opencv基础55-获取轮廓的特征值及示例

news2024/11/27 4:27:13

轮廓自身的一些属性特征及轮廓所包围对象的特征对于描述图像具有重要意义。本节介绍几个轮廓自身的属性特征及轮廓所包围对象的特征。

宽高比

可以使用宽高比(AspectRation)来描述轮廓,例如矩形轮廓的宽高比为:

宽高比 = 宽度(Width)/高度(Height)

示例:编写程序计算矩形轮廓的宽高比。

import cv2
o = cv2.imread('cc.bmp')
cv2.imshow("original",o)
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,
 cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
x,y,w,h = cv2.boundingRect(contours[0])
cv2.rectangle(o,(x,y),(x+w,y+h),(255,255,255),3)
aspectRatio = float(w)/h

print(aspectRatio)
cv2.imshow("result",o)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果:
同时,程序还会显示如下的运行结果:

2.1506849315068495

可以看出,轮廓的宽高比约为 2。
在这里插入图片描述

Extent(用轮廓面积与矩形边界(矩形包围框、矩形轮廓)面积之比 )

可以使用轮廓面积与矩形边界(矩形包围框、矩形轮廓)面积之比 Extend 来描述图像及
其轮廓特征。计算方法为:
在这里插入图片描述

示例:计算图像的轮廓面积与其矩形边界面积之比。

import cv2
o = cv2.imread('cc.bmp')
cv2.imshow("original",o)
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,
 cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
x,y,w,h = cv2.boundingRect(contours[0])
cv2.drawContours(o,contours[0],-1,(0,0,255),3)
cv2.rectangle(o,(x,y),(x+w,y+h),(255,0,0),3)
#----------------计算轮廓的面积与边界矩形的面积-------------------------
rectArea=w*h
cntArea=cv2.contourArea(contours[0])

extend=float(cntArea)/rectArea
print(extend)
cv2.imshow("result",o)
cv2.waitKey()
cv2.destroyAllWindows()

同时,程序还会显示如下的运行结果:

0.6717127650292296

可以看出,本例中图像的轮廓面积与矩形边界面积的比值大约为 0.7。
在这里插入图片描述

Solidity(轮廓面积与凸包面积之比)

可以使用轮廓面积与凸包面积之比 Solidity 来衡量图像、轮廓及凸包的特征。其计算方法为:

在这里插入图片描述

示例:编写程序计算图像轮廓面积与凸包面积之比。

import cv2
o = cv2.imread('hand.bmp')
cv2.imshow("original",o)
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy =cv2.findContours(binary,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(o,contours[0],-1,(0,0,255),3)
cntArea=cv2.contourArea(contours[0])
hull = cv2.convexHull(contours[0])
hullArea = cv2.contourArea(hull)
cv2.polylines(o, [hull], True, (0, 255, 0), 2)
solidity=float(cntArea)/hullArea
print(solidity)
cv2.imshow("result",o)
cv2.waitKey()
cv2.destroyAllWindows()

同时,程序还会显示如下的运行结果:

0.6752344564084751

可以看出,本例中图像的轮廓面积与凸包面积的比值约为 0.7。

就是绿色的跟红色的面积之比
在这里插入图片描述

等效直径(Equivalent Diameter)

可以用等效直径来衡量轮廓的特征值,该值是与轮廓面积相等的圆形的直径。其计算公式为:

在这里插入图片描述

示例:计算与轮廓面积相等的圆形的直径,并绘制与该轮廓等面积的圆。

import cv2
import numpy as np
o = cv2.imread('cc.bmp')
cv2.imshow("original",o)
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,
 cv2.RETR_LIST,
 cv2.CHAIN_APPROX_SIMPLE)

cv2.drawContours(o,contours[0],-1,(0,0,255),3)
cntArea=cv2.contourArea(contours[0])
equiDiameter = np.sqrt(4*cntArea/np.pi)
print(equiDiameter)
cv2.circle(o,(100,100),int(equiDiameter/2),(0,0,255),3) #展示等直径大小的圆
cv2.imshow("result",o)
cv2.waitKey()
cv2.destroyAllWindows()

同时,程序还会显示如下的运行结果:

99.00522529212108

可以看出,与本例中与轮廓面积相等的圆形的直径约为 99。

在这里插入图片描述

方向

在 OpenCV 中,函数 cv2.fitEllipse()可以用来构造最优拟合椭圆,还可以在返回值内分别返回椭圆的中心点、轴长、旋转角度等信息。使用这种形式,能够更直观地获取椭圆的方向等信息。
函数 cv2.fitEllipse()返回各个属性值的语法格式为:

(x,y),(MA,ma),angle = cv2.fitEllipse(cnt)

式中几个返回值的意义如下:

  • (x,y):椭圆的中心点。
  • (MA,ma):椭圆水平方向轴和垂直方向轴的长度。
  • angle:椭圆的旋转角度。

示例:观察函数 cv2.fitEllipse()的不同返回值

import cv2
o = cv2.imread('cc.bmp')

cv2.imshow("original",o)
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,
 cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)

ellipse = cv2.fitEllipse(contours[0])
retval=cv2.fitEllipse(contours[0])
print("单个返回值形式:")
print("retval=\n",retval)
(x,y),(MA,ma),angle = cv2.fitEllipse(contours[0])
print("三个返回值形式:")
print("(x,y)=(",x,y,")")
print("(MA,ma)=(",MA,ma,")")
print("angle=",angle)
cv2.ellipse(o,ellipse,(0,0,255),2)
cv2.imshow("result",o)
cv2.waitKey()
cv2.destroyAllWindows()

同时,程序还会显示如下的运行结果:

单个返回值形式:
retval=
((276.2112731933594, 139.6067352294922), (63.01350021362305,
166.72308349609375), 82.60102844238281)
三个返回值形式:
(x,y)=( 276.2112731933594 139.6067352294922 )
(MA,ma)=( 63.01350021362305 166.72308349609375 )
angle= 82.60102844238281

从以上运行结果可以看出,函数 cv2.fitEllipse()以不同形式返回的值是相同的。

在这里插入图片描述

掩模和像素点

有时,我们希望获取某对象的掩模图像及其对应的点。51 节介绍了将函数cv2.drawContours()的轮廓宽度参数 thickness 设置为“-1”,即可获取特定对象的实心轮廓,即特定对象的掩模。

另外,我们可能还希望获取轮廓像素点的具体位置信息。本节介绍如何获取轮廓(实心、空心)的像素点位置信息。

一般情况下,轮廓是图像内非零的像素点,可以通过两种方式获取轮廓像素点的位置信息。

一种是使用 Numpy 函数,另外一种是使用 OpenCV 函数。
1.使用Numpy函数获取轮廓像素点
numpy.nonzero()函数能够找出数组内非零元素的位置,但是其返回值是将行、列分别显示
的。
例如,对于如下数组 a 应用函数 numpy.nonzero():

a=
[[0 0 0 1 0]
[0 0 1 0 1]
[0 0 1 1 1]
[1 0 0 0 0]
[1 0 0 0 1]]

返回的数组 a 内非零元素的位置信息为:
(array([0, 1, 1, 2, 2, 2, 3, 4, 4], dtype=int64), array([3, 2, 4, 2, 3, 4, 0,
0, 4], dtype=int64))
使用 numpy.transpose()函数处理上述返回值,则得到这些点的(x, y)形式的坐标:

[[0 3] [1 2] [1 4] [2 2] [2 3] [2 4] [3 0] [4 0] [4 4]]

示例:使用 Numpy 函数获取一个数组内的非零值元素的位置信息。

代码如下:

import numpy as np
#------------生成一个元素都是零值的数组 a-------------------
a=np.zeros((5,5),dtype=np.uint8)
#-------随机将其中 10 个位置上的数值设置为 1------------
#---times 控制次数
#---i,j 是随机生成的行、列位置

#---a[i,j]=1,将随机挑选出来的位置上的值设置为 1
for times in range(10):
 i=np.random.randint(0,5)
 j=np.random.randint(0,5)
 a[i,j]=1
#-------打印数组 a,观察数组 a 内值的情况-----------
print("a=\n",a)
#------查找数组 a 内非零值的位置信息------------
loc=np.transpose(np.nonzero(a))
#-----输出数组 a 内非零值的位置信息------------
print("a 内非零值的位置:\n",loc)

运行上述程序,会显示如下的运行结果:

a=
[[1 1 0 0 0]
[1 1 0 1 1]
[1 0 0 0 0]
[0 0 0 1 0]
[1 1 0 0 0]]
a 内非零值的位置:
[[0 0]
[0 1]
[1 0]
[1 1]
[1 3]
[1 4]
[2 0]
[3 3]
[4 0]
[4 1]]

示例:使用 Numpy 函数获取一个图像内的轮廓点位置。

import cv2
import numpy as np
#-----------------读取原始图像----------------------
o = cv2.imread('cc.bmp')
cv2.imshow("original",o)
#-----------------获取轮廓------------------------
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,
 cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
cnt=contours[0]

#-----------------绘制空心轮廓------------------------
mask1 = np.zeros(gray.shape,np.uint8)
cv2.drawContours(mask1,[cnt],0,255,2)
pixelpoints1 = np.transpose(np.nonzero(mask1))
print("pixelpoints1.shape=",pixelpoints1.shape)
print("pixelpoints1=\n",pixelpoints1)
cv2.imshow("mask1",mask1)
#-----------------绘制实心轮廓---------------------
mask2 = np.zeros(gray.shape,np.uint8)
cv2.drawContours(mask2,[cnt],0,255,-1)
pixelpoints2 = np.transpose(np.nonzero(mask2))
print("pixelpoints2.shape=",pixelpoints2.shape)
print("pixelpoints2=\n",pixelpoints2)
cv2.imshow("mask2",mask2)
#-----------------释放窗口------------------------
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

  • 左图是图像 o。
  • 中间的是空心轮廓图像 mask1。
  • 右图是实心轮廓图像 mask2。

同时,程序还会显示如下的运行结果:

pixelpoints1.shape= (1400, 2)
pixelpoints1=
 [[106 292]
 [106 293]
 [106 294]
 ...
 [180 222]
 [180 223]
 [180 224]]
pixelpoints2.shape= (7892, 2)
pixelpoints2=
 [[107 293]
 [107 294]
 [107 295]
 ...
 [179 221]
 [179 222]
 [179 223]]

使用OpenCV函数获取轮廓点

OpenCV 提供了函数 cv2.findNonZero()用于查找非零元素的索引。该函数的语法格式为:

idx = cv2.findNonZero( src )

式中:

  • idx 为返回值,表示非零元素的索引位置。需要注意的是,在返回的索引中,每个元素对应的是(列号,行号)的格式。
  • src 为参数,表示要查找非零元素的图像。

示例: 使用 OpenCV 函数 cv2.findNonZero()获取一个数组内的非零值。

代码如下:

import cv2
import numpy as np
#------------生成一个元素都是零值的数组 a-------------------
a=np.zeros((5,5),dtype=np.uint8)
#-------随机将其中 10 个位置上的值设置为 1------------
#---times 控制次数
#---i,j 是随机生成的行、列位置
#---a[i,j]=1,将随机挑选出来的位置上的值设置为 1
for times in range(10):
 i=np.random.randint(0,5)
 j=np.random.randint(0,5)
 a[i,j]=1
#-------打印数组 a,观察数组 a 内值的情况-----------
print("a=\n",a)
#------查找数组 a 内非零值的位置信息------------
loc = cv2.findNonZero(a)
#-----输出数组 a 内非零值的位置信息------------
print("a 内非零值的位置:\n",loc)

运行上述程序,会显示如下的运行结果:

a=
 [[1 1 0 0 0]
 [0 0 0 0 1]
 [0 0 1 1 0]
 [0 0 0 0 1]
 [0 0 0 0 0]]
a 内非零值的位置:
 [[[0 0]]

 [[1 0]]

 [[4 1]]

 [[2 2]]

 [[3 2]]

 [[4 3]]]

示例:使用 OpenCV 函数 cv2.findNonZero()获取一个图像内的轮廓点的位置。

import cv2
import numpy as np
#-----------------读取原始图像----------------------
o = cv2.imread('cc.bmp')
cv2.imshow("original",o)
#-----------------获取轮廓------------------------
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,
 cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
cnt=contours[0]
#-----------------绘制空心轮廓------------------------
mask1 = np.zeros(gray.shape,np.uint8)
cv2.drawContours(mask1,[cnt],0,255,2)
pixelpoints1 = cv2.findNonZero(mask1)
print("pixelpoints1.shape=",pixelpoints1.shape)
print("pixelpoints1=\n",pixelpoints1)
cv2.imshow("mask1",mask1)
#-----------------绘制实心轮廓---------------------
mask2 = np.zeros(gray.shape,np.uint8)
cv2.drawContours(mask2,[cnt],0,255,-1)
pixelpoints2 = cv2.findNonZero(mask2)
print("pixelpoints2.shape=",pixelpoints2.shape)
print("pixelpoints2=\n",pixelpoints2)
cv2.imshow("mask2",mask2)
#-----------------释放窗口------------------------
cv2.waitKey()
cv2.destroyAllWindows()
  • 左图是原图像 o。
  • 中间的是空心轮廓图像 mask1。
  • 右图是实心轮廓图像 mask2。
    在这里插入图片描述
    同时,程序还会显示如下的运行结果:
pixelpoints1.shape= (1400, 1, 2)
pixelpoints1=
[[[292 106]]
[[293 106]]
[[294 106]]
...
[[222 180]]
[[223 180]]
[[224 180]]]
pixelpoints2.shape= (7892, 1, 2)
pixelpoints2=
[[[293 107]]
[[294 107]]
[[295 107]]
...
[[221 179]]
[[222 179]]
[[223 179]]]

最大值和最小值及它们的位置

OpenCV 提供了函数 cv2.minMaxLoc(),用于在指定的对象内查找最大值、最小值及其位
置。该函数的语法格式是:

min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(imgray,mask = mask)

式中的返回值为:

  • min_val:最小值。

  • max_val:最大值。

  • min_loc:最小值的位置。

  • max_loc:最大值的位置。
    式中的参数如下:

  • imgray:单通道图像。

  • mask:掩模。通过使用掩模图像,可以得到掩模指定区域内的最值信息。

示例:使用函数 cv2.minMaxLoc()在图像内查找掩模指定区域内的最大值、最小值及其位置。

import cv2
import numpy as np
o = cv2.imread('ct.png')
cv2.imshow("original",o)
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,
 cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
cnt=contours[2] #coutours[0]、coutours[1]是左侧字母 R
#--------使用掩模获取感兴趣区域的最值-----------------
#需要注意函数 minMaxLoc 处理的对象为灰度图像,本例中处理的对象为灰度图像 gray
#如果希望获取彩色图像的最值,需要提取各个通道图像,为每个通道独立计算最值
mask = np.zeros(gray.shape,np.uint8)
mask=cv2.drawContours(mask,[cnt],-1,255,-1)
minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(gray,mask = mask)
print("minVal=",minVal)
print("maxVal=",maxVal)
print("minLoc=",minLoc)
print("maxLoc=",maxLoc)
#--------使用掩模获取感兴趣区域并显示-----------------
masko = np.zeros(o.shape,np.uint8)
masko=cv2.drawContours(masko,[cnt],-1,(255,255,255),-1)
loc=cv2.bitwise_and(o,masko)
cv2.imshow("mask",loc)
#显示灰度结果
#loc=cv2.bitwise_and(gray,mask)
#cv2.imshow("mask",loc)
#--------释放窗口-----------------
cv2.waitKey()
cv2.destroyAllWindows()

示例原图

在这里插入图片描述

  • 左图是图像 o。
  • 右图是掩模图像 mask。
    在这里插入图片描述

同时,程序还会显示如下的运行结果:

minVal= 42.0
maxVal= 200.0
minLoc= (87, 90)
maxLoc= (90, 110)

平均颜色及平均灰度

OpenCV 提供了函数 cv2.mean(),用于计算一个对象的平均颜色或平均灰度。该函数的语
法格式为:

mean_val = cv2.mean(im,mask = mask)

式中的返回值为 mean_val,表示返回的平均值。
式中的参数如下:

  • im:原图像。
  • mask:掩模。

示例:使用函数 cv2.mean()计算一个对象的平均灰度。

import cv2
import numpy as np
#--------读取并显示原始图像-----------------
o = cv2.imread('ct.png')
cv2.imshow("original",o)
#--------获取轮廓-----------------
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,
 cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
cnt=contours[2] #coutours[0]、coutours[1]是左侧字母 R
#--------使用掩模获取感兴趣区域的均值-----------------
mask = np.zeros(gray.shape,np.uint8) #构造 mean 所使用的掩模(必须是单通道的)

cv2.drawContours(mask,[cnt],0,(255,255,255),-1)
meanVal = cv2.mean(o,mask = mask) # mask 是一个区域,所以必须是单通道的
print("meanVal=\n",meanVal)
#--------使用掩模获取感兴趣区域并显示-----------------
masko = np.zeros(o.shape,np.uint8)
cv2.drawContours(masko,[cnt],-1,(255,255,255),-1)
loc=cv2.bitwise_and(o,masko)
cv2.imshow("mask",loc)
#--------释放窗口-----------------
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

  • 左图是图像 o。
  • 右图是获取的感兴趣区域。

同时,程序还会显示如下的运行结果:

meanVal= (85.45594913714805, 85.45594913714805, 85.45594913714805, 0.0)

从上述结果可以看出,函数 cv2.mean()能够计算各个通道的均值。上述 4 个值分别是 RGB和 A 通道(alpha
通道)的均值。本例中,RGB 三个通道的值相同,所以计算出的均值也是一样的。

极点

有时,我们希望获取某个对象内的极值点,例如最左端、最右端、最上端、最下端的四个
点。OpenCV 提供了相应的函数来找出这些点,通常的语法格式是:

leftmost = tuple(cnt[cnt[:,:,0].argmin()][0])
rightmost = tuple(cnt[cnt[:,:,0].argmax()][0])
topmost = tuple(cnt[cnt[:,:,1].argmin()][0])
bottommost = tuple(cnt[cnt[:,:,1].argmax()][0])

示例: 计算一幅图像内的极值点。

import cv2
import numpy as np
o = cv2.imread('cs.bmp')
#--------获取并绘制轮廓-----------------
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
mask = np.zeros(gray.shape,np.uint8)
cnt=contours[0]
cv2.drawContours(mask,[cnt],0,255,-1)
#--------计算极值-----------------
leftmost = tuple(cnt[cnt[:,:,0].argmin()][0])
rightmost = tuple(cnt[cnt[:,:,0].argmax()][0])
topmost = tuple(cnt[cnt[:,:,1].argmin()][0])
bottommost = tuple(cnt[cnt[:,:,1].argmax()][0])
#--------打印极值-----------------
print("leftmost=",leftmost)
print("rightmost=",rightmost)
print("topmost=",topmost)
print("bottommost=",bottommost)
#--------绘制说明文字-----------------
font=cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(o,'A',leftmost, font, 1,(0,0,255),2)
cv2.putText(o,'B',rightmost, font, 1,(0,0,255),2)
cv2.putText(o,'C',topmost, font, 1,(0,0,255),2)
cv2.putText(o,'D',bottommost, font, 1,(0,0,255),2)
#--------绘制图像-----------------
cv2.imshow("result",o)
#--------释放窗口-----------------
cv2.waitKey()
cv2.destroyAllWindows()

其中的A,B,C,D 就是该图像的极点
在这里插入图片描述
同时,程序还会显示如下的运行结果:

leftmost= (202, 135)
rightmost= (423, 120)
topmost= (369, 69)
bottommost= (216, 179)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/858726.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux系统介绍

一、Linux系统和Windows系统的区别: 1.Linux主要使用命令行来操作系统,Windows是使用图形化界面来操作系统。 在Linux系统中可以通过在桌面鼠标右击选择在终端中打开然后通过终端来操作,也可以使用快捷键ctrlaltt进入终端;可以直…

修改el-select和el-input样式;修改element-plus的下拉框el-select样式

修改el-select样式 .select_box{// 默认placeholder:deep .el-input__inner::placeholder {font-size: 14px;font-weight: 500;color: #3E534F;}// 默认框状态样式更改:deep .el-input__wrapper {height: 42px;background-color: rgba(0,0,0,0)!important;box-shadow: 0 0 0 …

CSGO搬砖会被红锁吗?不清楚这些的话steam搬砖大家千万别做。

科思创业汇 大家好,这里是科思创业汇,一个轻资产创业孵化平台。赚钱的方式有很多种,我希望在科思创业汇能够给你带来最快乐的那一种! 在CSGO游戏中,许多玩家通过搬砖赚钱。小编整理了相关资料。让我们看看&#xff0…

单芯片3路CC管理的VR转接器解决方案

VR眼镜即VR头显,也称虚拟现实头戴式显示设备,随着元宇宙概念的传播,VR眼镜的热度一直只增不减,但是头戴设备的续航一直被人诟病,如果增大电池就会让头显变得笨重影响体验,所以目前最佳的解决方案还是使用VR…

微信开发之一键修改好友标签的技术实现

移除标签下的好友: 把需移除的好友所有标签查出来(通讯录详情接口返回标签id,数据库需缓存),去掉想移出的标签id,labelIdList参数放进其他所有标签id。 增加标签新好友: 把需添加的好友所有标签…

STM32入门——ADC模数转换

ADC简介 ADC(Analog-Digital Converter)模拟-数字转换器ADC可以将引脚上连续变化的模拟电压转换为内存中存储的数字变量,建立模拟电路到数字电路的桥梁12位逐次逼近型ADC,1us转换时间输入电压范围:0~3.3V,…

数据结构---B树

目录标题 B-树的由来B-树的规则和原理B-树的插入分析B-树的插入实现准备工作find函数insert中序遍历 B-树的性能测试B-树的删除B树B树的元素插入B*树的介绍 B-树的由来 在前面的学习过程中,我们见过很多搜索结构比比如说顺序查找,二分查找,搜…

C++ 计算 拟合优度R^2

解决的问题: 拟合优度(Goodness of Fit)是指回归直线对观测值的拟合程度,度量拟合优度的统计量是可决系数(亦称确定系数) R?。R最大值为 1。R%的值越接近1,说明回归直线对观测值的拟合程度越好,反之,R%值越小&#x…

腾讯云香港服务器租用价格_CN2线路延迟速度测试

腾讯云香港服务器,目前中国香港地域轻量应用服务器可选配置2核2G20M、2核2G30M、2核4G30M,操作系统可选Windows和Linux,不只是香港云服务器,新加坡、硅谷、法兰克福和东京服务器均有活动,腾讯云服务器网分享腾讯云境外…

Java开发要学哪些知识点?建议收藏

随着信息技术的快速发展,Java语言技能成为了企业招聘市场上最受欢迎的技能之一。在这样的市场需求下,Java开发也成为了很多人想要掌握的基本技能之一。那么,我们在学习Java开发时,应当掌握哪些知识点呢?下面,小编将为…

微信小程序调用map数据 并在wxml中对数组进行截取的操作

wxs文件的位置如图 实现数组截取 只保留五张图片 <wxs module"filter" src"./slicefunc.wxs"></wxs> <view class"wrap"><view class"search-box" bindtap"toSearch"><view class"v1"…

Linux系统的Centos7扩容主分区

前言&#xff1a;在学习C#的过程中电脑里面的项目&#xff0c;镜像越来越多之前装系统的时候分配的空间太小导致Linux系统空间不足&#xff0c;应该怎么办呢&#xff0c;lets go 跟着我来将centOS 7扩容吧. 1.关闭虚拟机&#xff0c;在VMWare的”此虚拟机设置“中找到硬盘&…

14个前端开发者应该知道的实用网站

在本文中&#xff0c;我将分享一些非常有用的网站合集&#xff0c;这些网站可以在你的日常工作中极大地帮助你。这些网站已经成为我各种任务的首选资源&#xff0c;节省了我的时间&#xff0c;提高了工作效率 文档自动化 Documatic 是一款专为开发人员设计的非常高效的搜索引擎…

让我们一起探讨汽车充电桩控制主板的应用

你是否想过&#xff0c;你的汽车充电桩可以更智能?可以支持更多类型的电池&#xff0c;更多操作系统&#xff0c;更多协议和更多电源?让我们一起探讨汽车充电桩控制主板的应用。 控制主板是充电桩的大脑&#xff0c;它可以应用于各种充电桩&#xff0c;包括智能充电桩、电动汽…

windows常用shell命令大全

简介 基于鼠标操作的后果就是OS界面外观发生改变&#xff0c; 就得多花学习成本。更主要的是基于界面引导Path与命令行直达速度是难以比拟的。另外Geek很大一部分是键盘控&#xff0c;而非鼠标流的。 整理Windows的常用Shell命令&#xff0c;一方面帮助深入学习Mysql&#xf…

MyBatisPlus的介绍

本资料仅用于学习和讨论&#xff0c;如有侵权请反馈 https://mp .baomidou. com/ MyBatis-Plus 1.1 为什么网站叫做苞米逗是国人开发的 1.2 点击快速开发 1.3 点击快速开始 1.4 Mybatis的特性 2、快速的把数据层的标准开发给做完&#xff1a; 2.1上来就来标准开发了&#xf…

C++的六大“天选之子“拷贝构造与与运算符重载

&#x1f388;个人主页:&#x1f388; :✨✨✨初阶牛✨✨✨ &#x1f43b;推荐专栏1: &#x1f354;&#x1f35f;&#x1f32f;C语言初阶 &#x1f43b;推荐专栏2: &#x1f354;&#x1f35f;&#x1f32f;C语言进阶 &#x1f511;个人信条: &#x1f335;知行合一 &#x1f…

甄知头条 | 燕千云与TeamCenter深度集成,无缝连接!打造协作利器

​ 甄知科技旗下的“燕千云数智化业务服务平台”近日与TeamCenter进行深度集成&#xff0c;形成合力&#xff0c;为使用TeamCenter软件的企业提供了更加全面、高效、智能的数字化转型解决方案。 Teamcenter&#xff0c;是全世界最广泛使用的PLM系统&#xff0c;是业内首个将单个…

奇安信天擎导致软件无法卸载 - 解决方案

奇安信天擎导致软件无法卸载 - 解决方案 前言安全模式解决方案进入安全模式卸载无法卸载的软件 前言 若电脑中安装了奇安信天擎&#xff0c;此软会时刻监控系统&#xff0c;禁止某些程序运行&#xff0c;开机自启且无法主动退出。但可能会出现这样一种情况&#xff0c;安装某软…