2023国赛 高教社杯数学建模ABCDE题思路汇总分析

news2024/11/25 18:05:02

文章目录

  • 0 赛题思路
  • 1 竞赛信息
  • 2 竞赛时间
  • 3 建模常见问题类型
    • 3.1 分类问题
    • 3.2 优化问题
    • 3.3 预测问题
    • 3.4 评价问题
  • 4 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 竞赛信息

全国大学生数学建模竞赛(以下简称竞赛)是中国工业与应用数学学会主办的面向全国大学生 的群众性科技活动,旨在激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解 决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作 意识,推动大学数学教学体系、教学内容和方法的改革。

竞赛题目一般来源于科学与工程技术、人文与社会科学(含经济管理)等领域经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学基础课程。题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。

竞赛分为本科组和专科组进行。本科学生只能参加本科组竞赛,不能参加专科组竞赛。专科(高职高专)学生一般参加专科组竞赛,也可参加本科组竞赛,无论参加何组竞赛,均必须在报名时确定,报名截止后不能再更改报名组别。同一参赛队的学生必须来自同一所学校。
在这里插入图片描述

2 竞赛时间

报名结束时间:2023年9月4日20:00

比赛开始时间:2023年9月7日(周四)18:00

比赛结束时间:2023年9月10日(周日)20:00

3 建模常见问题类型

趁现在赛题还没更新,A君给大家汇总一下国赛数学建模经常使用到的数学模型,题目八九不离十基本属于一下四种问题,对应的解法A君也相应给出

分别为:

分类模型

优化模型

预测模型

评价模型

3.1 分类问题

判别分析:

又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。

其基本原理是按照一定的判别准则,建立一个或多个判别函数;用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标;据此即可确定某一样本属于何类。当得到一个新的样品数据,要确定该样品属于已知类型中哪一类,这类问题属于判别分析问题。

聚类分析:

聚类分析或聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集,这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。

聚类分析本身不是某一种特定的算法,而是一个大体上的需要解决的任务。它可以通过不同的算法来实现,这些算法在理解集群的构成以及如何有效地找到它们等方面有很大的不同。

神经网络分类:

BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

3.2 优化问题

线性规划:

研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于生产计划、物流运输、资源分配、金融投资等领域。建模方法:列出约束条件及目标函数;画出约束条件所表示的可行域;在可行域内求目标函数的最优解及最优值。

整数规划:

规划中的变量(全部或部分)限制为整数,称为整数规划。若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。一类要求问题的解中的全部或一部分变量为整数的数学规划。从约束条件的构成又可细分为线性,二次和非线性的整数规划。

非线性规划:

非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是 线性函数的情形则属于线性规划。

动态规划:

包括背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等。

动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

多目标规划:

多目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。任何多目标规划问题,都由两个基本部分组成:

(1)两个以上的目标函数;

(2)若干个约束条件。有n个决策变量,k个目标函数, m个约束方程,则:

Z=F(X)是k维函数向量,Φ(X)是m维函数向量;G是m维常数向量;

3.3 预测问题

回归拟合预测

拟合预测是建立一个模型去逼近实际数据序列的过程,适用于发展性的体系。建立模型时,通常都要指定一个有明确意义的时间原点和时间单位。而且,当t趋向于无穷大时,模型应当仍然有意义。将拟合预测单独作为一类体系研究,其意义在于强调其唯“象”性。一个预测模型的建立,要尽可能符合实际体系,这是拟合的原则。拟合的程度可以用最小二乘方、最大拟然性、最小绝对偏差来衡量。

灰色预测

灰色预测是就灰色系统所做的预测。是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

马尔科夫预测:是一种可以用来进行组织的内部人力资源供给预测的方法.它的基本 思想是找出过去人事变动的 规律,以此来推测未来的人事变动趋势.转换矩阵实际上是转换概率矩阵,描述的是组织中员工流入,流出和内部流动的整体形式,可以作为预测内部劳动力供给的基础.

BP神经网络预测

BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。它是一种应用较为广泛的神经网络模型,多用于函数逼近、模型识别分类、数据压缩和时间序列预测等。

支持向量机法

支持向量机(SVM)也称为支持向量网络[1],是使用分类与回归分析来分析数据的监督学习模型及其相关的学习算法。在给定一组训练样本后,每个训练样本被标记为属于两个类别中的一个或另一个。支持向量机(SVM)的训练算法会创建一个将新的样本分配给两个类别之一的模型,使其成为非概率二元线性分类器(尽管在概率分类设置中,存在像普拉托校正这样的方法使用支持向量机)。支持向量机模型将样本表示为在空间中的映射的点,这样具有单一类别的样本能尽可能明显的间隔分开出来。所有这样新的样本映射到同一空间,就可以基于它们落在间隔的哪一侧来预测属于哪一类别。

3.4 评价问题

层次分析法

是指将一个复杂的 多目标决策问题 作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

优劣解距离法

又称理想解法,是一种有效的多指标评价方法。这种方法通过构造评价问题的正理想解和负理想解,即各指标的最大值和最小值,通过计算每个方案到理想方案的相对贴近度,即靠近正理想解和远离负理想解的程度,来对方案进行排序,从而选出最优方案。

模糊综合评价法

是一种基于模糊数学的综合评标方法。 该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。 它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。

灰色关联分析法(灰色综合评价法)

对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。

典型相关分析法:是对互协方差矩阵的一种理解,是利用综合变量对之间的相关关系来反映两组指标之间的整体相关性的多元统计分析方法。它的基本原理是:为了从总体上把握两组指标之间的相关关系,分别在两组变量中提取有代表性的两个综合变量U1和V1(分别为两个变量组中各变量的线性组合),利用这两个综合变量之间的相关关系来反映两组指标之间的整体相关性。

主成分分析法(降维)

是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

因子分析法(降维)

因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。

BP神经网络综合评价法

是一种按误差逆传播算法训练的多层前馈网络,是应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

4 建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/858927.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

进样顺序对列排斥能的影响

( A, B )---3*30*2---( 1, 0 )( 0, 1 ) 让网络的输入有3个节点,训练集AB各由6张二值化的图片组成,让AB中各有1个1,排列组合所有可能 ,统计迭代次数并排序。 差值结构 A-B 迭代次数 36组平均迭代次数 - 2 1 1*0*0*0*0*0-2*…

qt在vs中编译出现link2001时,不会生成moc文件了

现象: 解决方法: 在对应头文件-属性-配置属性-常规-项类型-改为Qt Meta-Object Compiler (moc) 即可。 有时候不知道啥原因头文件类型变成普通C头文件

深入解析中国供应商API:关键字搜索接口对接与商品数据交互指南

随着电商行业的快速发展,越来越多的企业开始与中国供应商进行合作。而为了实现有效的数据交换和协作,接口对接成为了不可或缺的一环。本文将深入探讨中国供应商API,介绍如何高效地进行接口对接与数据交互,并提供实用的Python示例代…

构建之法 - 软件工程实践教学:每天都向前推进一点点

作者:福州⼤学 汪璟玢⽼师 汪老师:每次都向前推进一点点,哪怕只有一点点,也好过什么都不做。 ​邹老师:对,几个学期下来,就已经超过那些“空想”的团队很远了。坚持下去! 汪老师&…

以商业大数据技术助力数据合规流通体系建立,合合信息参编《数据经纪从业人员评价规范》团标

经国务院批准,由北京市人民政府、国家发展和改革委员会、工业和信息化部、商务部、国家互联网信息办公室、中国科学技术协会共同主办的2023 全球数字经济大会于近期隆重召开。由数交数据经纪(深圳)有限公司为主要发起单位,合合信息…

『C语言初阶』第七章 -初识指针

前言 时隔多日小羊又来给铁汁们更新C语言之初识指针,指针是C语言中一个关键且强大的概念,理解和掌握指针对于编写高效、灵活的程序至关重要。本文将详细解释C语言中的指针,帮助初学者迈出掌握编程世界的第一步。 一、指针是什么?…

无涯教程-Perl - int函数

描述 此函数返回EXPR的整数元素,如果省略则返回$_。 int函数不进行舍入。如果需要将值四舍五入为整数,则应使用sprintf。 语法 以下是此函数的简单语法- int EXPRint返回值 此函数返回EXPR的整数部分。 例 以下是显示其基本用法的示例代码- #!/usr/bin/perl$int_valint…

PromQL实现Actuator获取的JVM指标的Full GC次数监控

Spring Boot 版本需要2.0.0或更高版本。 添加Micrometer Prometheus registry依赖: <dependency><groupId>io.micrometer</groupId><artifactId>micrometer-registry-prometheus</artifactId> </dependency>在application.properties中开…

哪个牌子的运动耳机好、最好的运动耳机推荐

在当今快节奏的生活中&#xff0c;运动已经成为许多人追求健康与活力的重要组成部分。而在运动过程中&#xff0c;一款出色的运动耳机不仅能为我们提供激励和动力&#xff0c;还能让我们沉浸在音乐的世界中&#xff0c;享受极致的运动体验。然而&#xff0c;市场上琳琅满目的运…

[LeetCode - Python] 278.第一个错误的版本(Easy)

题目&#xff1a; 278.第一个错误的版本&#xff08;Easy&#xff09; 代码&#xff1a; # 常用的 左闭右开&#xff0c;二分法&#xff0c;要当心判断条件 到底是True还是False # The isBadVersion API is already defined for you. # def isBadVersion(version: int) -&g…

【Spring security 解决跨域】

security 跨域 概述方案方案一方案二方案三方案四 主页传送门&#xff1a;&#x1f4c0; 传送 概述 Spring Security是一个功能强大且高度可定制的&#xff0c;主要负责为Java程序提供声明式的身份验证和访问控制的安全框架。其前身是Acegi Security,后来被收纳为Spring的一个…

hcip的BGP实验

题目 拓扑图 思路&#xff1a; 1、给各个设备配置IP地址及环回接口 2、配置R2、R3、R4&#xff0c;三个设备的OSPF环境 3、将R1、R2、R3、R4、R5建立BGP对等体关系 4、建临时&#xff0c;将源地址也修改为环回接口 5、宣告时&#xff0c;将BGP路由传递给本地的邻居时修改下…

mysql一些统计实用函数

文章目录 一对多&#xff0c;多的一端只查询最新数据YEAR 年份函数MONTH 月份函数QUARTER 季度函数往前递推十年往后递推十年查询去年12月份统计身份证户籍所在地人数 一对多&#xff0c;多的一端只查询最新数据 ROW_NUMBER() over(PARTITION BY evt_id ORDER BY evt_node_rec…

挖洞小技巧

挖洞小技巧 1. Google语法1.1. 基础语法1.2. 操作符 2. 寻找漏洞2.1. SQL注入2.1.1. 不带公司2.1.2. 带公司2.1.3. 如何测试 2.2. 后台管理漏洞2.2.1. 查询单个网站2.2.2. 常见后台管理路径 2.3. 支付漏洞2.4. 文件上传漏洞2.5. 查找文件类型2.6. 敏感信息泄露 3. 刷分 1. Goog…

分享讨论学习IT上培训班有用吗?个人感悟

不知不觉一入行2年有余&#xff0c;回顾自己转行的学习历程&#xff0c;历历在目。我对培训机构好感度为0&#xff01; IT分行业发展未来&#xff0c;前景还是很好的&#xff0c;但是入门方向很重要&#xff0c;要选择什么方向去学学完才有钱景&#xff0c;需要自己 &#xff0…

直接在html中引入Vue.js的cdn来实现Vue3的组合式API

Vue3的组合式API是使用setup函数来编写组件逻辑的。setup函数是Vue3中用于替代Vue2的选项API&#xff08;如data、methods等&#xff09;的一种方式。在setup函数中&#xff0c;你可以访问到一些特殊的响应式对象&#xff0c;并且可以返回一些可以在模板中使用的数据、方法等。…

[计算机入门] 使用输入法

2.12 使用输入法 输入法是一种计算机软件&#xff0c;它允许用户通过键盘在计算机上输入文字和符号。输入法主要用于处理中文、日语、韩语等语言中较为复杂的字形和字音&#xff0c;使用户能够快速、方便地输入这些文字。 在使用输入法时&#xff0c;用户可根据输入法提供的提…

百数私有云模式

百数私有云模式是百数低代码平台中带有独立服务器的模式 简介&#xff1a;百数的私有化部署是搭建在真正的“私有云”上&#xff0c;拥有独立的服务器&#xff0c;ip&#xff0c;存储&#xff0c;可用企业自己的域名&#xff0c;使用企业自己的Logo&#xff0c;通过企业自身设…

Linux--计算CPU算力

#include <iostream> #include <unistd.h> #include <signal.h>using namespace std;int count 0;void catchSig(int signum) {//cout<< "进程捕捉到了一个信号&#xff0c;正在处理中&#xff1a; "<< signum << " pid: …

【JavaScript】match用法 | 正则匹配

match正则匹配 var e "www.apple.com:baidu.com" var match e.match(/com/g) console.log("match: "match);> "match: com,com"match返回值问题 match的返回值是一个数组 数组的第0个元素是与整个正则表达式匹配的结果 数组的第1个元素是…