【机器学习】编码、创造和筛选特征

news2025/1/10 20:26:28

在机器学习和数据科学领域中,特征工程是提取、转换和选择原始数据以创建更具信息价值的特征的过程。假设拿到一份数据集之后,如何逐步完成特征工程呢?

文章目录

  • 一、特性类型分析
    • 1.1 数值型特征
    • 1.2 类别型特征
    • 1.3 时间型特征
    • 1.4 文本型特征
    • 1.5 图像型特征
    • 1.6 组合特征
  • 二、找到关键特征
    • 2.1 相关性分析
    • 2.2 树模型重要性
  • 三、对特征进行编码
  • 四、构建基础模型
  • 五、构造新的特征
  • 六、特征筛选与验证

一、特性类型分析

不同类型的特征包含的信息不同的,首先需要按照赛题字段的说明去对每个字段的类型进行区分。

在这里插入图片描述
下面是对不同类型的特征进行编码和操作的方法,其中取值特征本身包含的信息较多,因此可以直接考虑进行缩放:

1.1 数值型特征

  1. 缩放:将数值特征缩放到一个范围,通常使用Min-Max缩放或标准化(z-score)。
  2. 离散化:将连续数值转换为离散类别,例如分箱操作。
  3. 平滑化:应用平滑算法(如指数平滑)来减少噪声和波动。
  4. 派生新特征:通过组合或数学运算创建新的数值型特征。

1.2 类别型特征

  1. 标签编码:将类别映射为整数,常用于树模型。
  2. 独热编码:将类别转换成二进制向量,适用于线性模型和神经网络。
  3. 有序编码:根据类别的有序关系,将其转换成整数编码。
  4. 统计特征:基于类别特征进行统计计算,如均值、频率等。

1.3 时间型特征

  1. 提取时间信息:从时间戳中提取年、月、日、小时等信息作为新特征。
  2. 周期性处理:对于循环时间特征,可以使用正弦余弦变换将其转换为线性空间。

1.4 文本型特征

  1. 词袋模型:将文本转换为向量表示,如TF-IDF、词频等。
  2. 词嵌入:使用词向量将单词映射到连续向量空间,如Word2Vec、GloVe。
  3. 文本长度:记录文本的长度作为一个特征。

1.5 图像型特征

  1. 预训练网络特征提取:使用预训练的卷积神经网络(如VGG、ResNet)提取图像特征。
  2. 图像直方图:提取图像的颜色直方图作为特征。

1.6 组合特征

  1. 特征交叉:将不同特征进行交叉组合,创造新的特征。
  2. 特征合并:将多个特征合并为一个更有意义的特征。

二、找到关键特征

数据往往具有大量的特征,而并非所有特征都对目标变量有同等重要的影响。为了建立高性能的机器学习模型,我们需要找到关键特征,即对预测目标具有显著贡献的特征。

在这里插入图片描述

2.1 相关性分析

相关性是衡量两个变量之间线性关系强度的指标,可以用来发现特征与目标变量之间的关联程度。常用的相关性计算方法包括皮尔逊相关系数和斯皮尔曼等级相关系数。通过计算各个特征与目标变量之间的相关性,我们可以找到与目标变量强相关的特征。

2.2 树模型重要性

决策树和随机森林等树模型可以通过测量特征在树中分裂中的贡献度来评估特征的重要性。树模型重要性的计算方法通常包括特征在树中分裂的次数、特征带来的信息增益或基尼系数的变化等。

三、对特征进行编码

在将数据纳入模型之前,还需要对特征进行编码,将原有的特征转换成数值形式,或者抽取出特征中的信息。

在这里插入图片描述

  1. 特征抽取:某些特征可能含有大量信息,但以原始形式难以表达,特征编码有助于从中抽取出有用的信息,提高模型的表现。
  2. 处理类别型数据:类别型特征常常需要进行编码,以便模型能够理解并学习它们之间的关系。

类别特征编码有多种方法可供选择,常见的包括标签编码、独热编码、二进制编码等。每种方法都有其优势和限制,因此需要综合考虑特征的属性和模型的要求,选择最适合的编码方式。在实际应用中,我们需要根据具体情况选择适合的编码方法,这需要考虑以下因素:

类别特征的性质:

  1. 若类别特征存在顺序关系,标签编码可能更合适,以保留类别之间的相对大小关系。
  2. 若类别特征之间没有顺序关系,独热编码或二进制编码可能更为合适,以避免引入错误的信息。

数据集的规模:

当数据集规模较大时,独热编码可能导致高维度问题,增加计算开销,可以考虑使用二进制编码或其他降维方法。

机器学习算法的要求:

不同的机器学习算法对特征编码的要求不同,需要根据使用的模型类型来选择合适的编码方式。

四、构建基础模型

在进行特征工程后,下一步是构建Baseline(基础模型),这是机器学习任务中的重要步骤。Baseline是一个简单而基础的模型,用来作为后续模型优化和改进的起点。

在这里插入图片描述

五、构造新的特征

在特征工程的过程中,创造性地构造新的特征是一个关键步骤。通过构造新特征,我们可以进一步提取数据中的有用信息,增强模型的表达能力和泛化能力。

在这里插入图片描述
在特征构造时,我们可以优先从已确定的重要特征入手,因为这些特征对目标变量有显著贡献,可能携带着更多有用的信息。

分组统计特征:

  • 对数据进行分组,例如按照类别特征、时间窗口等分组。
  • 在每个组内,计算各种统计量,如平均值、标准差、最大值、最小值等,作为新特征。

排序特征:

  • 对数据进行排序,例如按照时间顺序、数值大小等排序。
  • 可以计算位置特征,如第一个出现、最后一个出现,或者计算排序之间的差值等。

时间序列特征:

  • 如果数据具有时间性质,可以提取时间序列特征。
  • 如计算滚动平均、滚动标准差、时间差分等。

统计特征:

  • 利用历史信息计算统计特征,如过去一段时间内的均值、方差等。
  • 这些统计特征可以反映数据的动态变化和趋势。

组合特征:

  • 将不同特征进行组合,创建新的特征。
  • 可以通过加、减、乘、除等数学运算进行组合。

在创造新特征时,需要注意新特征的含义和对问题的贡献。新特征应该能够更好地表达数据的特点和模式,同时避免引入噪声或不必要的信息。理解新特征的意义,有助于我们更好地解释模型的预测结果,并为特征选择提供指导。

六、特征筛选与验证

特征筛选是特征工程中的关键步骤之一,它有助于优化模型的复杂度和性能,同时保留对目标有意义的有效特征。在特征筛选过程中,我们需要添加新特征并验证Baseline模型的精度变化,同时注意精度变化是否是随机波动引起的。

在这里插入图片描述
在特征筛选过程中,我们需要注意精度变化是否只是由于随机波动导致的。为了排除随机性的影响,可以采用以下方法:

  1. 交叉验证(Cross-Validation):使用交叉验证可以降低随机性带来的影响,通过多次实验取平均值来评估特征的性能变化。
  2. 统计显著性检验:使用统计显著性检验(如t-test)来判断特征的添加是否显著提升了模型性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/851231.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PHP8的跳转语句-PHP8知识详解

如果循环条件满足的时候,则程序会一直执行下去。如果需要强制跳出循环,则需要使用跳转语句来完成。PHP8的跳转语句包括break语句、continue语句和goto语句。 1、break语句 break语句的作用是完全终止循环,包括while、do…while、for、switch…

linux umask 详解

1. umask 定义 在 linux 系统中,umask 被定义在 /etc/profile 配置文件中,有一段 shell 脚本对 umask 是这么定义的。在 shell 会话输入命令: $ cat /etc/profile # 查看 /etc/profile 配置文件的内容 if [ $UID -gt 199 ] &&…

Prometheus技术文档-概念

Prometheus是一个开源的项目连接如下: Prometheus首页、文档和下载 - 服务监控系统 - OSCHINA - 中文开源技术交流社区 基本概念: Prometheus是一个开源的系统监控和告警系统,由Google的BorgMon监控系统发展而来。它主要用于监控和度量各种…

2.本地存储

2.1本地存储分类- localStorage 1.作用: 可以将数据永久存储在本地(用户的电脑),除非手动删除,否则关闭页面也会存在 2.特性: ●可以多窗口(页面)共享(同一浏览器可以共享) ●以键值对的形式存储使用,键值除了数字型都要加引号 3.语法 存…

设计模式篇

工厂方法模式 简单工厂模式 工厂方法模式 抽象工厂模式 策略模式 责任链模式

Vue - 实现垂直菜单分类栏目 开箱即用

Vue - 实现垂直菜单分类栏目 开箱即用 今天发现需要做一个专栏分类的功能,要求光标悬浮到一级专栏时展示二级专栏,当光标移出时隐藏二级专栏。在网山找了一圈没有发现到合适的源代码,参考了一个博客才编写了下面的代码。将其粘贴到空的页面文…

如何将区块链新闻稿发布到海外媒体?

随着区块链技术的不断发展,越来越多的区块链项目涌现出来,各大媒体也开始关注和报道区块链新闻。然而,如何将区块链新闻稿发布到海外媒体成为了许多区块链项目所面临的难题。本文将介绍一些有效的方法,帮助区块链项目将新闻稿发布…

SIP协议之音/视频转换

在SIP通话应用场景中,有时需要在音频和视频通话中进行切换,这个功能实现的需要发送re-INVITE重新协商媒体,即重新协商媒体(SDP)中是否允许视频。 一、实现原理 1.1 音频转视频 音频通话过程中,发起方重新发送INVITE消…

大数据Flink(五十七):Yarn集群环境(生产推荐)

文章目录 Yarn集群环境(生产推荐) 一、准备工作

python版《羊了个羊》游戏开发第一天

Python小型项目实战教学课《羊了个羊》 一、项目开发大纲(初级) 版本1.0:基本开发 课次 内容 技术 第一天 基本游戏地图数据 面向过程 第二天 鼠标点击和移动 面向对象 第三天 消除 设计模式:单例模式 第四天 完整…

换架 3D 飞机,继续飞呀飞

相信大多数图扑 HT 用户都曾见过这个飞机的 Demo,在图扑发展的这十年,这个 Demo 是许多学习 HT 用户一定会参考的经典 Demo 之一。 这个 Demo 用简洁的代码生动地展示了 OBJ 模型加载、数据绑定、动画和漫游等功能的实现。许多用户参考这个简单的 Demo 后…

算法练习--leetcode 链表

文章目录 合并两个有序链表删除排序链表中的重复元素 1删除排序链表中的重复元素 2环形链表1环形链表2相交链表反转链表 合并两个有序链表 将两个升序链表合并为一个新的 升序 链表并返回。 新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1: 输入&…

【IMX6ULL驱动开发学习】03.Linux驱动开发之GPIO子系统、中断、定时器

一、GPIO子系统 1.1 引脚编号 在硬件上如何确定GPIO引脚?它属于哪组GPIO?它是这组GPIO里的哪个引脚?需要2个参数。但是在Linux软件上,可以使用引脚编号来表示。以100ask_ imx6ull为例在开发板上执行如下命令查看已经在使用的GPI…

桥接模式-java实现

桥接模式 桥接模式的本质,是解决一个基类,存在多个扩展维度的的问题。 比如一个图形基类,从颜色方面扩展和从形状上扩展,我们都需要这两个维度进行扩展,这就意味着,我们需要创建一个图形子类的同时&#x…

手搓vue3组件_1.封装一个button

我的icepro参考地址,内有参考代码,有条件的割割点点star 实现要求: 基于vue3支持通过colors(更改颜色)支持点击事件…支持其他的自定义样式(例如圆角,size等等) 最基础的第一步: 父组件引入并使用: <template><div class"buttonLim">我的按钮:<ice-b…

Zabbix监控华为交换机DHCP接口地址池

一、背景 最近工作中遇到一个因为DHCP地址池满载、导致用户无法获取到IP地址的故障&#xff0c;所以在想通过zabbix 监控DHCP地址池的状态、当DHCP 地址池数量小于某个值时触发zabbix告警。 网上找了一下没有相关的文档、和对应的OID值、于是用Python 脚本的方式实现 二、实现效…

第二课-一键安装SD-Stable Diffusion 教程

前言 看完这篇文章并跟着操作,就可以在本地开始 SD 绘图了。 理论上来说,这篇课程结束,想要画什么图都可以画了。 启动器介绍 SD 是开源的,可以在 github 上找到。但直接下载源码安装,非常费劲,而且因为国内外差异,就是我这样的秃头程序员也难以应对。 所以,我们改…

Spring中Bean的“一生”(生命周期)

文章目录 一、图解二、文字解析总结 一、图解 >注&#xff1a;处于同一行的执行顺序是从左往右 二、文字解析 SpringBean的生命周期总体分为四个阶段&#xff1a;实例化>属性注入>初始化>销毁 Step1 实例化Bean&#xff1a;根据配置文件中Bean的定义&#xff0c;…

设计模式(3)装饰模式

一、介绍&#xff1a; 1、应用场景&#xff1a;把所需的功能按正确的顺序串联起来进行控制。动态地给一个对象添加一些额外的职责&#xff0c;就增加功能来说&#xff0c;装饰模式比生成子类更加灵活。 当需要给一个现有类添加附加职责&#xff0c;而又不能采用生成子类的方法…

[RCTF2019]DontEatMe

前言 一道迷宫题&#xff0c;但是输入被加密后使用&#xff0c;迷宫也需要在程序中找出并没有直接输出 分析 反调试 发现有两个比较特殊的地方&#xff0c;随机数和创建了新线程&#xff0c;随机数后面又被重新赋值给覆盖了&#xff0c;暂时不用管&#xff0c;ZwSetInformat…