opencv 基础50-图像轮廓学习03-Hu矩函数介绍及示例-cv2.HuMoments()

news2024/11/15 17:15:36

什么是Hu 矩?

Hu 矩(Hu Moments)是由计算机视觉领域的科学家Ming-Kuei Hu于1962年提出的一种图像特征描述方法。这些矩是用于描述图像形状和几何特征的不变特征,具有平移、旋转和尺度不变性,适用于图像识别、匹配和形状分析等任务。

Ming-Kuei Hu在其论文中提出了七个用于形状描述的独特特征,称之为Hu矩。这些特征通过一系列组合和归一化操作,能够捕获图像的不同几何属性,如大小、形状、旋转等,同时保持了对这些变换的不变性。这使得Hu矩在图像处理领域中成为了一种重要的特征表示方法。

以下是七个Hu矩的表示:

  1. 第一不变矩(Invariant Moment 1):描述图像的大小。

  2. 第二不变矩(Invariant Moment 2):描述图像的形状,与图像的缩放无关。

  3. 第三不变矩(Invariant Moment 3):描述图像的形状,与图像的缩放无关。

  4. 第四不变矩(Invariant Moment 4):描述图像的形状和旋转,与图像的缩放无关。

  5. 第五不变矩(Invariant Moment 5):描述图像的形状和旋转,与图像的缩放无关。

  6. 第六不变矩(Invariant Moment 6):描述图像的形状,与图像的缩放和旋转无关。

  7. 第七不变矩(Invariant Moment 7):描述图像的形状,与图像的缩放和旋转无关。

Hu 矩 应用场景?

Hu 矩(Hu Moments)由于其对图像形状的不变性,适用于多种图像处理和模式识别应用场景。以下是一些常见的Hu矩应用场景:

  1. 形状识别:Hu矩可以用于描述图像中的形状,从而实现形状识别。它们对图像的尺度、旋转和平移变换具有不变性,因此可以在不同的姿态和尺寸下进行形状匹配。

  2. 模式识别:Hu矩可以用于模式识别任务,如字符识别、手写字体识别等。它们可以捕获图像的局部和全局特征,从而实现对不同模式的识别。

  3. 目标检测:Hu矩可以用于图像中目标的检测和定位。通过比较目标和待检测区域的Hu矩特征,可以判断目标是否存在并确定其位置。

  4. 图像匹配:Hu矩可以用于图像的匹配和对准。通过计算图像的Hu矩特征,可以找到相似的图像或对象。

  5. 图像检索:在图像检索任务中,Hu矩可以用作图像的特征表示,从而实现对相似图像的检索。

  6. 物体排序:Hu矩可以用于对物体进行排序,根据其形状特征的相似性进行排列。

  7. 医学图像分析:在医学图像领域,Hu矩可以用于描述器官和病变的形状特征,实现图像分析和诊断。

  8. 遥感图像分析:在遥感图像分析中,Hu矩可以用于分析地物的形状和分布,如土地利用分类等

Hu矩函数介绍

函数 cv2.HuMoments()的语法格式为:

hu = cv2.HuMoments( m )

式中返回值 hu,表示返回的 Hu 矩值;参数 m,是由函数 cv2.moments()计算得到矩特征值。

Hu 矩是归一化中心矩的线性组合,每一个矩都是通过归一化中心矩的组合运算得到的。
函数 cv2.moments()返回的归一化中心矩中包含:

  • 二阶 Hu 矩:nu20, nu11, nu02
  • 三阶 Hu 矩:nu30, nu21, nu12, nu03
    为了表述上的方便,将上述字母“nu”表示为字母“v”,则归一化中心矩为:
  • 二阶 Hu 矩:v20, v11, v02
  • 三阶 Hu 矩:v30, v21, v12, v03
    上述 7 个 Hu 矩的计算公式为:

在这里插入图片描述

代码示例:

本例对 Hu 矩中的第 0 个矩ℎ0 = 𝑣20 + 𝑣02的关系进行验证,即 Hu 矩中第 0 个矩对应的函数 cv2.moments()的返回值为:

ℎ0 = 𝑛𝑢20 + 𝑛𝑢02

代码如下:

import cv2
o1 = cv2.imread('cs1.bmp')
gray = cv2.cvtColor(o1,cv2.COLOR_BGR2GRAY)
#获取图像的Hu矩
HuM1=cv2.HuMoments(cv2.moments(gray)).flatten()
print("cv2.moments(gray)=\n",cv2.moments(gray))
print("\nHuM1=\n",HuM1)
print("\ncv2.moments(gray)['nu20']+cv2.moments(gray)['nu02']=%f+%f=%f\n"
 %(cv2.moments(gray)['nu20'],cv2.moments(gray)['nu02'],
 cv2.moments(gray)['nu20']+cv2.moments(gray)['nu02']))
print("HuM1[0]=",HuM1[0])
print("\nHu[0]-(nu02+nu20)=",
 HuM1[0]-(cv2.moments(gray)['nu20']+cv2.moments(gray)['nu02']))

运行结果:

cv2.moments(gray)=
 {'m00': 2729265.0, 'm10': 823361085.0, 'm01': 353802555.0, 'm20': 256058984145.0, 'm11': 104985534390.0, 'm02': 47279854725.0, 'm30': 81917664997185.0, 'm21': 32126275537320.0, 'm12': 13822864338150.0, 'm03': 6484319942535.0, 'mu20': 7668492092.239544, 'mu11': -1749156290.6675763, 'mu02': 1415401136.0198045, 'mu30': 43285283824.24758, 'mu21': -12028503719.706358, 'mu12': 13036213891.873255, 'mu03': -11670178717.880629, 'nu20': 0.0010294815371794516, 'nu11': -0.0002348211467422498, 'nu02': 0.00019001510593064498, 'nu30': 3.517434386213551e-06, 'nu21': -9.77456282143905e-07, 'nu12': 1.0593444921255944e-06, 'nu03': -9.48338194620685e-07}

HuM1=
 [ 1.21949664e-03  9.25267773e-07  4.05157060e-12  2.46555893e-11
  2.41189094e-22  2.27497012e-14 -5.05282814e-23]

cv2.moments(gray)['nu20']+cv2.moments(gray)['nu02']=0.001029+0.000190=0.001219

HuM1[0]= 0.0012194966431100965

Hu[0]-(nu02+nu20)= 0.0

程序运行结果显示“Hu[0]-(nu02+nu20)= 0.0”。从该结果可知,关系ℎ0 = 𝑛𝑛20 + 𝑛𝑢02成立。

示例2: 计算三幅不同图像的 Hu 矩,并进行比较。

代码如下:

import cv2
o1 = cv2.imread('cs1.bmp')
gray1 = cv2.cvtColor(o1,cv2.COLOR_BGR2GRAY)
HuM1=cv2.HuMoments(cv2.moments(gray1)).flatten()
#----------------计算图像 o2 的 Hu 矩-------------------
o2 = cv2.imread('cs3.bmp')
gray2 = cv2.cvtColor(o2,cv2.COLOR_BGR2GRAY)
HuM2=cv2.HuMoments(cv2.moments(gray2)).flatten()
#----------------计算图像 o3 的 Hu 矩-------------------
o3 = cv2.imread('lena.bmp')
gray3 = cv2.cvtColor(o3,cv2.COLOR_BGR2GRAY)
HuM3=cv2.HuMoments(cv2.moments(gray3)).flatten()
#---------打印图像 o1、图像 o2、图像 o3 的特征值------------
print("o1.shape=",o1.shape)
print("o2.shape=",o2.shape)
print("o3.shape=",o3.shape)
print("cv2.moments(gray1)=\n",cv2.moments(gray1))
print("cv2.moments(gray2)=\n",cv2.moments(gray2))
print("cv2.moments(gray3)=\n",cv2.moments(gray3))
print("\nHuM1=\n",HuM1)
print("\nHuM2=\n",HuM2)
print("\nHuM3=\n",HuM3)
#---------计算图像 o1 与图像 o2、图像 o3 的 Hu 矩之差----------------
print("\nHuM1-HuM2=",HuM1-HuM2)
print("\nHuM1-HuM3=",HuM1-HuM3)
#---------显示图像----------------
cv2.imshow("original1",o1)
cv2.imshow("original2",o2)
cv2.imshow("original3",o3)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果:
显示各个图像的 shape 属性、moments 属性、HuMoments 属性,以及不同图像的 Hu 矩之差

o1.shape= (425, 514, 3)
o2.shape= (425, 514, 3)
o3.shape= (512, 512, 3)
cv2.moments(gray1)=
 {'m00': 2729265.0, 'm10': 823361085.0, 'm01': 353802555.0, 'm20': 256058984145.0, 'm11': 104985534390.0, 'm02': 47279854725.0, 'm30': 81917664997185.0, 'm21': 32126275537320.0, 'm12': 13822864338150.0, 'm03': 6484319942535.0, 'mu20': 7668492092.239544, 'mu11': -1749156290.6675763, 'mu02': 1415401136.0198045, 'mu30': 43285283824.24758, 'mu21': -12028503719.706358, 'mu12': 13036213891.873255, 'mu03': -11670178717.880629, 'nu20': 0.0010294815371794516, 'nu11': -0.0002348211467422498, 'nu02': 0.00019001510593064498, 'nu30': 3.517434386213551e-06, 'nu21': -9.77456282143905e-07, 'nu12': 1.0593444921255944e-06, 'nu03': -9.48338194620685e-07}
cv2.moments(gray2)=
 {'m00': 1755675.0, 'm10': 518360685.0, 'm01': 190849140.0, 'm20': 156229722135.0, 'm11': 55624504050.0, 'm02': 21328437150.0, 'm30': 47992502493915.0, 'm21': 16559578863270.0, 'm12': 6135747671370.0, 'm03': 2448843661890.0, 'mu20': 3184426306.5185323, 'mu11': -723448129.1111062, 'mu02': 582345624.666668, 'mu30': -14508249198.719406, 'mu21': 3955540976.461006, 'mu12': -4161129804.772763, 'mu03': 3747496072.0989423, 'nu20': 0.0010331014067430548, 'nu11': -0.00023470327398074627, 'nu02': 0.00018892636416872804, 'nu30': -3.552259578607564e-06, 'nu21': 9.684909688102524e-07, 'nu12': -1.018828185563436e-06, 'nu03': 9.175523962658914e-07}
cv2.moments(gray3)=
 {'m00': 32524520.0, 'm10': 8668693016.0, 'm01': 8048246168.0, 'm20': 3012074835288.0, 'm11': 2188197716912.0, 'm02': 2697437187672.0, 'm30': 1162360702630328.0, 'm21': 771188127583648.0, 'm12': 737629807045152.0, 'm03': 1024874860779368.0, 'mu20': 701626022956.6517, 'mu11': 43115319152.08315, 'mu02': 705885386731.4578, 'mu30': -14447234840441.977, 'mu21': 2862363425762.6274, 'mu12': -2650458863973.0146, 'mu03': 8044566997348.251, 'nu20': 0.0006632601374460898, 'nu11': 4.0757713612639876e-05, 'nu02': 0.0006672865932933315, 'nu30': -2.3947351703101653e-06, 'nu21': 4.7445773821681405e-07, 'nu12': -4.393330024129607e-07, 'nu03': 1.3334460006519109e-06}

HuM1=
 [ 1.21949664e-03  9.25267773e-07  4.05157060e-12  2.46555893e-11
  2.41189094e-22  2.27497012e-14 -5.05282814e-23]

HuM2=
 [ 1.22202777e-03  9.32974010e-07  4.19762083e-12  2.44520029e-11
  2.44855011e-22  2.27298009e-14 -3.76120600e-23]

HuM3=
 [ 1.33054673e-03  6.66097722e-09  1.16744767e-12  1.13004583e-11
 -2.02613532e-24 -8.54504575e-16  4.09952009e-23]

HuM1-HuM2= [-2.53112780e-06 -7.70623675e-09 -1.46050222e-13  2.03586345e-13
 -3.66591675e-24  1.99003443e-17 -1.29162214e-23]

HuM1-HuM3= [-1.11050088e-04  9.18606796e-07  2.88412294e-12  1.33551309e-11
  2.43215229e-22  2.36042058e-14 -9.15234823e-23]

从上述输出结果可以看到,由于 Hu 矩的值本身就非常小,因此在这里并没有发现两个对象的 Hu 矩差值的特殊意义。那怎么样才行让这三个图进行更明显的匹配呢? opencv 提供了函数 cv2.matchShapes()允许我们提供两个对象,对二者的 Hu 矩进行比较。

形状匹配函数 cv2.matchShapes()

函数 cv2.matchShapes()的语法格式为:

retval = cv2.matchShapes( contour1, contour2, method, parameter )

式中 retval 是返回值。
该函数有如下 4 个参数:

  • contour1:第 1 个轮廓或者灰度图像。
  • contour2:第 2 个轮廓或者灰度图像。
  • method:比较两个对象的 Hu 矩的方法,具体如表 12-1 所示

在这里插入图片描述
在表 12-1 中,A 表示对象 1,B 表示对象 2:

在这里插入图片描述
式中,ℎ𝑖𝐴和ℎ𝑖𝐵分别是对象 A 和对象 B 的 Hu 矩。

  • parameter:应用于 method 的特定参数,该参数为扩展参数,目前(新版本)不支持该参数,因此将该值设置为 0。

示例:使用函数 cv2.matchShapes()计算三幅不同图像的匹配度。

代码如下:

import cv2
o1 = cv2.imread('cs1.bmp')
o2 = cv2.imread('cs2.bmp')
o3 = cv2.imread('cc.bmp')

gray1 = cv2.cvtColor(o1,cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(o2,cv2.COLOR_BGR2GRAY)
gray3 = cv2.cvtColor(o3,cv2.COLOR_BGR2GRAY)

ret, binary1 = cv2.threshold(gray1,127,255,cv2.THRESH_BINARY)
ret, binary2 = cv2.threshold(gray2,127,255,cv2.THRESH_BINARY)
ret, binary3 = cv2.threshold(gray3,127,255,cv2.THRESH_BINARY)

contours1, hierarchy = cv2.findContours(binary1,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
contours2, hierarchy = cv2.findContours(binary2,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
contours3, hierarchy = cv2.findContours(binary3,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)

cnt1 = contours1[0]
cnt2 = contours2[0]
cnt3 = contours3[0]

ret0 = cv2.matchShapes(cnt1,cnt1,1,0.0)
ret1 = cv2.matchShapes(cnt1,cnt2,1,0.0)
ret2 = cv2.matchShapes(cnt1,cnt3,1,0.0)

print("相同图像的 matchShape=",ret0)
print("相似图像的 matchShape=",ret1)
print("不相似图像的 matchShape=",ret2)


cv2.imshow("o1",o1)
cv2.imshow("o2",o2)
cv2.imshow("o3",o3)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果:

相同图像的 matchShape= 0.0
相似图像的 matchShape= 0.10720296440067095
不相似图像的 matchShape= 0.5338506830800509

在这里插入图片描述

从以上结果可以看出:

  • 同一幅图像的 Hu 矩是不变的,二者差值为 0。
  • 相似的图像即使发生了平移、旋转和缩放后,函数 cv2.matchShapes()的返回值仍然比较
    接近。例如,图像 o1 和图像 o2,o2 是对 o1 经过缩放、旋转和平移后得到的,但是对
    二者应用 cv2.matchShapes()函数后,返回值的差较小。
  • 不相似图像 cv2.matchShapes()函数返回值的差较大。例如,图像 o1 和图像 o3 的差别较大,因此对二者应用 cv2.matchShapes()函数后,返回值的差也较大

所以当两图片的Hu 矩 二者的差值为0或者接近0 ,说明两个图片的轮廓基本上是一致的。


实验原图:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/855640.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

微信小程序 地图map(电子围栏圆形和多边形)

正常情况下是没有手机上画电子围栏的,公共平台上我也没找到,所以走了一个歪点子,就是给地图添加点击事件,记录点的位置,在画到电子围栏上就是添加电子围栏了,如果只是显示电子围栏就简单了 一、多边形电子…

kubernetes中的kubectl命令详解

kubectl命令详解 一:陈述式资源管理方法:(1)简单的基础命令1.查看版本信息2.查看资源对象简写3.查看集群信息4.配置kubectl自动补全5.node节点查看日志 (2)基本信息查看1.查看 master 节点状态2.查看命名空…

黑马大数据学习笔记4-Hive部署和基本操作

目录 思考规划安装MySQL数据库修改root用户密码配置Hadoop下载解压Hive提供MySQL Driver包配置Hive初始化元数据库启动Hive(使用Hadoop用户)Hive体验HiveServer2HiveServer2服务启动 Beeline p48、51、52 https://www.bilibili.com/video/BV1WY4y197g7/?…

《合成孔径雷达成像算法与实现》Figure3.9

代码复现如下: clc clear close all% 参数设置 TBP 100; % 时间带宽积 T 7.2e-6; % 脉冲持续时间 t_0 1e-6; % 脉冲回波时延% 参数计算 B TBP/T; …

计网实验第三章:TCP

问题集一 问题一 客户端计算机(源)使用的IP地址和TCP端口号是什么?将文件传输到gaia.cs.umass.edu? 图1 答:如图1中所示:192.168.31.7 ,80 问题二 gaia.c.s.umass.edu的IP地址是什么?发送的端口号是什么并接收此连接的TCP段…

VR内容定制 | VR内容中控管理平台可以带来哪些价值?

随着科技的不断发展,虚拟现实(VR)技术已经逐渐渗透到各个领域,其中教育领域也不例外。通过VR技术,学生可以身临其境地参与到各种场景中,获得更加直观、生动的学习体验。为了让教师更好地进行VR教学的设计和管理,提高教…

Mac电脑如何把照片以文件格式导出?

在Mac电脑上,我们经常会拍摄、保存和编辑各种照片。有时候,我们可能需要将这些照片以文件形式导出,以便与他人共享、打印或备份。无论您是要将照片发送给朋友、上传到社交媒体,还是保存到外部存储设备,导出照片为文件是…

Wlan——射频和天线基础知识

目录 射频的介绍 射频和Wifi 射频的相关基础概念 射频的传输 信号功率的单位 射频信号传输行为 天线的介绍 天线的分类 天线的基本原理 天线的参数 射频的介绍 射频和Wifi 什么是射频 从射频发射器产生一个变化的电流(交流电),通过…

Java后端开发需要学什么课程,能够帮助就业

Java后端开发需要学什么课程,学习内容对于想要在Java就业的同学来说非常重要。以下是一些关键的学习内容,可以帮助他们在Java领域获得就业机会: Java核心知识:掌握Java编程语言的基本语法、面向对象编程、异常处理、集合框架等核心…

[保研/考研机试] KY102 计算表达式 上海交通大学复试上机题 C++实现

描述 对于一个不存在括号的表达式进行计算 输入描述: 存在多组数据,每组数据一行,表达式不存在空格 输出描述: 输出结果 示例1 输入: 6/233*4输出: 18思路: ①设立运算符和运算数两个…

并发——synchronized 关键字

文章目录 1.说一说自己对于 synchronized 关键字的了解2. 说说自己是怎么使用 synchronized 关键字3. 构造方法可以使用 synchronized 关键字修饰么?4. 讲一下 synchronized 关键字的底层原理4.1. synchronized 同步语句块的情况4.2. synchronized 修饰方法的的情况…

多用户跨境电商商品库系统快速搭建(全开源)

搭建一个多用户跨境电商商品库系统需要以下步骤: 1. 确定系统需求:首先,需要明确系统的功能需求,包括商品管理、订单管理、用户管理、支付管理等。根据具体需求确定系统的功能和界面设计。 2. 确定技术栈:选择合适的…

Redis简单学习

Redis是一个基于内存的key-value结构数据库 linux上面安装: Redis存储的是key-value结构的数据,其中key是字符串,value有常见的5中数据类型: 字符串 string哈希 hash列表 list集合 set有序集合 sorted set 字符串常用操作&am…

Jmeter压测实战:Jmeter二次开发之自定义函数

目录 1 前言 2 开发准备 3 自定义函数核心实现 3.1 新建项目 3.2 继承实现AbstractFunction类 3.3 最终项目结构 4 Jmeter加载扩展包 4.1 maven构建配置 4.2 项目打包 4.3 Jmeter加载扩展包 5 自定义函数调用调试 5.1 打开Jmeter函数助手,选择自定义函数…

linux文件I/O之 open() 函数用法

#include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> typedef unsigned int mode_t ; int open(const char *pathname, int flags); int open(const char *pathname, int flags, mode_t mode); 函数功能 打开或创建一个文件 返回值 成功…

4.2、Flink任务怎样读取文件中的数据

目录 1、前言 2、readTextFile&#xff08;已过时&#xff0c;不推荐使用&#xff09; 3、readFile&#xff08;已过时&#xff0c;不推荐使用&#xff09; 4、fromSource(FileSource) 推荐使用 1、前言 思考: 读取文件时可以设置哪些规则呢&#xff1f; 1. 文件的格式(tx…

上海震坤行工业超市入选胡润百富“中国产业互联网30强”

上海震坤行工业超市入选胡润百富“中国产业互联网30强” &#xff08;2023年6月27日&#xff0c;广州&#xff09;全面提供全球最具潜力创业企业榜单的胡润研究院今日发布《2023胡润中国产业互联网30强》&#xff08;Hurun China IIoT Top 30 2023&#xff09;&#xff0c;榜…

利用Ettercap进行DNS欺骗攻击

一、域名系统&#xff08;DNS&#xff09; 域名系统DNS是Internet上使用的命名系统&#xff0c;用于将系统名称转换为人们易于使用的IP地址。域名系统是基于互联网的前身ARPANET开发的&#xff0c;在ARPANET时代&#xff0c;主机名和对应的IP地址是通过HOST.TXT文件集中管理的…

IPO观察丨困于门店扩张的KK集团,还能讲好增长故事吗?

KK集团发起了其IPO之路上的第三次冲击。 近日&#xff0c;KK集团更新了招股书&#xff0c;继续推进港交所上市进程&#xff0c;此前两次上市搁置后终于有了新动向。从更新内容来看&#xff0c;KK集团招股书披露了公司截至2023年一季度的最新业绩&#xff0c;交出一份不错的“成…

你怎么看这MyBatis-flex框架 ?(入门篇)

1、简介 在国内目前使用最多的ORM框架就是Mybatis-Plus&#xff0c;也不得不承认&#xff0c;Mybatis-Plus相对于JPA而言&#xff0c;也确实好用一些&#xff08;就个人而言&#xff09;&#xff0c;但是在国外JPA框架还是挺火的&#xff0c;因为JPA是一个完全的ORM框架&#x…