Linux6.37 Kubernetes 集群调度

news2024/11/24 14:55:05

文章目录

  • 计算机系统
    • 5G云计算
      • 第三章 LINUX Kubernetes 集群调度
        • 一、调度约束
          • 1.调度过程
          • 2.指定调度节点
          • 3.亲和性
            • 1)节点亲和性
            • 2)Pod 亲和性
            • 3)键值运算关系
          • 4.污点(Taint) 和 容忍(Tolerations)
            • 1)污点(Taint)
            • 2)容忍(Tolerations)
            • 3)Pod启动阶段(相位 phase)

计算机系统

5G云计算

第三章 LINUX Kubernetes 集群调度

一、调度约束

当定义 Pod 时可以选择性地为每个容器设定所需要的资源数量。 最常见的可设定资源是 Kubernetes 是通过 List-Watch 的机制进行每个组件的协作,保持数据同步的,每个组件之间的设计实现了解耦。

用户是通过 kubectl 根据配置文件,向 APIServer 发送命令,在 Node 节点上面建立 Pod 和 Container。
APIServer 经过 API 调用,权限控制,调用资源和存储资源的过程,实际上还没有真正开始部署应用。这里 需要 Controller Manager、Scheduler 和 kubelet 的协助才能完成整个部署过程。

在 Kubernetes 中,所有部署的信息都会写到 etcd 中保存。实际上 etcd 在存储部署信息的时候,会发送 Create 事件给 APIServer,而 APIServer 会通过监听(Watch)etcd 发过来的事件。其他组件也会监听(Watch)APIServer 发出来的事件

Pod 是 Kubernetes 的基础单元,Pod 启动典型创建过程如下

(1)这里有三个 List-Watch,分别是 Controller Manager(运行在 Master),Scheduler(运行在 Master),kubelet(运行在 Node)。 他们在进程已启动就会监听(Watch)APIServer 发出来的事件

(2)用户通过 kubectl 或其他 API 客户端提交请求给 APIServer 来建立一个 Pod 对象副本

(3)APIServer 尝试着将 Pod 对象的相关元信息存入 etcd 中,待写入操作执行完成,APIServer 即会返回确认信息至客户端

(4)当 etcd 接受创建 Pod 信息以后,会发送一个 Create 事件给 APIServer

(5)由于 Controller Manager 一直在监听(Watch,通过https的6443端口)APIServer 中的事件。此时 APIServer 接受到了 Create 事件,又会发送给 Controller Manager

(6)Controller Manager 在接到 Create 事件以后,调用其中的 Replication Controller 来保证 Node 上面需要创建的副本数量。一旦副本数量少于 RC 中定义的数量,RC 会自动创建副本。总之它是保证副本数量的 Controller(PS:扩容缩容的担当)

(7)在 Controller Manager 创建 Pod 副本以后,APIServer 会在 etcd 中记录这个 Pod 的详细信息。例如 Pod 的副本数,Container 的内容是什么

(8)同样的 etcd 会将创建 Pod 的信息通过事件发送给 APIServer

(9)由于 Scheduler 在监听(Watch)APIServer,并且它在系统中起到了“承上启下”的作用,“承上”是指它负责接收创建的 Pod 事件,为其安排 Node;“启下”是指安置工作完成后,Node 上的 kubelet 进程会接管后继工作,负责 Pod 生命周期中的“下半生”。 换句话说,Scheduler 的作用是将待调度的 Pod 按照调度算法和策略绑定到集群中 Node 上

(10)Scheduler 调度完毕以后会更新 Pod 的信息,此时的信息更加丰富了。除了知道 Pod 的副本数量,副本内容。还知道部署到哪个 Node 上面了。并将上面的 Pod 信息更新至 API Server,由 APIServer 更新至 etcd 中,保存起来

(11)etcd 将更新成功的事件发送给 APIServer,APIServer 也开始反映此 Pod 对象的调度结果

(12)kubelet 是在 Node 上面运行的进程,它也通过 List-Watch 的方式监听(Watch,通过https的6443端口)APIServer 发送的 Pod 更新的事件。kubelet 会尝试在当前节点上调用 Docker 启动容器,并将 Pod 以及容器的结果状态回送至 APIServer

(13)APIServer 将 Pod 状态信息存入 etcd 中。在 etcd 确认写入操作成功完成后,APIServer将确认信息发送至相关的 kubelet,事件将通过它被接受

注意:在创建 Pod 的工作就已经完成了后,为什么 kubelet 还要一直监听呢?原因很简单,假设这个时候 kubectl 发命令,要扩充 Pod 副本数量,那么上面的流程又会触发一遍,kubelet 会根据最新的 Pod 的部署情况调整 Node 的资源。又或者 Pod 副本数量没有发生变化,但是其中的镜像文件升级了,kubelet 也会自动获取最新的镜像文件并且加载

1.调度过程

Scheduler 是 kubernetes 的调度器,主要的任务是把定义的 pod 分配到集群的节点上。其主要考虑的问题如下:

主要考虑的问题说明
公平如何保证每个节点都能被分配资源
资源高效利用集群所有资源最大化被使用
效率调度的性能要好,能够尽快地对大批量的 pod 完成调度工作
灵活允许用户根据自己的需求控制调度的逻辑

Sheduler 是作为单独的程序运行的,启动之后会一直监听 APIServer,获取 spec.nodeName 为空的 pod,对每个 pod 都会创建一个 binding,表明该 pod 应该放到哪个节点上

调度分为几个部分:首先是过滤掉不满足条件的节点,这个过程称为预算策略(predicate);然后对通过的节点按照优先级排序,这个是优选策略(priorities);最后从中选择优先级最高的节点。如果中间任何一步骤有错误,就直接返回错误

Predicate常见的算法说明
PodFitsResources节点上剩余的资源是否大于 pod 请求的资源
PodFitsHost如果 pod 指定了 NodeName,检查节点名称是否和 NodeName 匹配
PodFitsHostPorts节点上已经使用的 port 是否和 pod 申请的 port 冲突
PodSelectorMatches过滤掉和 pod 指定的 label 不匹配的节点
NoDiskConflict已经 mount 的 volume 和 pod 指定的 volume 不冲突,除非它们都是只读

如果在 predicate 过程中没有合适的节点,pod 会一直在 pending 状态,不断重试调度,直到有节点满足条件。 经过这个步骤,如果有多个节点满足条件,就继续 priorities 过程:按照优先级大小对节点排序。

优先级由一系列键值对组成,键是该优先级项的名称,值是它的权重(该项的重要性)。有一系列的常见的优先级选项包括

常见的优先级选项说明
LeastRequestedPriority通过计算CPU和Memory的使用率来决定权重,使用率越低权重越高。也就是说,这个优先级指标倾向于资源使用比例更低的节点
BalancedResourceAllocation节点上 CPU 和 Memory 使用率越接近,权重越高。这个一般和上面的一起使用,不单独使用。比如 node01 的 CPU 和 Memory 使用率 20:60,node02 的 CPU 和 Memory 使用率 50:50,虽然 node01 的总使用率比 node02 低,但 node02 的 CPU 和 Memory 使用率更接近,从而调度时会优选 node02
ImageLocalityPriority倾向于已经有要使用镜像的节点,镜像总大小值越大,权重越高
2.指定调度节点

pod.spec.nodeName 将 Pod 直接调度到指定的 Node 节点上,会跳过 Scheduler 的调度策略,该匹配规则是强制匹配

vim myapp.yaml
apiVersion: apps/v1  
kind: Deployment  
metadata:
  labels:
    app: myapp
  name: myapp
spec:
  replicas: 3
  selector:
    matchLabels:
      app: myapp
  template:
    metadata:
      labels:
        app: myapp
    spec:
      nodeName: node01
      containers:
      - name: myapp
        image: soscscs/myapp:v1
        ports:
        - containerPort: 80
		
kubectl apply -f myapp.yaml

kubectl get pods -o wide
NAME                     READY   STATUS    RESTARTS   AGE   IP           NODE     NOMINATED NODE   READINESS GATES
myapp-699655c7fd-blx8b   1/1     Running   0          81s   10.244.0.3   node01   <none>           <none>
myapp-699655c7fd-cztzv   1/1     Running   0          81s   10.244.0.4   node01   <none>           <none>
myapp-699655c7fd-l2pz9   1/1     Running   0          81s   10.244.0.5   node01   <none>           <none>

//查看详细事件(发现未经过 scheduler 调度分配)
kubectl describe pod myapp-699655c7fd-blx8b
......
  Type    Reason   Age   From     Message
  ----    ------   ----  ----     -------
  Normal  Pulling  2m6s  kubelet  Pulling image "soscscs/myapp:v1"
  Normal  Pulled   109s  kubelet  Successfully pulled image "soscscs/myapp:v1" in 17.32113529s
  Normal  Created  108s  kubelet  Created container myapp
  Normal  Started  108s  kubelet  Started container myapp

在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

pod.spec.nodeSelector:通过 kubernetes 的 label-selector 机制选择节点,由调度器调度策略匹配 label,然后调度 Pod 到目标节点,该匹配规则属于强制约束

//获取标签帮助
kubectl label --help
Usage:
  kubectl label [--overwrite] (-f FILENAME | TYPE NAME) KEY_1=VAL_1 ... KEY_N=VAL_N [--resource-version=version] [options]

//需要获取 node 上的 NAME 名称
kubectl get node
NAME     STATUS   ROLES    AGE   VERSION
node01   Ready    <none>   18m   v1.20.15
node02   Ready    <none>   17m   v1.20.15

//给对应的 node 设置标签分别为 kb=a 和 kb=b
kubectl label nodes node01 kb=a

kubectl label nodes node02 kb=b

//查看标签
kubectl get nodes --show-labels
NAME     STATUS   ROLES    AGE   VERSION    LABELS
node01   Ready    <none>   19m   v1.20.15   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kb=a,kubernetes.io/arch=amd64,kubernetes.io/hostname=node01,kubernetes.io/os=linux
node02   Ready    <none>   18m   v1.20.15   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kb=b,kubernetes.io/arch=amd64,kubernetes.io/hostname=node02,kubernetes.io/os=linux


//修改成 nodeSelector 调度方式
vim myapp1.yaml
apiVersion: apps/v1
kind: Deployment  
metadata:
  name: myapp1
spec:
  replicas: 3
  selector:
    matchLabels:
      app: myapp1
  template:
    metadata:
      labels:
        app: myapp1
    spec:
      nodeSelector:
	    kb: a
      containers:
      - name: myapp1
        image: soscscs/myapp:v1
        ports:
        - containerPort: 80


kubectl apply -f myapp1.yaml 

kubectl get pods -o wide
NAME                     READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES
myapp1-658b79fb78-cqtcf   1/1     Running   0          3s      10.244.0.6   node01   <none>           <none>
myapp1-658b79fb78-g7gzr   1/1     Running   0          3s      10.244.0.8   node01   <none>           <none>
myapp1-658b79fb78-jkdd5   1/1     Running   0          3s      10.244.0.7   node01   <none>           <none>

//查看详细事件(通过事件可以发现要先经过 scheduler 调度分配)
kubectl describe pod myapp1-658b79fb78-cqtcf 
Events:
  Type    Reason     Age   From               Message
  ----    ------     ----  ----               -------
  Normal  Scheduled  36s   default-scheduler  Successfully assigned default/myapp1-658b79fb78-cqtcf to node01
  Normal  Pulled     36s   kubelet            Container image "soscscs/myapp:v1" already present on machine
  Normal  Created    36s   kubelet            Created container myapp1
  Normal  Started    36s   kubelet            Started container myapp1


//修改一个 label 的值,需要加上 --overwrite 参数
kubectl label nodes node02 kb=a --overwrite

//删除一个 label,只需在命令行最后指定 label 的 key 名并与一个减号相连即可:
kubectl label nodes node02 kb-

//指定标签查询 node 节点
kubectl get node -l kb=a

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述

3.亲和性

https://kubernetes.io/zh/docs/concepts/scheduling-eviction/assign-pod-node/

可以把自己理解成一个Pod,当你报名来学云计算,如果你更倾向去zhangsan老师带的班级,把不同老师带的班级当作一个node的话,这个就是节点亲和性。如果你是必须要去zhangsan老师带的班级,这就是硬策略;而你说你想去并且最好能去zhangsan老师带的班级,这就是软策略
如果你有一个很好的朋友叫lisi,你倾向和lisi同学在同一个班级,这个就是Pod亲和性。如果你一定要去lisi同学在的班级,这就是硬策略;而你说你想去并且最好能去lisi同学在的班级,这就是软策略。软策略是不去也可以,硬策略则是不去就不行

1)节点亲和性

pod.spec.nodeAffinity

pod.spec.nodeAffinity说明
preferredDuringSchedulingIgnoredDuringExecution软策略
requiredDuringSchedulingIgnoredDuringExecution硬策略
2)Pod 亲和性

pod.spec.affinity.podAffinity/podAntiAffinity

pod.spec.affinity.podAffinity/podAntiAffinity说明
preferredDuringSchedulingIgnoredDuringExecution软策略
requiredDuringSchedulingIgnoredDuringExecution硬策略
3)键值运算关系
键值运算关系说明
Inlabel 的值在某个列表中
NotInlabel 的值不在某个列表中
Gtlabel 的值大于某个值
Ltlabel 的值小于某个值
Exists某个 label 存在
DoesNotExist某个 label 不存在
kubectl get nodes --show-labels
NAME     STATUS   ROLES    AGE   VERSION    LABELS
node01   Ready    <none>   21m   v1.20.15   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kb=a,kubernetes.io/arch=amd64,kubernetes.io/hostname=node01,kubernetes.io/os=linux
node02   Ready    <none>   21m   v1.20.15   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kb=b,kubernetes.io/arch=amd64,kubernetes.io/hostname=node02,kubernetes.io/os=linux

//requiredDuringSchedulingIgnoredDuringExecution:硬策略
mkdir /opt/affinity
cd /opt/affinity

vim pod1.yaml
apiVersion: v1
kind: Pod
metadata:
  name: affinity
  labels:
    app: node-affinity-pod
spec:
  containers:
  - name: with-node-affinity
    image: soscscs/myapp:v1
  affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        nodeSelectorTerms:
        - matchExpressions:
          - key: kubernetes.io/hostname    #指定node的标签
            operator: NotIn     #设置Pod安装到kubernetes.io/hostname的标签值不在values列表中的node上
            values:
            - node02
			

kubectl apply -f pod1.yaml

kubectl get pods -o wide
NAME       READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES
affinity   1/1     Running   0          2m6s   10.244.0.16   node01   <none>           <none>

kubectl delete pod --all && kubectl apply -f pod1.yaml && kubectl get pods -o wide

#如果硬策略不满足条件,Pod 状态一直会处于 Pending 状态。


//preferredDuringSchedulingIgnoredDuringExecution:软策略
vim pod2.yaml
apiVersion: v1
kind: Pod
metadata:
  name: affinity
  labels:
    app: node-affinity-pod
spec:
  containers:
  - name: with-node-affinity
    image: soscscs/myapp:v1
  affinity:
    nodeAffinity:
      preferredDuringSchedulingIgnoredDuringExecution:
      - weight: 1   #如果有多个软策略选项的话,权重越大,优先级越高
        preference:
          matchExpressions:
          - key: kubernetes.io/hostname
            operator: In
            values:
            - node02


kubectl apply -f pod2.yaml

kubectl get pods -o wide
NAME       READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES
affinity   1/1     Running   0          31s   10.244.1.4   node02   <none>           <none>

//把values:的值改成node01,则会优先在node01上创建Pod
kubectl delete pod --all && kubectl apply -f pod2.yaml && kubectl get pods -o wide

//如果把硬策略和软策略合在一起使用,则要先满足硬策略之后才会满足软策略
//示例:
apiVersion: v1
kind: Pod
metadata:
  name: affinity
  labels:
    app: node-affinity-pod
spec:
  containers:
  - name: with-node-affinity
    image: soscscs/myapp:v1
  affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:   #先满足硬策略,排除有kubernetes.io/hostname=node02标签的节点
        nodeSelectorTerms:
        - matchExpressions:
          - key: kubernetes.io/hostname
            operator: NotIn
            values:
            - node02
      preferredDuringSchedulingIgnoredDuringExecution:  #再满足软策略,优先选择有kb=a标签的节点
      - weight: 1
        preference:
          matchExpressions:
          - key: kb
            operator: In
            values:
            - a


//Pod亲和性与反亲和性
调度策略			匹配标签	操作符										拓扑域支持		调度目标
nodeAffinity		主机		In, NotIn, Exists,DoesNotExist, Gt, Lt		否				指定主机
podAffinity			Pod			In, NotIn, Exists,DoesNotExist				是				Pod与指定Pod同一拓扑域
podAntiAffinity		Pod			In, NotIn, Exists,DoesNotExist				是				Pod与指定Pod不在同一拓扑域


kubectl label nodes node01 kb=a
kubectl label nodes node02 kb=a

//创建一个标签为 app=myapp01 的 Pod
vim pod4.yaml
apiVersion: v1
kind: Pod
metadata:
  name: myapp01
  labels:
    app: myapp01
spec:
  containers:
  - name: with-node-affinity
    image: soscscs/myapp:v1
	

kubectl apply -f pod4.yaml

kubectl get pods --show-labels -o wide
NAME      READY   STATUS    RESTARTS   AGE   IP           NODE     NOMINATED NODE   READINESS GATES   LABELS
myapp01    1/1     Running   0          3s      10.244.1.5    node02   <none>           <none>            app=myapp01

//使用 Pod 亲和性调度,创建多个 Pod 资源
vim pod4.yaml
apiVersion: v1
kind: Pod
metadata:
  name: myapp02
  labels:
    app: myapp02
spec:
  containers:
  - name: myapp02
    image: soscscs/myapp:v1
  affinity:
    podAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
      - labelSelector:
          matchExpressions:
          - key: app
            operator: In
            values:
            - myapp01
        topologyKey: kb
		
#仅当节点和至少一个已运行且有键为“app”且值为“myapp01”的标签 的 Pod 处于同一拓扑域时,才可以将该 Pod 调度到节点上。 (更确切的说,如果节点 N 具有带有键 kb 和某个值 V 的标签,则 Pod 有资格在节点 N 上运行,以便集群中至少有一个具有键 kb 和值为 V 的节点正在运行具有键“app”和值 “myapp01”的标签的 pod。)
#topologyKey 是节点标签的键。如果两个节点使用此键标记并且具有相同的标签值,则调度器会将这两个节点视为处于同一拓扑域中。 调度器试图在每个拓扑域中放置数量均衡的 Pod。
#如果 kb 对应的值不一样就是不同的拓扑域。比如 Pod1 在 kb=a 的 Node 上,Pod2 在 kb=b 的 Node 上,Pod3 在 kb=a 的 Node 上,则 Pod2 和 Pod1、Pod3 不在同一个拓扑域,而Pod1 和 Pod3在同一个拓扑域。

kubectl apply -f pod4.yaml

kubectl get pods --show-labels -o wide
NAME      READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES   LABELS
myapp01   1/1     Running   0          45s   10.244.0.21   node01   <none>           <none>            app=myapp01
myapp02   1/1     Running   0          3s    10.244.0.23   node01   <none>           <none>            app=myapp02



//使用 Pod 反亲和性调度
示例1:
vim pod5.yaml
apiVersion: v1
kind: Pod
metadata:
  name: myapp10
  labels:
    app: myapp10
spec:
  containers:
  - name: myapp10
    image: soscscs/myapp:v1
  affinity:
    podAntiAffinity:
      preferredDuringSchedulingIgnoredDuringExecution:
      - weight: 100
        podAffinityTerm:
          labelSelector:
            matchExpressions:
            - key: app
              operator: In
              values:
              - myapp01
          topologyKey: kubernetes.io/hostname

#如果节点处于 Pod 所在的同一拓扑域且具有键“app”和值“myapp01”的标签, 则该 pod 不应将其调度到该节点上。 (如果 topologyKey 为 kubernetes.io/hostname,则意味着当节点和具有键 “app”和值“myapp01”的 Pod 处于相同的拓扑域,Pod 不能被调度到该节点上。)

kubectl apply -f pod5.yaml

kubectl get pods --show-labels -o wide
NAME      READY   STATUS    RESTARTS   AGE   IP           NODE     NOMINATED NODE   READINESS GATES   LABELS
NAME      READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES   LABELS
myapp01   1/1     Running   0          98s   10.244.0.21   node01   <none>           <none>            app=myapp01
myapp02   1/1     Running   0          56s   10.244.0.23   node01   <none>           <none>            app=myapp02
myapp10   1/1     Running   0          3s    10.244.1.6    node02   <none>           <none>            app=myapp10


示例2:
vim pod6.yaml
apiVersion: v1
kind: Pod
metadata:
  name: myapp20
  labels:
    app: myapp20
spec:
  containers:
  - name: myapp20
    image: soscscs/myapp:v1
  affinity:
    podAntiAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
      - labelSelector:
          matchExpressions:
          - key: app
            operator: In
            values:
            - myapp01
        topologyKey: kb
		
//由于指定 Pod 所在的 node01 节点上具有带有键 kb 和标签值 a 的标签,node02 也有这个kb=a的标签,所以 node01 和 node02 是在一个拓扑域中,反亲和要求新 Pod 与指定 Pod 不在同一拓扑域,所以新 Pod 没有可用的 node 节点,即为 Pending 状态。
kubectl get pod --show-labels -owide
NAME      READY   STATUS    RESTARTS   AGE     IP            NODE     NOMINATED NODE   READINESS GATES   LABELS
myapp01   1/1     Running   0          5m57s   10.244.0.21   node01   <none>           <none>            app=myapp01
myapp02   1/1     Running   0          5m15s   10.244.0.23   node01   <none>           <none>            app=myapp02
myapp10   1/1     Running   0          4m22s   10.244.1.6    node02   <none>           <none>            app=myapp10
myapp20   0/1     Pending   0          4s      <none>        <none>   <none>           <none>            app=myapp20

kubectl label nodes node02 kb=b --overwrite

kubectl get pod --show-labels -o wide
NAME      READY   STATUS    RESTARTS   AGE     IP            NODE     NOMINATED NODE   READINESS GATES   LABELS
myapp01   1/1     Running   0          6m24s   10.244.0.21   node01   <none>           <none>            app=myapp01
myapp02   1/1     Running   0          5m42s   10.244.0.23   node01   <none>           <none>            app=myapp02
myapp10   1/1     Running   0          4m49s   10.244.1.6    node02   <none>           <none>            app=myapp10
myapp20   1/1     Running   0          31s     10.244.1.8    node02   <none>           <none>            app=myapp20

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述

4.污点(Taint) 和 容忍(Tolerations)
1)污点(Taint)

节点亲和性,是Pod的一种属性(偏好或硬性要求),它使Pod被吸引到一类特定的节点。Taint 则相反,它使节点能够排斥一类特定的 Pod
Taint 和 Toleration 相互配合,可以用来避免 Pod 被分配到不合适的节点上。每个节点上都可以应用一个或多个 taint ,这表示对于那些不能容忍这些 taint 的 Pod,是不会被该节点接受的。如果将 toleration 应用于 Pod 上,则表示这些 Pod 可以(但不一定)被调度到具有匹配 taint 的节点上

使用 kubectl taint 命令可以给某个 Node 节点设置污点,Node 被设置上污点之后就和 Pod 之间存在了一种相斥的关系,可以让 Node 拒绝 Pod 的调度执行,甚至将 Node 已经存在的 Pod 驱逐出去

污点的组成格式如下:
key=value:effect

每个污点有一个 key 和 value 作为污点的标签,其中 value 可以为空,effect 描述污点的作用

当前 taint effect 支持如下三个选项

taint effect 支持选项说明
NoSchedule表示 k8s 将不会将 Pod 调度到具有该污点的 Node 上
PreferNoSchedule表示 k8s 将尽量避免将 Pod 调度到具有该污点的 Node 上
NoExecute表示 k8s 将不会将 Pod 调度到具有该污点的 Node 上,同时会将 Node 上已经存在的 Pod 驱逐出去
kubectl get nodes
NAME     STATUS   ROLES    AGE   VERSION
master   Ready    master   11d   v1.20.11
node01   Ready    <none>   11d   v1.20.11
node02   Ready    <none>   11d   v1.20.11

//master 就是因为有 NoSchedule 污点,k8s 才不会将 Pod 调度到 master 节点上
kubectl describe node master
......
Taints:             node-role.kubernetes.io/master:NoSchedule


#设置污点
kubectl taint node node01 key1=value1:NoSchedule

#节点说明中,查找 Taints 字段
kubectl describe node node01 | grep -i taint

#去除污点
kubectl taint node node01 key1:NoSchedule-


kubectl get pods -o wide
NAME      READY   STATUS    RESTARTS   AGE     IP            NODE     NOMINATED NODE   READINESS GATES
myapp01   1/1     Running   0          8m35s   10.244.0.21   node01   <none>           <none>
myapp02   1/1     Running   0          7m53s   10.244.0.23   node01   <none>           <none>
myapp10   1/1     Running   0          7m      10.244.1.6    node02   <none>           <none>
myapp20   1/1     Running   0          2m42s   10.244.1.8    node02   <none>           <none>

kubectl taint node node02 check=mycheck:NoExecute

//查看 Pod 状态,会发现 node02 上的 Pod 已经被全部驱逐(注:如果是 Deployment 或者 StatefulSet 资源类型,为了维持副本数量则会在别的 Node 上再创建新的 Pod)
kubectl get pods -o wide
NAME      READY   STATUS    RESTARTS   AGE     IP            NODE     NOMINATED NODE   READINESS GATES
myapp01   1/1     Running   0          9m10s   10.244.0.21   node01   <none>           <none>
myapp02   1/1     Running   0          8m28s   10.244.0.23   node01   <none>           <none>

在这里插入图片描述在这里插入图片描述在这里插入图片描述

2)容忍(Tolerations)

设置了污点的 Node 将根据 taint 的 effect:NoSchedule、PreferNoSchedule、NoExecute 和 Pod 之间产生互斥的关系,Pod 将在一定程度上不会被调度到 Node 上。但我们可以在 Pod 上设置容忍(Tolerations),意思是设置了容忍的 Pod 将可以容忍污点的存在,可以被调度到存在污点的 Node 上

kubectl taint node node01 check=mycheck:NoExecute

vim pod3.yaml
apiVersion: v1
kind: Pod
metadata:
  name: myapp01
  labels:
    app: myapp01
spec:
  containers:
  - name: with-node-affinity
    image: soscscs/myapp:v1
	
kubectl apply -f pod3.yaml

//在两个 Node 上都设置了污点后,此时 Pod 将无法创建成功
kubectl get pods -o wide
NAME      READY   STATUS    RESTARTS   AGE   IP       NODE     NOMINATED NODE   READINESS GATES
myapp01   0/1     Pending   0          17s   <none>   <none>   <none>           <none>

vim pod3.yaml
apiVersion: v1
kind: Pod
metadata:
  name: myapp01
  labels:
    app: myapp01
spec:
  containers:
  - name: with-node-affinity
    image: soscscs/myapp:v1
  tolerations:
  - key: "check"
    operator: "Equal"
    value: "mycheck"
    effect: "NoExecute"
    tolerationSeconds: 3600
	
#其中的 key、vaule、effect 都要与 Node 上设置的 taint 保持一致
#operator 的值为 Exists 将会忽略 value 值,即存在即可
#tolerationSeconds 用于描述当 Pod 需要被驱逐时可以在 Node 上继续保留运行的时间

kubectl apply -f pod3.yaml

//在设置了容忍之后,Pod 创建成功
kubectl get pods -o wide
NAME      READY   STATUS    RESTARTS   AGE   IP           NODE     NOMINATED NODE   READINESS GATES
myapp01   1/1     Running   0          10m   10.244.1.5   node01   <none>           <none>


//其它注意事项
(1)当不指定 key 值时,表示容忍所有的污点 key
  tolerations:
  - operator: "Exists"
  
(2)当不指定 effect 值时,表示容忍所有的污点作用
  tolerations:
  - key: "key"
    operator: "Exists"

(3)有多个 Master 存在时,防止资源浪费,可以如下设置
kubectl taint node Master-Name node-role.kubernetes.io/master=:PreferNoSchedule

//如果某个 Node 更新升级系统组件,为了防止业务长时间中断,可以先在该 Node 设置 NoExecute 污点,把该 Node 上的 Pod 都驱逐出去
kubectl taint node node01 check=mycheck:NoExecute

//此时如果别的 Node 资源不够用,可临时给 Master 设置 PreferNoSchedule 污点,让 Pod 可在 Master 上临时创建
kubectl taint node master node-role.kubernetes.io/master=:PreferNoSchedule

//待所有 Node 的更新操作都完成后,再去除污点
kubectl taint node node01 check=mycheck:NoExecute-


//cordon 和 drain
##对节点执行维护操作:
kubectl get nodes

//将 Node 标记为不可调度的状态,这样就不会让新创建的 Pod 在此 Node 上运行
kubectl cordon <NODE_NAME> 		 #该node将会变为SchedulingDisabled状态

//kubectl drain 可以让 Node 节点开始释放所有 pod,并且不接收新的 pod 进程。drain 本意排水,意思是将出问题的 Node 下的 Pod 转移到其它 Node 下运行
kubectl drain <NODE_NAME> --ignore-daemonsets --delete-emptydir-data --force

--ignore-daemonsets:无视 DaemonSet 管理下的 Pod。
--delete-emptydir-data:如果有 mount local volume 的 pod,会强制杀掉该 pod。
--force:强制释放不是控制器管理的 Pod。

注:执行 drain 命令,会自动做了两件事情:
(1)设定此 node 为不可调度状态(cordon)
(2)evict(驱逐)了 Pod

//kubectl uncordon 将 Node 标记为可调度的状态
kubectl uncordon <NODE_NAME>
3)Pod启动阶段(相位 phase)

Pod 创建完之后,一直到持久运行起来,中间有很多步骤,也就有很多出错的可能,因此会有很多不同的状态。
一般来说,pod 这个过程包含以下几个步骤
(1)调度到某台 node 上。kubernetes 根据一定的优先级算法选择一台 node 节点将其作为 Pod 运行的 node
(2)拉取镜像
(3)挂载存储配置等
(4)容器运行起来。如果有健康检查,会根据检查的结果来设置其状态

phase 的可能状态有

phase 的可能状态说明
Pending表示APIServer创建了Pod资源对象并已经存入了etcd中,但是它并未被调度完成(比如还没有调度到某台node上),或者仍然处于从仓库下载镜像的过程中
RunningPod已经被调度到某节点之上,并且Pod中所有容器都已经被kubelet创建。至少有一个容器正在运行,或者正处于启动或者重启状态(也就是说Running状态下的Pod不一定能被正常访问)
Succeeded有些pod不是长久运行的,比如job、cronjob,一段时间后Pod中的所有容器都被成功终止,并且不会再重启。需要反馈任务执行的结果
FailedPod中的所有容器都已终止了,并且至少有一个容器是因为失败终止。也就是说,容器以非0状态退出或者被系统终止,比如 command 写的有问题
Unknown表示无法读取 Pod 状态,通常是 kube-controller-manager 无法与 Pod 通信。Pod 所在的 Node 出了问题或失联,从而导致 Pod 的状态为 Unknow

如何删除 Unknown 状态的 Pod

如何删除 Unknown 状态的 Pod
从集群中删除有问题的 Node。使用公有云时,kube-controller-manager 会在 VM 删除后自动删除对应的 Node。 而在物理机部署的集群中,需要管理员手动删除 Node(kubectl delete node <node_name>)
被动等待 Node 恢复正常,Kubelet 会重新跟 kube-apiserver 通信确认这些 Pod 的期待状态,进而再决定删除或者继续运行这些 Pod
主动删除 Pod,通过执行 kubectl delete pod <pod_name> --grace-period=0 --force 强制删除 Pod。但是这里需要注意的是,除非明确知道 Pod 的确处于停止状态(比如 Node 所在 VM 或物理机已经关机),否则不建议使用该方法。特别是 StatefulSet 管理的 Pod,强制删除容易导致脑裂或者数据丢失等问题
##故障排除步骤:
//查看Pod事件
kubectl describe TYPE NAME_PREFIX  

//查看Pod日志(Failed状态下)
kubectl logs <POD_NAME> [-c Container_NAME]

//进入Pod(状态为running,但是服务没有提供)
kubectl exec –it <POD_NAME> bash

//查看集群信息
kubectl get nodes

//发现集群状态正常
kubectl cluster-info

//查看kubelet日志发现
journalctl -xefu kubelet

群中删除有问题的 Node。使用公有云时,kube-controller-manager 会在 VM 删除后自动删除对应的 Node。 而在物理机部署的集群中,需要管理员手动删除 Node(kubectl delete node <node_name>) |
| 被动等待 Node 恢复正常,Kubelet 会重新跟 kube-apiserver 通信确认这些 Pod 的期待状态,进而再决定删除或者继续运行这些 Pod |
| 主动删除 Pod,通过执行 kubectl delete pod <pod_name> --grace-period=0 --force 强制删除 Pod。但是这里需要注意的是,除非明确知道 Pod 的确处于停止状态(比如 Node 所在 VM 或物理机已经关机),否则不建议使用该方法。特别是 StatefulSet 管理的 Pod,强制删除容易导致脑裂或者数据丢失等问题 |

##故障排除步骤:
//查看Pod事件
kubectl describe TYPE NAME_PREFIX  

//查看Pod日志(Failed状态下)
kubectl logs <POD_NAME> [-c Container_NAME]

//进入Pod(状态为running,但是服务没有提供)
kubectl exec –it <POD_NAME> bash

//查看集群信息
kubectl get nodes

//发现集群状态正常
kubectl cluster-info

//查看kubelet日志发现
journalctl -xefu kubelet

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/861313.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

聊聊行锁、间隙锁、临键锁的区别

一、准备 创建 student 表 CREATE TABLE student ( id bigint NOT NULL, age int DEFAULT NULL, b int DEFAULT NULL, a int DEFAULT NULL, c int DEFAULT NULL, PRIMARY KEY ( id ), ) ENGINEInnoDB DEFAULT CHARSETutf8mb3 插⼊数据 insert into student (id,age,a,b,c) val…

Java【Spring】使用注解, 更简单的存储和获取 Bean

文章目录 前言一、存储 Bean1, 配置文件2, 五大类注解Bean 的命名规则 3, 方法注解Bean 的命名规则 二、获取 Bean1, 属性注入2, Setter 注入3, 构造方法注入4, Autowired 和 Resource 的区别5, 同一个类型的多个 Bean 注入问题 总结 前言 各位读者好, 我是小陈, 这是我的个人主…

机器学习、深度学习项目开发业务数据场景梳理汇总记录三

本文的主要作用是对历史项目开发过程中接触到的业务数据进行整体的汇总梳理&#xff0c;文章会随着项目的开发推进不断更新。 这里是续文&#xff0c;因为CSDN单篇文章内容太大的话就会崩溃的&#xff0c;别问我怎么知道的&#xff0c;问就是血泪教训&#xff0c;辛辛苦苦写了一…

C语言 指针与const

const 修饰变量&#xff0c;使得这个变量不能被修改。 const 对指针具有两种修饰的方式&#xff0c;且两种方式所限制的情况不同。 当const在 * 的左边 const int * p &n; 或者 int const * p &n; 当const在*的左边时&#xff0c;指针变量p所指向的空间内容无法被修…

C语言 指针与assert

assert 又称断言&#xff0c;需要包含头文件 assert.h 用于在运行时确保程序符合指定条件&#xff0c;如果不符合&#xff0c;就报错终止运行。 assert(p ! NULL); 上面代码在程序运行到这一行语句时&#xff0c;验证变量 p 是否等于 NULL。如果确实不等于 NULL &#xff0c;…

慎写指针类型的全局变量

简述: 在 关于range二三事[1] 第二个case中,介绍了对于指针类型的 切片/map变量A 的循环,要格外注意, 迭代出的value作用域是整个方法而非循环体内. 改进办法:在循环体中引入中间变量,"暂存"下每次迭代的value的值 但对于这个A,如果是全局变量,则又极有可能出现问题:…

Apache Maven简介安装及系统坏境配置eclipse配置Apache Maven---详细介绍

一&#xff0c;简介 Maven可以简化项目的构建和依赖管理&#xff0c;并提供了一种规范化和可复用的方式来管理Java项目。它广泛应用于Java开发领域&#xff0c;简单来说&#xff1a;它提供了一个简单而强大的方式来管理项目的构建、依赖关系和文档在企业级项目中被广泛采用。 1…

京东秋招攻略,备考在线测评和网申笔试

京东秋招简介 伴随着社会竞争越来越激烈&#xff0c;人们投递简历的岗位也变得越来越多元&#xff0c;而无论人们的选择面变成何样&#xff0c;那些知名度较高的企业&#xff0c;永远都备受关注&#xff0c;只要其一发布招聘公告&#xff0c;总有人第一时间踊跃报名。而作为这…

Java算法_ LRU 缓存(LeetCode_Hot100)

题目描述&#xff1a;请你设计并实现一个满足 LRU &#xff08;最近最少使用&#xff09; 缓存 约束的数据结构。 获得更多&#xff1f;算法思路:代码文档&#xff0c;算法解析的私得。 运行效果 完整代码 import java.util.HashMap; import java.util.Map;/*** 2 * Author: L…

winform中嵌入cefsharp, 并使用selenium控制

正常说&#xff0c; 需要安装的包 下面是所有的包 全部代码 using OpenQA.Selenium.Chrome; using OpenQA.Selenium; using System; using System.Windows.Forms; using CefSharp.WinForms; using CefSharp;namespace WindowsFormsApp2 {public partial class Form1 : Form{//…

(kubernetes)k8s常用资源管理

目录 k8s常用资源管理 1、创建一个pod 1&#xff09;创建yuml文件 2&#xff09;创建容器 3&#xff09;查看所有pod创建运行状态 4&#xff09;查看指定pod资源 5&#xff09;查看pod运行的详细信息 6&#xff09;验证运行的pod 2、pod管理 1&#xff09;删除pod 2…

搜索二叉树(二叉树进阶)

目录 1.二叉搜索树 1.1二叉搜索树概念 1.2二叉搜索树操作 2.3二叉搜索树的实现 2.4二叉搜索树的应用 2.5二叉搜索树的性能分析 1.二叉搜索树 1.1二叉搜索树概念 二叉搜索树又称二叉排序树&#xff0c;它或者是一颗空树&#xff0c;或者是具有以下性质的二叉树&#xff…

mac安装nvm管理工具遇到的问题和解决方法

nvm 是一款可以管理多版本node的工具&#xff0c;因为是刚买没多久的电脑之前用的都是windows&#xff0c;昨天折腾了一下午终于倒腾好了 第一步&#xff1a; 卸载电脑已有的node&#xff1b;访问nvm脚本网址&#xff0c;另存为到电脑上任何目录&#xff0c;我是放在桌面上的…

OSPF技术入门(第三十四课)

1 OSPF的介绍 OSPF是一种链路状态路由协议,主要用于IP网络中的路由选择。它是一种开放协议,能够在不同的网络设备之间进行通信。OSPF利用链路状态数据库来描述网络拓扑结构,并通过Dijkstra算法计算出最短路径。它支持按照精确度划分的路由优先级,以及多个相等的路径,并能自…

微服务分布式搜索引擎 ElasticSearch 查询文档

文章目录 ⛄引言一、DSL查询文档⛅DSL 查询分类 二、DSL查询实例⛅全文检索查询⏰精确查询⚡地理坐标查询⌚复合查询 ⛵小结 ⛄引言 本文参考黑马 分布式Elastic search Elasticsearch是一款非常强大的开源搜索引擎&#xff0c;具备非常多强大功能&#xff0c;可以帮助我们从海…

服务器数据恢复-断电导致ext4文件系统文件丢失的数据恢复案例

服务器数据恢复环境&#xff1a; 一台服务器挂载一台存储设备&#xff0c;存储中划分一个Lun&#xff1b;服务器操作系统是Linux centos&#xff0c;EXT4文件系统。 服务器故障&分析&#xff1a; 意外断电导致服务器操作系统无法启动&#xff0c;系统在修复后可以正常启动&…

竞赛项目 深度学习的动物识别

文章目录 0 前言1 背景2 算法原理2.1 动物识别方法概况2.2 常用的网络模型2.2.1 B-CNN2.2.2 SSD 3 SSD动物目标检测流程4 实现效果5 部分相关代码5.1 数据预处理5.2 构建卷积神经网络5.3 tensorflow计算图可视化5.4 网络模型训练5.5 对猫狗图像进行2分类 6 最后 0 前言 &#…

在Ubuntu中使用Docker启动MySQL8的天坑

写在前面 简介&#xff1a; lower_case_table_names 是mysql设置大小写是否敏感的一个参数。 1.参数说明&#xff1a; lower_case_table_names0 表名存储为给定的大小和比较是区分大小写的 lower_case_table_names 1 表名存储在磁盘是小写的&#xff0c;但是比较的时候是不区…

CMAKE生成exe文件时运行时有cmd窗口

1、运行exe执行文件 会有cmd弹窗 2、解决方法 只需要在cmakelists.txt中添加set(CMAKE_CXX_FLAGS “-mwindows”) 或者在cmake时指定编译参数cmake -DCMAKE_CXX_FLAGS"-mwindows"即可 如果用的是c而不是c&#xff0c;就只需把CXX改为C 重新编译打包运行后没有cmd弹…

centos自动同步北京时间

1、安装ntpdate服务 yum -y install ntpdate 2、加入自动任务计划 查找ntpdate的路径&#xff1a; which ntpdate 复制这个路径。 编辑自动任务计划并加入ntpdate&#xff1a; crontab -e # 每小时第30分钟同步AD域控时间 30 * * * * /usr/sbin/ntpdate -u 192.168.2.8 > …