4,8]), :]
 
# Plot
sns.set_style("white")
gridobj = sns.lmplot(x="displ", y="hwy", data=df_select, 
                     height=7, aspect=1.6, robust=True, palette='tab10', 
                     scatter_kws=dict(s=60, linewidths=.7, edgecolors='black'))

# Decorations
plt.title("Scatterplot with line of best fit for all cylinders", fontsize=20)
plt.show()

你可以在其自己的列中显示每个组的最佳拟合线。你可以通过在里面设置参数hue="cyl",来实现这一点。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns

# Import Data
df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")
df_select = df.loc[df.cyl.isin([4,8]), :]

# Plot
sns.set_style("white")
gridobj = sns.lmplot(x="displ", y="hwy", hue="cyl", data=df_select, 
                     height=7, aspect=1.6, robust=True, palette='tab10', 
                     scatter_kws=dict(s=60, linewidths=.7, edgecolors='black'))
 
# Decorations
# gridobj.set(xlim=(0.5, 7.5), ylim=(0, 50))
plt.title("Scatterplot with line of best fit grouped by number of cylinders", fontsize=20)
plt.show()

 

04_抖动图

通常,多个数据点具有完全相同的X和Y值。结果,多个点相互绘制并隐藏。为避免这种情况,请稍微抖动点,以便你可以直观地看到它们,这很方便使用。

import pandas as pd
import matplotlib.pyplot as plt

# Import Data
df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")
df_counts = df.groupby(['hwy', 'cty']).size().reset_index(name='counts')

# Map counts to a suitable range for size of scatter plot points
sizes = (df_counts['counts']*50).values

# Scatter plot
fig, ax = plt.subplots(figsize=(16,10), dpi= 80)    
scatter = ax.scatter(df_counts.cty, df_counts.hwy, s=sizes)
  
# Decorations
plt.title('Counts Plot - Size of circle is bigger as more points overlap', fontsize=22)
plt.show()

避免点重叠问题的另一个选择是增加点的大小,这取决于该点中有多少点。因此,点的大小越大,周围的点的集中度就越大。

 

06_边缘直方图

边缘直方图具有沿X和Y轴变量的直方图。这用于可视化X和Y之间的关系以及单独的X和Y的单变量分布。该图如果经常用于探索性数据分析(EDA)。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns

# Import Data
df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")

# Create Fig and gridspec
fig = plt.figure(figsize=(16, 10), dpi= 80)
grid = plt.GridSpec(4, 4, hspace=0.5, wspace=0.2)

# Define the axes
ax_main = fig.add_subplot(grid[:-1, :-1])
ax_right = fig.add_subplot(grid[:-1, -1], xticklabels=[], yticklabels=[])
ax_bottom = fig.add_subplot(grid[-1, 0:-1], xticklabels=[], yticklabels=[])

# Scatterplot on main ax
ax_main.scatter('displ', 'hwy', s=df.cty*4, c=df.manufacturer.astype('category').cat.codes, alpha=.9, data=df, cmap="tab10", edgecolors='gray', linewidths=.5)

# histogram on the right
ax_bottom.hist(df.displ, 40, histtype='stepfilled', orientation='vertical', color='deeppink')
ax_bottom.invert_yaxis()

# histogram in the bottom
ax_right.hist(df.hwy, 40, histtype='stepfilled', orientation='horizontal', color='deeppink')

# Decorations
ax_main.set(title='Scatterplot with Histograms displ vs hwy', xlabel='displ', ylabel='hwy')
ax_main.title.set_fontsize(20)
for item in ([ax_main.xaxis.label, ax_main.yaxis.label] + ax_main.get_xticklabels() + ax_main.get_yticklabels()):
    item.set_fontsize(14)

xlabels = ax_main.get_xticks().tolist()
ax_main.set_xticklabels(xlabels)
plt.show()

 

07_边缘箱形图

边缘箱图与边缘直方图具有相似的用途。然而,箱线图有助于精确定位X和Y的中位数,第25和第75百分位数。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns

# Import Data
df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")

# Create Fig and gridspec
fig = plt.figure(figsize=(16, 10), dpi= 80)
grid = plt.GridSpec(4, 4, hspace=0.5, wspace=0.2)

# Define the axes
ax_main = fig.add_subplot(grid[:-1, :-1])
ax_right = fig.add_subplot(grid[:-1, -1], xticklabels=[], yticklabels=[])
ax_bottom = fig.add_subplot(grid[-1, 0:-1], xticklabels=[], yticklabels=[])

# Scatterplot on main ax
ax_main.scatter('displ', 'hwy', s=df.cty*5, c=df.manufacturer.astype('category').cat.codes, alpha=.9, data=df, cmap="Set1", edgecolors='black', linewidths=.5)

# Add a graph in each part
sns.boxplot(df.hwy, ax=ax_right, orient="v")
sns.boxplot(df.displ, ax=ax_bottom, orient="h")

# Decorations ------------------
# Remove x axis name for the boxplot
ax_bottom.set(xlabel='')
ax_right.set(ylabel='')

# Main Title, Xlabel and YLabel
ax_main.set(title='Scatterplot with Histograms displ vs hwy', xlabel='displ', ylabel='hwy')

# Set font size of different components
ax_main.title.set_fontsize(20)
for item in ([ax_main.xaxis.label, ax_main.yaxis.label] + ax_main.get_xticklabels() + ax_main.get_yticklabels()):
    item.set_fontsize(14)

plt.show()

 

08_相关图

Correlogram用于直观地查看给定数据帧(或2D数组)中所有可能的数值变量对之间的相关度量。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns

# Import Dataset
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")

# Remove non-numeric columns if any
df = df.select_dtypes(include=[np.number])

# Plot
plt.figure(figsize=(12,10), dpi= 80)
sns.heatmap(df.corr(), xticklabels=df.corr().columns, yticklabels=df.corr().columns, cmap='RdYlGn', center=0, annot=True)

# Decorations
plt.title('Correlogram of mtcars', fontsize=22)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.show()

 

09_矩阵图

成对图是探索性分析中的最爱,以理解所有可能的数字变量对之间的关系。它是双变量分析的必备工具。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns

# Load Dataset
df = sns.load_dataset('iris')

# Plot
# plt.figure(figsize=(10,8), dpi= 80)
sns.pairplot(df, kind="scatter", hue="species", plot_kws=dict(s=80, edgecolor="white", linewidth=2.5))
plt.show()

 

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns

# Load Dataset
df = sns.load_dataset('iris')

# Plot
# plt.figure(figsize=(10,8), dpi= 80)
sns.pairplot(df, kind="reg", hue="species")
plt.show()

 

10_发散型条形图

如果你想根据单个指标查看项目的变化情况,并可视化此差异的顺序和数量,那么发散条是一个很好的工具。它有助于快速区分数据中组的性能,并且非常直观,并且可以立即传达这一点。



import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns
import os
import sys

# 获取当前脚本的完整路径
script_path = os.path.abspath(sys.argv[0])
# 从完整路径中获取目录
script_dir = os.path.dirname(script_path)
# 从完整路径中分离出文件名
script_name = os.path.basename(script_path)
# 使用 splitext() 函数分离文件名和扩展名
script_name_without_extension, _ = os.path.splitext(script_name)

# 创建保存图像的完整路径
save_path = os.path.join(script_dir, script_name_without_extension + ".png")


# Prepare Data
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")
x = df.loc[:, ['mpg']]
df['mpg_z'] = (x - x.mean())/x.std()
df['colors'] = ['red' if x < 0 else 'green' for x in df['mpg_z']]
df.sort_values('mpg_z', inplace=True)
df.reset_index(inplace=True)

# Draw plot
plt.figure(figsize=(14,10), dpi= 80)
plt.hlines(y=df.index, xmin=0, xmax=df.mpg_z, color=df.colors, alpha=0.4, linewidth=5)

# Decorations
plt.gca().set(ylabel='$Model$', xlabel='$Mileage$')
plt.yticks(df.index, df.cars, fontsize=12)
plt.title('Diverging Bars of Car Mileage', fontdict={'size':20})
plt.grid(linestyle='--', alpha=0.5)
plt.savefig(save_path, dpi=300)
plt.show()

 

 

11_发散型文本

分散的文本类似于发散条,如果你想以一种漂亮和可呈现的方式显示图表中每个项目的价值,它更喜欢。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns
import os
import sys

# 获取当前脚本的完整路径
script_path = os.path.abspath(sys.argv[0])
# 从完整路径中获取目录
script_dir = os.path.dirname(script_path)
# 从完整路径中分离出文件名
script_name = os.path.basename(script_path)
# 使用 splitext() 函数分离文件名和扩展名
script_name_without_extension, _ = os.path.splitext(script_name)

# 创建保存图像的完整路径
save_path = os.path.join(script_dir, script_name_without_extension + ".png")


# Prepare Data
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")
x = df.loc[:, ['mpg']]
df['mpg_z'] = (x - x.mean())/x.std()
df['colors'] = ['red' if x < 0 else 'green' for x in df['mpg_z']]
df.sort_values('mpg_z', inplace=True)
df.reset_index(inplace=True)

# Draw plot
plt.figure(figsize=(14,14), dpi= 80)
plt.hlines(y=df.index, xmin=0, xmax=df.mpg_z)
for x, y, tex in zip(df.mpg_z, df.index, df.mpg_z):
    t = plt.text(x, y, round(tex, 2), horizontalalignment='right' if x < 0 else 'left', 
                 verticalalignment='center', fontdict={'color':'red' if x < 0 else 'green', 'size':14})

# Decorations    
plt.yticks(df.index, df.cars, fontsize=12)
plt.title('Diverging Text Bars of Car Mileage', fontdict={'size':20})
plt.grid(linestyle='--', alpha=0.5)
plt.xlim(-2.5, 2.5)
plt.savefig(save_path, dpi=300)
plt.show()

 

 

12_发散型包点图

发散点图也类似于发散条。然而,与发散条相比,条的不存在减少了组之间的对比度和差异。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns
import os
import sys

# 获取当前脚本的完整路径
script_path = os.path.abspath(sys.argv[0])
# 从完整路径中获取目录
script_dir = os.path.dirname(script_path)
# 从完整路径中分离出文件名
script_name = os.path.basename(script_path)
# 使用 splitext() 函数分离文件名和扩展名
script_name_without_extension, _ = os.path.splitext(script_name)

# 创建保存图像的完整路径
save_path = os.path.join(script_dir, script_name_without_extension + ".png")


# Prepare Data
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")
x = df.loc[:, ['mpg']]
df['mpg_z'] = (x - x.mean())/x.std()
df['colors'] = ['red' if x < 0 else 'darkgreen' for x in df['mpg_z']]
df.sort_values('mpg_z', inplace=True)
df.reset_index(inplace=True)

# Draw plot
plt.figure(figsize=(14,16), dpi= 80)
plt.scatter(df.mpg_z, df.index, s=450, alpha=.6, color=df.colors)
for x, y, tex in zip(df.mpg_z, df.index, df.mpg_z):
    t = plt.text(x, y, round(tex, 1), horizontalalignment='center', 
                 verticalalignment='center', fontdict={'color':'white'})

# Decorations
# Lighten borders
plt.gca().spines["top"].set_alpha(.3)
plt.gca().spines["bottom"].set_alpha(.3)
plt.gca().spines["right"].set_alpha(.3)
plt.gca().spines["left"].set_alpha(.3)

plt.yticks(df.index, df.cars)
plt.title('Diverging Dotplot of Car Mileage', fontdict={'size':20})
plt.xlabel('$Mileage$')
plt.grid(linestyle='--', alpha=0.5)
plt.xlim(-2.5, 2.5)
plt.savefig(save_path, dpi=300)
plt.show()

 

13_带标记的发散型棒棒糖图

带标记的棒棒糖通过强调你想要引起注意的任何重要数据点并在图表中适当地给出推理,提供了一种可视化分歧的灵活方式。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns
import os
import sys

# 获取当前脚本的完整路径
script_path = os.path.abspath(sys.argv[0])
# 从完整路径中获取目录
script_dir = os.path.dirname(script_path)
# 从完整路径中分离出文件名
script_name = os.path.basename(script_path)
# 使用 splitext() 函数分离文件名和扩展名
script_name_without_extension, _ = os.path.splitext(script_name)

# 创建保存图像的完整路径
save_path = os.path.join(script_dir, script_name_without_extension + ".png")


# Prepare Data
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")
x = df.loc[:, ['mpg']]
df['mpg_z'] = (x - x.mean())/x.std()
df['colors'] = 'black'

# color fiat differently
df.loc[df.cars == 'Fiat X1-9', 'colors'] = 'darkorange'
df.sort_values('mpg_z', inplace=True)
df.reset_index(inplace=True)


# Draw plot
import matplotlib.patches as patches

plt.figure(figsize=(14,16), dpi= 80)
plt.hlines(y=df.index, xmin=0, xmax=df.mpg_z, color=df.colors, alpha=0.4, linewidth=1)
plt.scatter(df.mpg_z, df.index, color=df.colors, s=[600 if x == 'Fiat X1-9' else 300 for x in df.cars], alpha=0.6)
plt.yticks(df.index, df.cars)
plt.xticks(fontsize=12)

# Annotate
plt.annotate('Mercedes Models', xy=(0.0, 11.0), xytext=(1.0, 11), xycoords='data', 
            fontsize=15, ha='center', va='center',
            bbox=dict(boxstyle='square', fc='firebrick'),
            arrowprops=dict(arrowstyle='-[, widthB=2.0, lengthB=1.5', lw=2.0, color='steelblue'), color='white')

# Add Patches
p1 = patches.Rectangle((-2.0, -1), width=.3, height=3, alpha=.2, facecolor='red')
p2 = patches.Rectangle((1.5, 27), width=.8, height=5, alpha=.2, facecolor='green')
plt.gca().add_patch(p1)
plt.gca().add_patch(p2)

# Decorate
plt.title('Diverging Bars of Car Mileage', fontdict={'size':20})
plt.grid(linestyle='--', alpha=0.5)
plt.savefig(save_path, dpi=300)
plt.show()

 

 

14_面积图

通过对轴和线之间的区域进行着色,区域图不仅强调峰值和低谷,而且还强调高点和低点的持续时间。高点持续时间越长,线下面积越大。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns

import numpy as np
import pandas as pd
import os
import sys

# 获取当前脚本的完整路径
script_path = os.path.abspath(sys.argv[0])
# 从完整路径中获取目录
script_dir = os.path.dirname(script_path)
# 从完整路径中分离出文件名
script_name = os.path.basename(script_path)
# 使用 splitext() 函数分离文件名和扩展名
script_name_without_extension, _ = os.path.splitext(script_name)

# 创建保存图像的完整路径
save_path = os.path.join(script_dir, script_name_without_extension + ".png")


# Prepare Data
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/economics.csv", parse_dates=['date']).head(100)
x = np.arange(df.shape[0])
y_returns = (df.psavert.diff().fillna(0)/df.psavert.shift(1)).fillna(0) * 100

# Plot
plt.figure(figsize=(16,10), dpi= 80)
plt.fill_between(x[1:], y_returns[1:], 0, where=y_returns[1:] >= 0, facecolor='green', interpolate=True, alpha=0.7)
plt.fill_between(x[1:], y_returns[1:], 0, where=y_returns[1:] <= 0, facecolor='red', interpolate=True, alpha=0.7)

# Annotate
plt.annotate('Peak 1975', xy=(94.0, 21.0), xytext=(88.0, 28),
             bbox=dict(boxstyle='square', fc='firebrick'),
             arrowprops=dict(facecolor='steelblue', shrink=0.05), fontsize=15, color='white')


# Decorations
xtickvals = [str(m)[:3].upper()+"-"+str(y) for y,m in zip(df.date.dt.year, df.date.dt.month_name())]
plt.gca().set_xticks(x[::6])
plt.gca().set_xticklabels(xtickvals[::6], rotation=90, fontdict={'horizontalalignment': 'center', 'verticalalignment': 'center_baseline'})
plt.ylim(-35,35)
plt.xlim(1,100)
plt.title("Month Economics Return %", fontsize=22)
plt.ylabel('Monthly returns %')
plt.grid(alpha=0.5)
plt.savefig(save_path, dpi=300)
plt.show()

 

 

15_有序条形图

有序条形图有效地传达了项目的排名顺序。但是,在图表上方添加度量标准的值,用户可以从图表本身获取精确信息。



import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns
import os
import sys

# 获取当前脚本的完整路径
script_path = os.path.abspath(sys.argv[0])
# 从完整路径中获取目录
script_dir = os.path.dirname(script_path)
# 从完整路径中分离出文件名
script_name = os.path.basename(script_path)
# 使用 splitext() 函数分离文件名和扩展名
script_name_without_extension, _ = os.path.splitext(script_name)

# 创建保存图像的完整路径
save_path = os.path.join(script_dir, script_name_without_extension + ".png")


# Prepare Data
df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
df = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.mean())
df.sort_values('cty', inplace=True)
df.reset_index(inplace=True)

# Draw plot
import matplotlib.patches as patches

fig, ax = plt.subplots(figsize=(16,10), facecolor='white', dpi= 80)
ax.vlines(x=df.index, ymin=0, ymax=df.cty, color='firebrick', alpha=0.7, linewidth=20)

# Annotate Text
for i, cty in enumerate(df.cty):
    ax.text(i, cty+0.5, round(cty, 1), horizontalalignment='center')


# Title, Label, Ticks and Ylim
ax.set_title('Bar Chart for Highway Mileage', fontdict={'size':22})
ax.set(ylabel='Miles Per Gallon', ylim=(0, 30))
plt.xticks(df.index, df.manufacturer.str.upper(), rotation=60, horizontalalignment='right', fontsize=12)

# Add patches to color the X axis labels
p1 = patches.Rectangle((.57, -0.005), width=.33, height=.13, alpha=.1, facecolor='green', transform=fig.transFigure)
p2 = patches.Rectangle((.124, -0.005), width=.446, height=.13, alpha=.1, facecolor='red', transform=fig.transFigure)
fig.add_artist(p1)
fig.add_artist(p2)
plt.savefig(save_path, dpi=300)
plt.show()

 

 

16_棒棒糖图

棒棒糖图表以一种视觉上令人愉悦的方式提供与有序条形图类似的目的。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns
import os
import sys

# 获取当前脚本的完整路径
script_path = os.path.abspath(sys.argv[0])
# 从完整路径中获取目录
script_dir = os.path.dirname(script_path)
# 从完整路径中分离出文件名
script_name = os.path.basename(script_path)
# 使用 splitext() 函数分离文件名和扩展名
script_name_without_extension, _ = os.path.splitext(script_name)

# 创建保存图像的完整路径
save_path = os.path.join(script_dir, script_name_without_extension + ".png")


# Prepare Data
df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
df = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.mean())
df.sort_values('cty', inplace=True)
df.reset_index(inplace=True)

# Draw plot
fig, ax = plt.subplots(figsize=(16,10), dpi= 80)
ax.vlines(x=df.index, ymin=0, ymax=df.cty, color='firebrick', alpha=0.7, linewidth=2)
ax.scatter(x=df.index, y=df.cty, s=75, color='firebrick', alpha=0.7)

# Title, Label, Ticks and Ylim
ax.set_title('Lollipop Chart for Highway Mileage', fontdict={'size':22})
ax.set_ylabel('Miles Per Gallon')
ax.set_xticks(df.index)
ax.set_xticklabels(df.manufacturer.str.upper(), rotation=60, fontdict={'horizontalalignment': 'right', 'size':12})
ax.set_ylim(0, 30)

# Annotate
for row in df.itertuples():
    ax.text(row.Index, row.cty+.5, s=round(row.cty, 2), horizontalalignment= 'center', verticalalignment='bottom', fontsize=14)
plt.savefig(save_path, dpi=300)
plt.show()

 

 

17_包点图

点图表传达了项目的排名顺序。由于它沿水平轴对齐,因此你可以更容易地看到点彼此之间的距离。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns
import os
import sys

# 获取当前脚本的完整路径
script_path = os.path.abspath(sys.argv[0])
# 从完整路径中获取目录
script_dir = os.path.dirname(script_path)
# 从完整路径中分离出文件名
script_name = os.path.basename(script_path)
# 使用 splitext() 函数分离文件名和扩展名
script_name_without_extension, _ = os.path.splitext(script_name)

# 创建保存图像的完整路径
save_path = os.path.join(script_dir, script_name_without_extension + ".png")


# Prepare Data
df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
df = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.mean())
df.sort_values('cty', inplace=True)
df.reset_index(inplace=True)

# Draw plot
fig, ax = plt.subplots(figsize=(16,10), dpi= 80)
ax.hlines(y=df.index, xmin=11, xmax=26, color='gray', alpha=0.7, linewidth=1, linestyles='dashdot')
ax.scatter(y=df.index, x=df.cty, s=75, color='firebrick', alpha=0.7)

# Title, Label, Ticks and Ylim
ax.set_title('Dot Plot for Highway Mileage', fontdict={'size':22})
ax.set_xlabel('Miles Per Gallon')
ax.set_yticks(df.index)
ax.set_yticklabels(df.manufacturer.str.title(), fontdict={'horizontalalignment': 'right'})
ax.set_xlim(10, 27)
plt.savefig(save_path, dpi=300)
plt.show()

 

 

18_坡度图

斜率图最适合比较给定人/项目的“之前”和“之后”位置。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns

import matplotlib.lines as mlines
import os
import sys

# 获取当前脚本的完整路径
script_path = os.path.abspath(sys.argv[0])
# 从完整路径中获取目录
script_dir = os.path.dirname(script_path)
# 从完整路径中分离出文件名
script_name = os.path.basename(script_path)
# 使用 splitext() 函数分离文件名和扩展名
script_name_without_extension, _ = os.path.splitext(script_name)

# 创建保存图像的完整路径
save_path = os.path.join(script_dir, script_name_without_extension + ".png")


# Import Data
df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/gdppercap.csv")

left_label = [str(c) + ', '+ str(round(y)) for c, y in zip(df.continent, df['1952'])]
right_label = [str(c) + ', '+ str(round(y)) for c, y in zip(df.continent, df['1957'])]
klass = ['red' if (y1-y2) < 0 else 'green' for y1, y2 in zip(df['1952'], df['1957'])]

# draw line
# https://stackoverflow.com/questions/36470343/how-to-draw-a-line-with-matplotlib/36479941
def newline(p1, p2, color='black'):
    ax = plt.gca()
    l = mlines.Line2D([p1[0],p2[0]], [p1[1],p2[1]], color='red' if p1[1]-p2[1] > 0 else 'green', marker='o', markersize=6)
    ax.add_line(l)
    return l

fig, ax = plt.subplots(1,1,figsize=(14,14), dpi= 80)

# Vertical Lines
ax.vlines(x=1, ymin=500, ymax=13000, color='black', alpha=0.7, linewidth=1, linestyles='dotted')
ax.vlines(x=3, ymin=500, ymax=13000, color='black', alpha=0.7, linewidth=1, linestyles='dotted')

# Points
ax.scatter(y=df['1952'], x=np.repeat(1, df.shape[0]), s=10, color='black', alpha=0.7)
ax.scatter(y=df['1957'], x=np.repeat(3, df.shape[0]), s=10, color='black', alpha=0.7)

# Line Segmentsand Annotation
for p1, p2, c in zip(df['1952'], df['1957'], df['continent']):
    newline([1,p1], [3,p2])
    ax.text(1-0.05, p1, c + ', ' + str(round(p1)), horizontalalignment='right', verticalalignment='center', fontdict={'size':14})
    ax.text(3+0.05, p2, c + ', ' + str(round(p2)), horizontalalignment='left', verticalalignment='center', fontdict={'size':14})

# 'Before' and 'After' Annotations
ax.text(1-0.05, 13000, 'BEFORE', horizontalalignment='right', verticalalignment='center', fontdict={'size':18, 'weight':700})
ax.text(3+0.05, 13000, 'AFTER', horizontalalignment='left', verticalalignment='center', fontdict={'size':18, 'weight':700})

# Decoration
ax.set_title("Slopechart: Comparing GDP Per Capita between 1952 vs 1957", fontdict={'size':22})
ax.set(xlim=(0,4), ylim=(0,14000), ylabel='Mean GDP Per Capita')
ax.set_xticks([1,3])
ax.set_xticklabels(["1952", "1957"])
plt.yticks(np.arange(500, 13000, 2000), fontsize=12)

# Lighten borders
plt.gca().spines["top"].set_alpha(.0)
plt.gca().spines["bottom"].set_alpha(.0)
plt.gca().spines["right"].set_alpha(.0)
plt.gca().spines["left"].set_alpha(.0)
plt.savefig(save_path, dpi=300)
plt.show()

 

 

19_哑铃图

哑铃图传达各种项目的“前”和“后”位置以及项目的排序。如果你想要将特定项目/计划对不同对象的影响可视化,那么它非常有用。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns

import matplotlib.lines as mlines
import os
import sys

# 获取当前脚本的完整路径
script_path = os.path.abspath(sys.argv[0])
# 从完整路径中获取目录
script_dir = os.path.dirname(script_path)
# 从完整路径中分离出文件名
script_name = os.path.basename(script_path)
# 使用 splitext() 函数分离文件名和扩展名
script_name_without_extension, _ = os.path.splitext(script_name)

# 创建保存图像的完整路径
save_path = os.path.join(script_dir, script_name_without_extension + ".png")


# Import Data
df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/health.csv")
df.sort_values('pct_2014', inplace=True)
df.reset_index(inplace=True)

# Func to draw line segment
def newline(p1, p2, color='black'):
    ax = plt.gca()
    l = mlines.Line2D([p1[0],p2[0]], [p1[1],p2[1]], color='skyblue')
    ax.add_line(l)
    return l

# Figure and Axes
fig, ax = plt.subplots(1,1,figsize=(14,14), facecolor='#f7f7f7', dpi= 80)

# Vertical Lines
ax.vlines(x=.05, ymin=0, ymax=26, color='black', alpha=1, linewidth=1, linestyles='dotted')
ax.vlines(x=.10, ymin=0, ymax=26, color='black', alpha=1, linewidth=1, linestyles='dotted')
ax.vlines(x=.15, ymin=0, ymax=26, color='black', alpha=1, linewidth=1, linestyles='dotted')
ax.vlines(x=.20, ymin=0, ymax=26, color='black', alpha=1, linewidth=1, linestyles='dotted')

# Points
ax.scatter(y=df['index'], x=df['pct_2013'], s=50, color='#0e668b', alpha=0.7)
ax.scatter(y=df['index'], x=df['pct_2014'], s=50, color='#a3c4dc', alpha=0.7)

# Line Segments
for i, p1, p2 in zip(df['index'], df['pct_2013'], df['pct_2014']):
    newline([p1, i], [p2, i])

# Decoration
ax.set_facecolor('#f7f7f7')
ax.set_title("Dumbell Chart: Pct Change - 2013 vs 2014", fontdict={'size':22})
ax.set(xlim=(0,.25), ylim=(-1, 27), ylabel='Mean GDP Per Capita')
ax.set_xticks([.05, .1, .15, .20])
ax.set_xticklabels(['5%', '15%', '20%', '25%'])
ax.set_xticklabels(['5%', '15%', '20%', '25%'])    
plt.savefig(save_path, dpi=300)
plt.show()

 

 

20_连续变量的直方图

直方图显示给定变量的频率分布。下面的表示基于分类变量对频率条进行分组,从而更好地了解连续变量和串联变量。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns
import os
import sys

# 获取当前脚本的完整路径
script_path = os.path.abspath(sys.argv[0])
# 从完整路径中获取目录
script_dir = os.path.dirname(script_path)
# 从完整路径中分离出文件名
script_name = os.path.basename(script_path)
# 使用 splitext() 函数分离文件名和扩展名
script_name_without_extension, _ = os.path.splitext(script_name)

# 创建保存图像的完整路径
save_path = os.path.join(script_dir, script_name_without_extension + ".png")


# Import Data
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")

# Prepare data
x_var = 'displ'
groupby_var = 'class'
df_agg = df.loc[:, [x_var, groupby_var]].groupby(groupby_var)
vals = [df[x_var].values.tolist() for i, df in df_agg]

# Draw
plt.figure(figsize=(16,9), dpi= 80)
colors = [plt.cm.Spectral(i/float(len(vals)-1)) for i in range(len(vals))]
n, bins, patches = plt.hist(vals, 30, stacked=True, density=False, color=colors[:len(vals)])

# Decoration
plt.legend({group:col for group, col in zip(np.unique(df[groupby_var]).tolist(), colors[:len(vals)])})
plt.title(f"Stacked Histogram of ${x_var}$ colored by ${groupby_var}$", fontsize=22)
plt.xlabel(x_var)
plt.ylabel("Frequency")
plt.ylim(0, 25)
plt.xticks(ticks=bins[::3], labels=[round(b,1) for b in bins[::3]])
plt.savefig(save_path, dpi=300)
plt.show()

 

 

21_类型变量的直方图

分类变量的直方图显示该变量的频率分布。通过对条形图进行着色,您可以将分布与表示颜色的另一个分类变量相关联。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns
import os
import sys

# 获取当前脚本的完整路径
script_path = os.path.abspath(sys.argv[0])
# 从完整路径中获取目录
script_dir = os.path.dirname(script_path)
# 从完整路径中分离出文件名
script_name = os.path.basename(script_path)
# 使用 splitext() 函数分离文件名和扩展名
script_name_without_extension, _ = os.path.splitext(script_name)

# 创建保存图像的完整路径
save_path = os.path.join(script_dir, script_name_without_extension + ".png")


# Import Data
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")

# Prepare data
x_var = 'manufacturer'
groupby_var = 'class'
df_agg = df.loc[:, [x_var, groupby_var]].groupby(groupby_var)
vals = [df[x_var].values.tolist() for i, df in df_agg]

# Draw
plt.figure(figsize=(16,9), dpi= 80)
colors = [plt.cm.Spectral(i/float(len(vals)-1)) for i in range(len(vals))]
n, bins, patches = plt.hist(vals, df[x_var].unique().__len__(), stacked=True, density=False, color=colors[:len(vals)])

# Decoration
plt.legend({group:col for group, col in zip(np.unique(df[groupby_var]).tolist(), colors[:len(vals)])})
plt.title(f"Stacked Histogram of ${x_var}$ colored by ${groupby_var}$", fontsize=22)
plt.xlabel(x_var)
plt.ylabel("Frequency")
plt.ylim(0, 40)

# Calculate bin centers
bin_centers = 0.5 * (bins[:-1] + bins[1:])

# Set the ticks to be at the bin centers
plt.xticks(ticks=bin_centers, labels=np.unique(df[x_var]).tolist(), rotation=90, horizontalalignment='left')
plt.savefig(save_path, dpi=300)
plt.show()

 

22_密度图

密度图是一种常用工具,可视化连续变量的分布。通过“响应”变量对它们进行分组,您可以检查X和Y之间的关系。以下情况,如果出于代表性目的来描述城市里程的分布如何随着汽缸数的变化而变化。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns
import os
import sys

# 获取当前脚本的完整路径
script_path = os.path.abspath(sys.argv[0])
# 从完整路径中获取目录
script_dir = os.path.dirname(script_path)
# 从完整路径中分离出文件名
script_name = os.path.basename(script_path)
# 使用 splitext() 函数分离文件名和扩展名
script_name_without_extension, _ = os.path.splitext(script_name)

# 创建保存图像的完整路径
save_path = os.path.join(script_dir, script_name_without_extension + ".png")


# Import Data
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")

# Draw Plot
plt.figure(figsize=(16,10), dpi= 80)
sns.kdeplot(df.loc[df['cyl'] == 4, "cty"], shade=True, color="g", label="Cyl=4", alpha=.7)
sns.kdeplot(df.loc[df['cyl'] == 5, "cty"], shade=True, color="deeppink", label="Cyl=5", alpha=.7)
sns.kdeplot(df.loc[df['cyl'] == 6, "cty"], shade=True, color="dodgerblue", label="Cyl=6", alpha=.7)
sns.kdeplot(df.loc[df['cyl'] == 8, "cty"], shade=True, color="orange", label="Cyl=8", alpha=.7)

# Decoration
plt.title('Density Plot of City Mileage by n_Cylinders', fontsize=22)
plt.legend()
plt.savefig(save_path, dpi=300)
plt.show()

  

23_直方密度线图

带有直方图的密度曲线将两个图表传达的集体信息汇集在一起,这样您就可以将它们放在一个图形而不是两个图形中。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns
import os
import sys

# 获取当前脚本的完整路径
script_path = os.path.abspath(sys.argv[0])
# 从完整路径中获取目录
script_dir = os.path.dirname(script_path)
# 从完整路径中分离出文件名
script_name = os.path.basename(script_path)
# 使用 splitext() 函数分离文件名和扩展名
script_name_without_extension, _ = os.path.splitext(script_name)

# 创建保存图像的完整路径
save_path = os.path.join(script_dir, script_name_without_extension + ".png")


# Import Data
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")

# Draw Plot
plt.figure(figsize=(13,10), dpi= 80)
sns.distplot(df.loc[df['class'] == 'compact', "cty"], color="dodgerblue", label="Compact", hist_kws={'alpha':.7}, kde_kws={'linewidth':3})
sns.distplot(df.loc[df['class'] == 'suv', "cty"], color="orange", label="SUV", hist_kws={'alpha':.7}, kde_kws={'linewidth':3})
sns.distplot(df.loc[df['class'] == 'minivan', "cty"], color="g", label="minivan", hist_kws={'alpha':.7}, kde_kws={'linewidth':3})
plt.ylim(0, 0.35)

# Decoration
plt.title('Density Plot of City Mileage by Vehicle Type', fontsize=22)
plt.legend()
plt.savefig(save_path, dpi=300)
plt.show()

 

 

24_Joy Plot

Joy Plot允许不同组的密度曲线重叠,这是一种可视化相对于彼此的大量组的分布的好方法。它看起来很悦目,并清楚地传达了正确的信息。它可以使用joypy基于的包来轻松构建matplotlib。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns
import joypy
import os
import sys

# 获取当前脚本的完整路径
script_path = os.path.abspath(sys.argv[0])
# 从完整路径中获取目录
script_dir = os.path.dirname(script_path)
# 从完整路径中分离出文件名
script_name = os.path.basename(script_path)
# 使用 splitext() 函数分离文件名和扩展名
script_name_without_extension, _ = os.path.splitext(script_name)

# 创建保存图像的完整路径
save_path = os.path.join(script_dir, script_name_without_extension + ".png")


# !pip install joypy
# Import Data
mpg = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")

# Draw Plot
plt.figure(figsize=(16,10), dpi= 80)
fig, axes = joypy.joyplot(mpg, column=['hwy', 'cty'], by="class", ylim='own', figsize=(14,10))

# Decoration
plt.title('Joy Plot of City and Highway Mileage by Class', fontsize=22)
plt.savefig(save_path, dpi=300)
plt.show()


25_分布式点图

 

分布点图显示按组分割的点的单变量分布。点数越暗,该区域的数据点集中度越高。通过对中位数进行不同着色,组的真实定位立即变得明显。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns

import matplotlib.patches as mpatches
import os
import sys

# 获取当前脚本的完整路径
script_path = os.path.abspath(sys.argv[0])
# 从完整路径中获取目录
script_dir = os.path.dirname(script_path)
# 从完整路径中分离出文件名
script_name = os.path.basename(script_path)
# 使用 splitext() 函数分离文件名和扩展名
script_name_without_extension, _ = os.path.splitext(script_name)

# 创建保存图像的完整路径
save_path = os.path.join(script_dir, script_name_without_extension + ".png")


# Prepare Data
df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
cyl_colors = {4:'tab:red', 5:'tab:green', 6:'tab:blue', 8:'tab:orange'}
df_raw['cyl_color'] = df_raw.cyl.map(cyl_colors)

# Mean and Median city mileage by make
df = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.mean())
df.sort_values('cty', ascending=False, inplace=True)
df.reset_index(inplace=True)
df_median = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.median())

# Draw horizontal lines
fig, ax = plt.subplots(figsize=(16,10), dpi= 80)
ax.hlines(y=df.index, xmin=0, xmax=40, color='gray', alpha=0.5, linewidth=.5, linestyles='dashdot')

# Draw the Dots
for i, make in enumerate(df.manufacturer):
    df_make = df_raw.loc[df_raw.manufacturer==make, :]
    ax.scatter(x=df_make['cty'], y=np.repeat(i, df_make.shape[0]), s=75, edgecolors='gray', c='w', alpha=0.5)
    ax.scatter(x=df_median.loc[df_median.index==make, 'cty'], y=i, s=75, c='firebrick')

# Annotate    
ax.text(33, 13, "$red ; dots ; are ; the : median$", fontdict={'size':12}, color='firebrick')

# Decorations
red_patch = plt.plot([],[], marker="o", ms=10, ls="", mec=None, color='firebrick', label="Median")
plt.legend(handles=red_patch)
ax.set_title('Distribution of City Mileage by Make', fontdict={'size':22})
ax.set_xlabel('Miles Per Gallon (City)', alpha=0.7)
ax.set_yticks(df.index)
ax.set_yticklabels(df.manufacturer.str.title(), fontdict={'horizontalalignment': 'right'}, alpha=0.7)
ax.set_xlim(1, 40)
plt.xticks(alpha=0.7)
plt.gca().spines["top"].set_visible(False)    
plt.gca().spines["bottom"].set_visible(False)    
plt.gca().spines["right"].set_visible(False)    
plt.gca().spines["left"].set_visible(False)   
plt.grid(axis='both', alpha=.4, linewidth=.1)
plt.savefig(save_path, dpi=300)
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/865257.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【技巧】如何设置Word文档部分内容“限制编辑”?

我们知道&#xff0c;Word文档可以设置“限制编辑”&#xff0c;也就是保护文档不被随意更改。 那如果只想保护文档中的部分内容&#xff0c;其他内容还是随意编辑更改&#xff0c;是否可以设置部分内容“限制编辑”&#xff1f;答案是可以的&#xff0c;下面小编来举例说明一…

【Tomcat】Tomcat部署及优化

Tomcat 它是一个免费、开源的web应用服务器&#xff1b;基于java代码开发的软件&#xff1b;处理动态请求和基于Java代码的页面开发&#xff1b; 可以在html当中写入Java代码&#xff0c;Tomcat可以解析html页面当中的Java代码&#xff0c;执行动态请求以及动态页面 缺点&#…

静态时序分析与时序约束

一、时序分析的基本概念 1. 时钟 理性的时钟模型是一个占空比为50%且周期固定的方波&#xff1a; 实际电路中输入给FPGA的晶振时钟信号是正弦波&#xff1a; 2. 时钟抖动 Clock Jitter&#xff0c;时钟抖动&#xff0c;相对于理想时钟沿&#xff0c;实际时钟存在不随时钟存在…

生信豆芽菜-火山图绘制使用说明

网站&#xff1a;http://www.sxdyc.com/visualsVolcano 一、火山图简介 火山图是散点图的一种&#xff0c;它将统计测试中的统计显著性量度&#xff08;如p value&#xff09;和变化幅度&#xff08;logFC&#xff09;相结合&#xff0c;能够快速直观地识别那些变化幅度较大且具…

记一次前端直接上传图片到oss报错

前端直接上传图片到阿里云oss,相关过程官网和网上资料已经很详细&#xff0c;不做赘述。 但这个过程比较复杂&#xff0c;前后端对接过程中很容易出现报错&#xff0c;这里遇到了以下报错&#xff0c;不容易排查。 请求显示net::ERR_NAME_NOT_RESOLVED错误&#xff0c;catch输…

『Samba』在Linux中实现高效管理共享文件夹的基本操作与实践

&#x1f4e3;读完这篇文章里你能收获到 Samba 的安装和配置&#xff1a;详细介绍了如何在 Linux 操作系统上安装和配置 Samba 服务器共享文件夹的设置&#xff1a;指导如何选择要共享的文件夹&#xff0c;并为其设置共享名称、路径以及访问权限Samba 用户的创建&#xff1a;提…

一行JS代码导出ant-design中复杂table表格的Excel

使用方式 1、安装依赖 npm install xlsx-js-style2、复制代码文件exportExcel.js至工程 https://github.com/EnthuDai/export-excel-in-one-line 3、在引入excel.js后调用 Excel.export(columns, dataSource, 导出文件名)4、代码demo 5、效果 页面excel 适用范围 对于使…

嵌入式面试笔试刷题(day7)

文章目录 前言一、switch能不能用浮点数二、指针函数和函数指针三、如何防止重复引用头文件四、如何写一个函数可以在main之前执行五、栈和队列区别及应用场景六、linux上查看磁盘内存占用率的命令七、什么是磁盘碎片八、内存泄露是怎么产生的九、发生了coredump怎么解决总结 前…

Nginx复现

docker复现Nginx配置漏洞 2.1CRLF(carriage return/line feed)注入漏洞 这个漏洞产生的原因是请求重定向的错误配置&#xff0c;导致在url中输入回车换行符可以控制http响应头部 比如&#xff1a;location / { return 302 https://$host$uri; } 原本的目的是为了让http的…

【MFC】10.MFC六大机制:RTTI(运行时类型识别),动态创建机制,窗口切分,子类化-笔记

运行时类信息&#xff08;RTTI&#xff09; C: ##是拼接 #是替换成字符串 // RTTI.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。 // #include <iostream> #include <afxwin.h>#ifdef _DEBUG #define new DEBUG_NEW #endifCWinApp th…

MySQL8的下载与安装-MySQL8知识详解

本文的内容是mysql8的下载与安装。主要讲的是两点&#xff1a;从官方网站下载MySQL8安装和从集成环境安装MySQL8。 一、从官方网站下载MySQL8.0安装 MySQL8.0官方下载地址是&#xff1a;&#xff08;见图&#xff09; 官方正式版的最新版本是8.0.34&#xff0c;也推出了创新版…

极致鸿蒙2.0——华为MatePad系列安装AidLux,一个自带vscode的Python编译环境

看着刚刚人入手的华为鸿蒙系统MatePad11平板&#xff0c;是如此的美轮美奂&#xff0c;但是总感觉少了点什么&#xff0c;少了点什么呢&#xff1f;是编程环境&#xff0c;我爱MatePad&#xff0c;也爱编程&#xff0c;那如果可以在MatePad上编程&#xff0c;会发生什么&#x…

链表有无环以及确定入环口详解

142.环形链表 II 给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返回 null。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测…

win10强制卸载奇安信天擎

1、win r 打开运行 2、输入msconfig进入系统配置面板 3、点击引导&#xff0c;修改安全引导配置项 4、重启系统&#xff08;桌面会变成纯黑背景&#xff0c;符合预期&#xff0c;莫紧张&#xff09; 5、删除安装的文件夹 若是安装天擎时选择的自定义安装&#xff0c;则配置…

【java】mybatis-plus代码生成

正常的代码生成这里就不介绍了。旨在记录实现如下功能&#xff1a; 分布式微服务环境下&#xff0c;生成的entity、dto、vo、feignClient等等api模块&#xff0c;需要和mapper、service、controller等等分在不同的目录生成。 为什么会出现这个需求&#xff1f; mybatis-plus&am…

一文带你彻底了解java 网络编程的基本概念

一文带你彻底了解java 网络编程的基本概念 主题&#xff1a;探索Java网络编程&#xff1a;构建连接世界的桥梁 作者&#xff1a;Stevedash 发布日期&#xff1a;2023年8月11日 15点18分 &#xff08;PS&#xff1a;这一篇文章作为总章&#xff0c;今天着重讲“Socket套接字编…

小程序如何设置电子票

电子票是一种方便快捷的票务管理方式&#xff0c;可以帮助商家实现电子化的票务管理&#xff0c;提升用户体验。下面介绍&#xff1a;如何在小程序内&#xff0c;设置电子票以及用电子票购买商品。 1. 设置电子票套餐。可以新建一个商品&#xff0c;商品标题写&#xff1a;XX电…

玩赚音视频开发高阶技术——FFmpeg

随着移动互联网的普及&#xff0c;人们对音视频内容的需求也不断增加。无论是社交媒体平台、电商平台还是在线教育&#xff0c;都离不开音视频的应用。这就为音视频开发人员提供了广阔的就业机会。根据这些年来网站上的音视频开发招聘需求来看&#xff0c;音视频开发人员的需求…

Linux——基础IO(1)

目录 0. 文件先前理解 1. C文件接口 1.1 写文件 1.2 读文件 1.3 输出信息到显示器 1.4 总结 and stdin & stdout & stderr 2. 系统调用文件I/O 2.1 系统接口使用示例 2.2 接口介绍 2.3 open函数返回值 3. 文件描述符fd及重定向 3.1 0 & 1 & 2 3.2…