微服务分布式搜索引擎 ElasticSearch 查询文档

news2024/11/24 15:43:12

文章目录

  • ⛄引言
  • 一、DSL查询文档
    • ⛅DSL 查询分类
  • 二、DSL查询实例
    • ⛅全文检索查询
    • ⏰精确查询
    • ⚡地理坐标查询
    • ⌚复合查询
  • ⛵小结

⛄引言

本文参考黑马 分布式Elastic search
Elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容

一、DSL查询文档

ElasticSearch的查询依然是基于JSON风格的DSL来实现的。

⛅DSL 查询分类

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all

  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:

    • match_query
    • multi_match_query
  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:

    • ids
    • range
    • term
  • 地理(geo)查询:根据经纬度查询。例如:

    • geo_distance
    • geo_bounding_box
  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:

    • bool
    • function_score

查询的语法基本一致:

GET /indexName/_search
{
  "query": {
    "查询类型": {
      "查询条件": "条件值"
    }
  }
}

我们以查询所有为例,其中:

  • 查询类型为match_all
  • 没有查询条件
// 查询所有
GET /indexName/_search
{
  "query": {
    "match_all": {
    }
  }
}

其它查询无非就是查询类型查询条件的变化。

二、DSL查询实例

⛅全文检索查询

全文检索查询的基本流程如下:

  • 对用户搜索的内容做分词,得到词条
  • 根据词条去倒排索引库中匹配,得到文档id
  • 根据文档id找到文档,返回给用户

比较常用的场景包括:

  • 商城的输入框搜索
  • 百度输入框搜索

例如京东

在这里插入图片描述

因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。

基本语法

常见的全文检索查询包括:

  • match查询:单字段查询
  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

match查询语法如下:

GET /indexName/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT"
    }
  }
}

mulit_match语法如下:

GET /indexName/_search
{
  "query": {
    "multi_match": {
      "query": "TEXT",
      "fields": ["FIELD1", " FIELD12"]
    }
  }
}

match查询实例

在这里插入图片描述

mulit_match查询实例

在这里插入图片描述

可以看到,两种查询结果是一样的,为什么?

因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。

但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。

match和multi_match的区别

  • match:根据一个字段查询
  • multi_match:根据多个字段查询,参与查询字段越多,查询性能越差

⏰精确查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • term:根据词条精确值查询
  • range:根据值的范围查询

term查询语法

// term查询
GET /indexName/_search
{
  "query": {
    "term": {
      "FIELD": {
        "value": "VALUE"
      }
    }
  }
}

term查询实例

当我搜索的是精确词条时,能正确查询出结果:

在这里插入图片描述

但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:

在这里插入图片描述

range查询 语法

// range查询
GET /indexName/_search
{
  "query": {
    "range": {
      "FIELD": {
        "gte": 10, // 这里的gte代表大于等于,gt则代表大于
        "lte": 20 // lte代表小于等于,lt则代表小于
      }
    }
  }
}

range实例

在这里插入图片描述

精确查询常见的有哪些呢?

  • term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段
  • range查询:根据数值范围查询,可以是数值、日期的范围

⚡地理坐标查询

所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-queries.html

常见的使用场景包括:

  • 携程:搜索我附近的酒店
  • 滴滴:搜索我附近的出租车
  • 微信:搜索我附近的人

附近的酒店:

在这里插入图片描述

附近的车:

在这里插入图片描述

矩形范围查询

矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:

在这里插入图片描述

查询时,需要指定矩形的左上右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。

语法如下:

// geo_bounding_box查询
GET /indexName/_search
{
  "query": {
    "geo_bounding_box": {
      "FIELD": {
        "top_left": { // 左上点
          "lat": 31.1,
          "lon": 121.5
        },
        "bottom_right": { // 右下点
          "lat": 30.9,
          "lon": 121.7
        }
      }
    }
  }
}

这种并不符合“附近的人”这样的需求。

附近查询

附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。

换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:

在这里插入图片描述

语法说明:

// geo_distance 查询
GET /indexName/_search
{
  "query": {
    "geo_distance": {
      "distance": "15km", // 半径
      "FIELD": "31.21,121.5" // 圆心
    }
  }
}

示例:

我们先搜索陆家嘴附近15km的酒店:

在这里插入图片描述

然后把半径缩短到3公里:

在这里插入图片描述

缩小到 3 公里我们看到就剩下了5个符合条件的

⌚复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

相关性算分

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

例如,我们搜索 “虹桥如家”,结果如下:

[
  {
    "_score" : 17.850193,
    "_source" : {
      "name" : "虹桥如家酒店真不错",
    }
  },
  {
    "_score" : 12.259849,
    "_source" : {
      "name" : "外滩如家酒店真不错",
    }
  },
  {
    "_score" : 11.91091,
    "_source" : {
      "name" : "迪士尼如家酒店真不错",
    }
  }
]

在ElasticSearch中,早期使用的打分算法是TF-IDF算法,公式如下:

在这里插入图片描述

在后来的5.1版本升级中,ElasticSearch将算法改进为BM25算法,公式如下:

在这里插入图片描述

TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:

在这里插入图片描述

ElasticSearch会根据词条和文档的相关度做打分,算法由两种:

  • TF-IDF算法
  • BM25算法,ElasticSearch5.1版本后采用的算法

算分函数查询

根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。

以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:

在这里插入图片描述

要想认为控制相关性算分,就需要利用ElasticSearch中的 Function Score 查询了。

语法说明

在这里插入图片描述

Function Score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
  • 过滤条件:filter部分,符合该条件的文档才会重新算分
  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
    • weight:函数结果是常量
    • field_value_factor:以文档中的某个字段值作为函数结果
    • random_score:以随机数作为函数结果
    • script_score:自定义算分函数算法
  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
    • multiply:相乘
    • replace:用function score替换query score
    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
  • 2)根据过滤条件,过滤文档
  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改
  • 算分函数:决定函数算分的算法
  • 运算模式:决定最终算分结果

实例

需求:给“如家”这个品牌的酒店排名靠前一些

翻译一下这个需求,转换为之前说的四个要点:

  • 原始条件:不确定,可以任意变化
  • 过滤条件:brand = “如家”
  • 算分函数:可以简单粗暴,直接给固定的算分结果,weight
  • 运算模式:比如求和

因此最终的DSL语句如下:

GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {  .... }, // 原始查询,可以是任意条件
      "functions": [ // 算分函数
        {
          "filter": { // 满足的条件,品牌必须是如家
            "term": {
              "brand": "如家"
            }
          },
          "weight": 2 // 算分权重为2
        }
      ],
      "boost_mode": "sum" // 加权模式,求和
    }
  }
}

测试,在未添加算分函数时,如家得分如下:

在这里插入图片描述

添加了算分函数后,如家得分就提升了:

在这里插入图片描述

Function Score Query定义的三要素是什么?

  • 过滤条件:哪些文档要加分
  • 算分函数:如何计算Function Score
  • 加权方式:Function Score 与 Query Score如何运算

布尔查询

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:

在这里插入图片描述

每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。

需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:

  • 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
  • 其它过滤条件,采用filter查询。不参与算分

语法实例

GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {"city": "上海" }}
      ],
      "should": [
        {"term": {"brand": "皇冠假日" }},
        {"term": {"brand": "华美达" }}
      ],
      "must_not": [
        { "range": { "price": { "lte": 500 } }}
      ],
      "filter": [
        { "range": {"score": { "gte": 45 } }}
      ]
    }
  }
}

实例

需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。

分析:

  • 名称搜索,属于全文检索查询,应该参与算分。放到must中
  • 价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not中
  • 周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中

在这里插入图片描述

bool查询有几种逻辑关系?

  • must:必须匹配的条件,可以理解为“与”
  • should:选择性匹配的条件,可以理解为“或”
  • must_not:必须不匹配的条件,不参与打分
  • filter:必须匹配的条件,不参与打分

⛵小结

以上就是【Bug 终结者】对 微服务分布式搜索引擎 Elastic Search RestClient 操作文档 的简单介绍,ES搜索引擎无疑是最优秀的分布式搜索引擎,使用它,可大大提高项目的灵活、高效性! 技术改变世界!!!

如果这篇【文章】有帮助到你,希望可以给【Bug 终结者】点个赞👍,创作不易,如果有对【后端技术】、【前端领域】感兴趣的小可爱,也欢迎关注❤️❤️❤️ 【Bug 终结者】❤️❤️❤️,我将会给你带来巨大的【收获与惊喜】💝💝💝!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/861293.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

服务器数据恢复-断电导致ext4文件系统文件丢失的数据恢复案例

服务器数据恢复环境: 一台服务器挂载一台存储设备,存储中划分一个Lun;服务器操作系统是Linux centos,EXT4文件系统。 服务器故障&分析: 意外断电导致服务器操作系统无法启动,系统在修复后可以正常启动&…

竞赛项目 深度学习的动物识别

文章目录 0 前言1 背景2 算法原理2.1 动物识别方法概况2.2 常用的网络模型2.2.1 B-CNN2.2.2 SSD 3 SSD动物目标检测流程4 实现效果5 部分相关代码5.1 数据预处理5.2 构建卷积神经网络5.3 tensorflow计算图可视化5.4 网络模型训练5.5 对猫狗图像进行2分类 6 最后 0 前言 &#…

在Ubuntu中使用Docker启动MySQL8的天坑

写在前面 简介: lower_case_table_names 是mysql设置大小写是否敏感的一个参数。 1.参数说明: lower_case_table_names0 表名存储为给定的大小和比较是区分大小写的 lower_case_table_names 1 表名存储在磁盘是小写的,但是比较的时候是不区…

CMAKE生成exe文件时运行时有cmd窗口

1、运行exe执行文件 会有cmd弹窗 2、解决方法 只需要在cmakelists.txt中添加set(CMAKE_CXX_FLAGS “-mwindows”) 或者在cmake时指定编译参数cmake -DCMAKE_CXX_FLAGS"-mwindows"即可 如果用的是c而不是c,就只需把CXX改为C 重新编译打包运行后没有cmd弹…

centos自动同步北京时间

1、安装ntpdate服务 yum -y install ntpdate 2、加入自动任务计划 查找ntpdate的路径: which ntpdate 复制这个路径。 编辑自动任务计划并加入ntpdate: crontab -e # 每小时第30分钟同步AD域控时间 30 * * * * /usr/sbin/ntpdate -u 192.168.2.8 > …

超低成本FPGA JTAG方案

今天给大家带来一款超低成本的FPGA JTAG方案,硬件核心是用树莓派Pico,使用相关芯片自己制作JTAG则非常便宜,RP2040某宝的报价只有4元,所以自己制作成本非常低廉,当然使用Pico成本也不是很高,所以今天就以Pi…

ChineseChess

外卖中国象棋的梗。 外卖免单题: 如图,红棋先行,至少几步绝杀黑房(黑房尽量不让自己输)? ChineseChess.java 【帅】是左出还是右出,取决于,上图黑方那边的【士】 如图&#xff0c…

datax抽取库名带点的表遇到的问题

一、描述任务 使用Datax抽取mysql中的数据到hive的wedw_ods层中,mysql的库名为:b.p.n.p 表名为:bene_group 二、datax.json脚本生成 因为datax的脚本是自动生成的,生成的格式如下: {"core": {},"jo…

竞赛项目 深度学习手势识别算法实现 - opencv python

文章目录 1 前言2 项目背景3 任务描述4 环境搭配5 项目实现5.1 准备数据5.2 构建网络5.3 开始训练5.4 模型评估 6 识别效果7 最后 1 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习手势识别算法实现 - opencv python 该项目较为新颖…

中国信息安全测评中心CISP家族认证一览

随着国家对网络安全的重视,中国信息安全测评中心根据国家政策、未来趋势、重点内容陆续增添了很多CISP细分认证。 今日份详细介绍,部分CISP及其子品牌相关认证内容,一定要收藏哟! 校园版CISP NISP国家信息安全水平考试&#xff…

如何用SOLIDWORKS Simulation 避免共振现象

零件都有它的固有振动频率,称之为共振频率。当零部件的固有频率和激励频率相近时,对零部件的破坏是非常严重的,这就是我们说的共振。频率分析是设计师日常工作常见的设计验证。 今天给大家分享的是Simulation的频率分析操作方法: …

黑马头条项目学习--Day3: 自媒体文章发布

Day3: 自媒体文章发布 Day3: 自媒体文章发布1) 素材管理-图片上传a) 前期微服务搭建b) 具体实现 2) 素材管理-图片列表a) 接口定义b) 具体实现 3) 素材管理-照片删除/收藏a) 图片删除a1) 接口定义a2) 代码实现 b) 收藏与取消b1) 接口定义b2) 代码实现 4) 文章管理-频道列表查询…

前端面试自我介绍

前端面试自我介绍精选篇1 各位面试官大家好,我叫__,就读于__大学__学,大学本科学历,我的求职意向是与金融专业相关的职位,本人拥有较强的学习能力,能快速适应工作环境,兴趣爱好广泛&#xff0c…

nginx文件共享、服务状态和location模块的配置介绍

一.文件共享功能 1.清空html目录下文件并新建你要共享的文件 2.修改nginx.conf文件,开启autoindex功能 3.测试 二.状态模块 1.修改nginx.conf文件 2.测试 (1)使用刚才定义的IP/nginx_status进行访问 (2)status参…

Qt应用开发(基础篇)——工具箱 QToolBox

一、前言 QToolBox类继承于QFrame,QFrame继承于QWidget,是Qt常用的基础工具部件。 框架类QFrame介绍 QToolBox工具箱类提供了一列选项卡窗口,当前项显示在当前选项卡下面,适用于分类浏览、内容展示、操作指引这一类的使用场景。 二…

点的复合运动

一、问题所在 对于复合运动中的牵连运动一直很蒙,之前做题的时候都是靠经验,比如圆盘选择圆心做动系原点、连杆选择牵连点做原点等,今天重新整理了一下。 牵连运动的定义是动系相对于定系的运动,这个定义就很模糊。如果是指动系…

MySQL之 show profile 相关总结

MySQL之 show profile 相关总结 MySQL官网show profile介绍:https://dev.mysql.com/doc/refman/8.0/en/show-profile.html 1. 简介 show profile 和 show profiles 命令用于展示SQL语句的资源使用情况,包括CPU的使用,CPU上下文切换&#xf…

【Linux】认识“协议“序列化和反序列化

目录 前言 1 应用层 2 在谈协议 3 序列化和反序列化 4 网络版计算器 4.1 指定协议 request结构体 response结构体 4.2 服务端编写 4.3 客户端的编写 5 Json for C 的序列化和反序列化使用样例 前言 之前的socket编程,都是在通过系统调用层面,…

自制电子农历

水文大师上线。今天一水电子农历牌。 首先讲讲电子配件,一来是电子小屏幕的选择,遇到文字比较多的,尤其是汉字,不要选传统那款128x64 oled,绝对放不下(找到最牛的超小免费字体至少要在8pixel以上才能看清楚)。我选了i…

内核裁剪与驱动编译

linux设备驱动以内核模块的形式出现,编写linux内核模块编程是学习linux设备驱动的先决条件。 在编译linux内核之前要先配置linux内核。每个板子都有其对应的默认配置文件,这些默认配置文件保存在arch/arm/configs 目录中。比如xilinx_zynq_defconfig作为…