Reinforcement Learning with Code (对比Monte-Carlo与TD算法)【Code 3. MonteCarlo】

news2024/11/23 10:31:56

Reinforcement Learning with Code & (对比Monte-Carlo与TD算法)【Code 3. MonteCarlo】

This note records how the author begin to learn RL. Both theoretical understanding and code practice are presented. Many material are referenced such as ZhaoShiyu’s Mathematical Foundation of Reinforcement Learning.
This code refers to Mofan’s reinforcement learning course.

文章目录

  • Reinforcement Learning with Code & (对比Monte-Carlo与TD算法)【Code 3. MonteCarlo】
      • 1. Monte-Carlo的由来
      • 2. TD算法Sarsa的由来
      • 3 TD算法Q-learning 的由来
      • 4. Summary
      • 5. Code
    • Reference

1. Monte-Carlo的由来

​ 为何出现了Monte-Carlo Method呢?这是因为在求解Bellman equation的过程中,
v π ( s ) = E [ G t ∣ S t = s ] v π ( s ) = ∑ a π ( a ∣ s ) [ ∑ r p ( r ∣ s , a ) r + ∑ s ′ p ( s ′ ∣ s , a ) v π ( s ′ ) ] (Bellman equation of state value) q π ( s , a ) = E [ G t ∣ S t = s , A t = a ] q π ( s , a ) = ∑ r p ( r ∣ s , a ) r + ∑ s ′ p ( s ′ ∣ s , a ) v π ( s ′ ) (Bellman equation of action value) \begin{aligned} v_\pi(s) & = \mathbb{E}[G_t|S_t=s] \\ v_\pi(s) & = \sum_a \pi(a|s) \Big[ \sum_r p(r|s,a)r + \sum_{s^\prime}p(s^\prime|s,a)v_\pi(s^\prime) \Big] \quad \text{(Bellman equation of state value)} \\ q_\pi(s,a) & = \mathbb{E}[G_t|S_t=s, A_t=a] \\ q_\pi(s,a) & = \sum_r p(r|s,a)r + \sum_{s^\prime}p(s^\prime|s,a)v_\pi(s^\prime) \quad \text{(Bellman equation of action value)} \end{aligned} vπ(s)vπ(s)qπ(s,a)qπ(s,a)=E[GtSt=s]=aπ(as)[rp(rs,a)r+sp(ss,a)vπ(s)](Bellman equation of state value)=E[GtSt=s,At=a]=rp(rs,a)r+sp(ss,a)vπ(s)(Bellman equation of action value)
若不知道Markov decision process的模型 p ( r ∣ s , a ) , p ( s ′ ∣ s , a ) p(r|s,a),p(s^\prime|s,a) p(rs,a),p(ss,a),我们将难以求解,因此我们从Bellman expectaion equation出发, q π ( s , a ) = E [ G t ∣ S t = s , A t = a ] q_\pi(s,a)=\mathbb{E}[G_t|S_t=s,A_t=a] qπ(s,a)=E[GtSt=s,At=a]表示从状态 s s s出发采取动作 a a a的回报 G t G_t Gt的平均值,其中 G t G_t Gt是一个随机变量,我们根据大数定律(Law of large number)可知
q π ( s , a ) = E [ G t ∣ S t = s , A t = a ] ≈ 1 n ∑ i = 1 n g π ( i ) ( s , a ) \textcolor{blue}{q_\pi(s,a)=\mathbb{E}[G_t|S_t=s,A_t=a]} \approx \frac{1}{n} \sum_{i=1}^n g^{(i)}_\pi(s,a) qπ(s,a)=E[GtSt=s,At=a]n1i=1ngπ(i)(s,a)
我们可以用从状态 s s s采取动作 a a a出发的一系列episodes的回报(return)的平均值来逼近这个真值,根据大数定律,当这样的采样越多的时候逼近值越接近真值。若这样是可行的,那么我们求解Bellman equation的时候就不再需要Markov decision process的模型了,这种方式就被称作 model-free。

​ 大数定律给我提供了理论支持,我们即可以将上式理解为求解 g ( q π ( s , a ) ) = q π ( s , a ) − E [ G t ∣ S t = s , A t = a ] g(q_\pi(s,a)) = q_\pi(s,a) - \mathbb{E}[G_t|S_t=s,A_t=a] g(qπ(s,a))=qπ(s,a)E[GtSt=s,At=a]的零点,根据Robbins-Monro算法(详见:Chapter 6. Stochastic Approximation),我们可以获得带噪声的观测

g ~ ( q π ( s , a ) , η ) = q π ( s , a ) − g ( s , a ) = q π ( s , a ) − E [ G t ∣ S t = s , A t = a ] ⏟ g ( q π ( s , a ) ) + E [ G t ∣ S t = s , A t = a ] − g ( s , a ) ⏟ η \begin{aligned} \tilde{g}(q_\pi(s,a),\eta) & = q_\pi(s,a) - g(s,a) \\ & = \underbrace{q_\pi(s,a)-\mathbb{E}[G_t|S_t=s,A_t=a]}_{g(q_\pi(s,a))} + \underbrace{\mathbb{E}[G_t|S_t=s,A_t=a] -g(s,a)}_{\eta} \end{aligned} g~(qπ(s,a),η)=qπ(s,a)g(s,a)=g(qπ(s,a)) qπ(s,a)E[GtSt=s,At=a]+η E[GtSt=s,At=a]g(s,a)

那么我们可以得到求解 q π ( s , a ) q_\pi(s,a) qπ(s,a)的增量式算法

MC-Basic : { q t + 1 ( s t , a t ) = q t ( s t , a t ) − α t ( s t , a t ) [ q t ( s t , a t ) − g t ( s t , a t ) ] q t + 1 ( s , a ) = q t ( s , a ) , for all  ( s , a ) ≠ ( s t , a t ) \text{MC-Basic} : \left \{ \begin{aligned} \textcolor{red}{q_{t+1}(s_t,a_t)} & \textcolor{red}{= q_t(s_t,a_t) - \alpha_t(s_t,a_t) \Big[q_t(s_t,a_t) - g_t(s_t,a_t) \Big]} \\ \textcolor{red}{q_{t+1}(s,a)} & \textcolor{red}{= q_t(s,a)}, \quad \text{for all } (s,a) \ne (s_t,a_t) \end{aligned} \right. MC-Basic: qt+1(st,at)qt+1(s,a)=qt(st,at)αt(st,at)[qt(st,at)gt(st,at)]=qt(s,a),for all (s,a)=(st,at)

其中 α t ( s t , a t ) \alpha_t(s_t,a_t) αt(st,at)是系数,虽然写法是增量式的,但是算法的执行并不是增量式的,因为我们必须等一个完整的episode执行完毕之后,才能得到回报 g t ( s t , a t ) g_t(s_t,a_t) gt(st,at)

g t ( s t , a t ) = r t + 1 + γ r t + 2 + γ 2 r t + 3 + ⋯ g_t(s_t,a_t) = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots gt(st,at)=rt+1+γrt+2+γ2rt+3+

所以,补全上述的MC算法

MC-Basic : { q t + 1 ( s t , a t ) = q t ( s t , a t ) − α t ( s t , a t ) [ q t ( s t , a t ) − g t ( s t , a t ) ] g t ( s t , a t ) = r t + 1 + γ r t + 2 + γ 2 r t + 3 + ⋯ q t + 1 ( s , a ) = q t ( s , a ) , for all  ( s , a ) ≠ ( s t , a t ) \text{MC-Basic} : \left \{ \begin{aligned} \textcolor{red}{q_{t+1}(s_t,a_t)} & \textcolor{red}{= q_t(s_t,a_t) - \alpha_t(s_t,a_t) \Big[q_t(s_t,a_t) - g_t(s_t,a_t) \Big]} \\ \textcolor{red}{g_t(s_t,a_t)} & \textcolor{red}{= r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots} \\ \textcolor{red}{q_{t+1}(s,a)} & \textcolor{red}{= q_t(s,a)}, \quad \text{for all } (s,a) \ne (s_t,a_t) \\ \end{aligned} \right. MC-Basic: qt+1(st,at)gt(st,at)qt+1(s,a)=qt(st,at)αt(st,at)[qt(st,at)gt(st,at)]=rt+1+γrt+2+γ2rt+3+=qt(s,a),for all (s,a)=(st,at)

2. TD算法Sarsa的由来

​ TD算法全称为temporal-difference algorithm,顾名思义TD算法是真正意义上的增量式算法,其中Sarsa是怎么得到的呢?将Monte-Carlo中求解的Bellman expectation equation改写成
q π ( s , a ) = E [ G t ∣ S t = s , A t = a ] q π ( s , a ) = E [ R + γ q π ( S ′ , A ′ ) ∣ S t = s , A t = a ] \begin{aligned} q_\pi(s,a) & = \mathbb{E}[G_t|S_t=s,A_t=a] \\ \textcolor{blue}{q_\pi(s,a)} & \textcolor{blue}{= \mathbb{E}[R + \gamma q_\pi(S^\prime,A^\prime)|S_t=s,A_t=a ]} \end{aligned} qπ(s,a)qπ(s,a)=E[GtSt=s,At=a]=E[R+γqπ(S,A)St=s,At=a]
同样使用Robbins-Monro算法来求解下式的零点
g ( q π ( s , a ) ) ≜ q π ( s , a ) − E [ R + γ q π ( S ′ , A ′ ) ∣ S = s , A = a ] g(q_\pi(s,a)) \triangleq q_\pi(s,a) - \mathbb{E}{\Big[ R + \gamma q_\pi(S^\prime,A^\prime) \Big| S=s, A=a\Big]} g(qπ(s,a))qπ(s,a)E[R+γqπ(S,A) S=s,A=a]
则获得带噪声的观测值
g ~ ( q π ( s , a ) , η ) = q π ( s , a ) − [ r + γ q π ( s ′ , a ′ ) ] = q π ( s , a ) − E [ R + γ q π ( S ′ , A ′ ) ∣ S = s , A = a ] ⏟ g ( q π ( s , a ) ) + [ E [ R + γ q π ( S ′ , A ′ ) ∣ S = s , A = a ] − [ r + γ q π ( s ′ , a ′ ) ] ] ⏟ η \begin{aligned} \tilde{g}\Big(q_\pi(s,a),\eta \Big) & = q_\pi(s,a) - \Big[r+\gamma q_\pi(s^\prime,a^\prime) \Big] \\ & = \underbrace{q_\pi(s,a) - \mathbb{E}{\Big[ R + \gamma q_\pi(S^\prime,A^\prime)\Big| S=s, A=a\Big]}}_{g(q_\pi(s,a))} + \underbrace{\Bigg[\mathbb{E}{\Big[ R + \gamma q_\pi(S^\prime,A^\prime) \Big| S=s, A=a\Big]} - \Big[r+\gamma q_\pi(s^\prime,a^\prime)\Big] \Bigg]}_{\eta} \end{aligned} g~(qπ(s,a),η)=qπ(s,a)[r+γqπ(s,a)]=g(qπ(s,a)) qπ(s,a)E[R+γqπ(S,A) S=s,A=a]+η [E[R+γqπ(S,A) S=s,A=a][r+γqπ(s,a)]]
然后使用Robbins-Monro算法可以得到下列迭代式
q k + 1 ( s , a ) = q k ( s , a ) − α k [ q k ( s , a ) − ( r k + γ q k ( s k ′ , a k ′ ) ) ] q_{k+1}(s,a) = q_k(s,a) - \alpha_k \Big[ q_k(s,a) - \big(r_k+\gamma q_k(s^\prime_k,a^\prime_k) \big) \Big] qk+1(s,a)=qk(s,a)αk[qk(s,a)(rk+γqk(sk,ak))]
我们将采样值 ( s , a , r k , s k ′ , a k ′ ) (s,a,r_k,s^\prime_k,a^\prime_k) (s,a,rk,sk,ak)改写成 ( s t , a t , r t + 1 , s t + 1 , a t + 1 ) (s_t,a_t,r_{t+1},s_{t+1},a_{t+1}) (st,at,rt+1,st+1,at+1)则获得了真正意义上的时序差分Sarsa算法

Sarsa : { q t + 1 ( s t , a t ) = q t ( s t , a t ) − α t ( s t , a t ) [ q t ( s t , a t ) − ( r t + 1 + γ q t ( s t + 1 , a t + 1 ) ) ] q t + 1 ( s , a ) = q t ( s , a ) , for all  ( s , a ) ≠ ( s t , a t ) \text{Sarsa} : \left \{ \begin{aligned} \textcolor{red}{q_{t+1}(s_t,a_t)} & \textcolor{red}{= q_t(s_t,a_t) - \alpha_t(s_t,a_t) \Big[q_t(s_t,a_t) - (r_{t+1} +\gamma q_t(s_{t+1},a_{t+1})) \Big]} \\ \textcolor{red}{q_{t+1}(s,a)} & \textcolor{red}{= q_t(s,a)}, \quad \text{for all } (s,a) \ne (s_t,a_t) \end{aligned} \right. Sarsa: qt+1(st,at)qt+1(s,a)=qt(st,at)αt(st,at)[qt(st,at)(rt+1+γqt(st+1,at+1))]=qt(s,a),for all (s,a)=(st,at)

3 TD算法Q-learning 的由来

​ Monte-Carlo和Sarsa求解的是不同形式的Bellman expectation equation,但是Q-learning求解的是Bellman expectation optimality equation,就是我们常说的贝尔曼期望最优等式。
q ( s , a ) = E [ R + γ max ⁡ a ∈ A ( s ) q ( S ′ , a ) ∣ S = s , A = a ] ,  for all  s , a (expectation form) \textcolor{blue}{ q(s,a) = \mathbb{E}[R+\gamma \max_{a\in\mathcal{A}(s)} q(S^\prime,a) |S=s,A=a ] }, \text{ for all }s,a \quad \text{(expectation form)} q(s,a)=E[R+γaA(s)maxq(S,a)S=s,A=a], for all s,a(expectation form)
类似于上述两种的推导方式,这里不再详细阐述
g ( q ( s , a ) ) ≜ q ( s , a ) − E [ R + γ max ⁡ a ∈ A ( S ′ ) q ( S ′ , a ) ∣ S = s , A = a ] g(q(s,a)) \triangleq q(s,a) - \mathbb{E} [R+\gamma \max_{a\in\mathcal{A}(S^\prime)} q(S^\prime,a) |S=s,A=a ] g(q(s,a))q(s,a)E[R+γaA(S)maxq(S,a)S=s,A=a]
带噪声的观测:
g ~ ( q ( s , a ) ) = q ( s , a ) − [ r + γ max ⁡ a ∈ A ( s ′ ) q ( s ′ , a ) ] = q ( s , a ) − E [ R + γ max ⁡ a ∈ A ( S ′ ) q ( S ′ , a ) ∣ S = s , A = a ] ⏟ g ( q ( s , a ) ) + E [ R + γ max ⁡ a ∈ A ( S ′ ) q ( S ′ , a ) ∣ S = s , A = a ] − [ r + γ max ⁡ a ∈ A ( s ′ ) q ( s ′ , a ) ] ⏟ η \begin{aligned} \tilde{g}(q(s,a)) & = q(s,a) - \Big[r + \gamma \max_{a\in\mathcal{A}(s^\prime)} q(s^\prime,a) \Big] \\ & = \underbrace{q(s,a) - \mathbb{E} [R+\gamma \max_{a\in\mathcal{A}(S^\prime)} q(S^\prime,a) |S=s,A=a ]}_{g(q(s,a))} + \underbrace{\mathbb{E} [R+\gamma \max_{a\in\mathcal{A}(S^\prime)} q(S^\prime,a) |S=s,A=a ] - \Big[r + \gamma \max_{a\in\mathcal{A}(s^\prime)} q(s^\prime,a) \Big]}_{\eta} \end{aligned} g~(q(s,a))=q(s,a)[r+γaA(s)maxq(s,a)]=g(q(s,a)) q(s,a)E[R+γaA(S)maxq(S,a)S=s,A=a]+η E[R+γaA(S)maxq(S,a)S=s,A=a][r+γaA(s)maxq(s,a)]
应用Robbins-Monro算法
q k + 1 ( s , a ) = q k ( s , a ) − α k ( s , a ) [ q k ( s , a ) − ( r k + γ max ⁡ a ∈ A ( s ′ ) q k ( s ′ , a ) ) ] q_{k+1}(s,a) = q_k(s,a) - \alpha_k(s,a) \Big[q_k(s,a) - \big(r_k + \gamma \max_{a\in\mathcal{A}(s^\prime)} q_k(s^\prime,a) \big) \Big] qk+1(s,a)=qk(s,a)αk(s,a)[qk(s,a)(rk+γaA(s)maxqk(s,a))]
( s , a , r k , s k ′ ) (s,a,r_k,s^\prime_k) (s,a,rk,sk)替换成 ( s t , a t , r t + 1 , s t + 1 ) (s_t,a_t,r_{t+1},s_{t+1}) (st,at,rt+1,st+1),则有
Q-learning : { q t + 1 ( s t , a t ) = q t ( s t , a t ) − α t ( s t , a t ) [ q t ( s t , a t ) − ( r t + 1 + γ max ⁡ a ∈ A ( s t + 1 ) q t ( s t + 1 , a ) ) ] q t + 1 ( s , a ) = q t ( s , a ) , for all  ( s , a ) ≠ ( s t , a t ) \text{Q-learning} : \left \{ \begin{aligned} \textcolor{red}{q_{t+1}(s_t,a_t)} & \textcolor{red}{= q_t(s_t,a_t) - \alpha_t(s_t,a_t) \Big[q_t(s_t,a_t) - (r_{t+1}+ \gamma \max_{a\in\mathcal{A}(s_{t+1})} q_t(s_{t+1},a)) \Big]} \\ \textcolor{red}{q_{t+1}(s,a)} & \textcolor{red}{= q_t(s,a)}, \quad \text{for all } (s,a) \ne (s_t,a_t) \end{aligned} \right. Q-learning: qt+1(st,at)qt+1(s,a)=qt(st,at)αt(st,at)[qt(st,at)(rt+1+γaA(st+1)maxqt(st+1,a))]=qt(s,a),for all (s,a)=(st,at)

4. Summary

​ 我们将对比TD target等指标,若不清楚的可以(详见: Chapter 7. Temporal Difference Learning)

Image

5. Code

maze_env_custom.py主要用于构建强化学习中智能体的交互环境

import numpy as np
import time
import sys
import tkinter as tk
# if sys.version_info.major == 2: # 检查python版本是否是python2
#     import Tkinter as tk
# else:
#     import tkinter as tk


UNIT = 40   # pixels
MAZE_H = 4  # grid height
MAZE_W = 4  # grid width


class Maze(tk.Tk, object):
    def __init__(self):
        super(Maze, self).__init__()
        # Action Space
        self.action_space = ['up', 'down', 'right', 'left'] # action space 
        self.n_actions = len(self.action_space)

        # 绘制GUI
        self.title('Maze env')
        self.geometry('{0}x{1}'.format(MAZE_W * UNIT, MAZE_H * UNIT))   # 指定窗口大小 "width x height"
        self._build_maze()

    def _build_maze(self):
        self.canvas = tk.Canvas(self, bg='white',
                           height=MAZE_H * UNIT,
                           width=MAZE_W * UNIT)     # 创建背景画布

        # create grids
        for c in range(UNIT, MAZE_W * UNIT, UNIT): # 绘制列分隔线
            x0, y0, x1, y1 = c, 0, c, MAZE_H * UNIT
            self.canvas.create_line(x0, y0, x1, y1)
        for r in range(UNIT, MAZE_H * UNIT, UNIT): # 绘制行分隔线
            x0, y0, x1, y1 = 0, r, MAZE_W * UNIT, r
            self.canvas.create_line(x0, y0, x1, y1)

        # create origin 第一个方格的中心,
        origin = np.array([UNIT/2, UNIT/2]) 

        # hell1
        hell1_center = origin + np.array([UNIT * 2, UNIT])
        self.hell1 = self.canvas.create_rectangle(
            hell1_center[0] - (UNIT/2 - 5), hell1_center[1] - (UNIT/2 - 5),
            hell1_center[0] + (UNIT/2 - 5), hell1_center[1] + (UNIT/2 - 5),
            fill='black')
        # hell2
        hell2_center = origin + np.array([UNIT, UNIT * 2])
        self.hell2 = self.canvas.create_rectangle(
            hell2_center[0] - (UNIT/2 - 5), hell2_center[1] - (UNIT/2 - 5),
            hell2_center[0] + (UNIT/2 - 5), hell2_center[1] + (UNIT/2 - 5),
            fill='black')

        # create oval 绘制终点圆形
        oval_center = origin + np.array([UNIT*2, UNIT*2])
        self.oval = self.canvas.create_oval(
            oval_center[0] - (UNIT/2 - 5), oval_center[1] - (UNIT/2 - 5),
            oval_center[0] + (UNIT/2 - 5), oval_center[1] + (UNIT/2 - 5),
            fill='yellow')

        # create red rect 绘制agent红色方块,初始在方格左上角
        self.rect = self.canvas.create_rectangle(
            origin[0] - (UNIT/2 - 5), origin[1] - (UNIT/2 - 5),
            origin[0] + (UNIT/2 - 5), origin[1] + (UNIT/2 - 5),
            fill='red')

        # pack all 显示所有canvas
        self.canvas.pack()


    def get_state(self, rect):
            # convert the coordinate observation to state tuple
            # use the uniformed center as the state such as 
            # |(1,1)|(2,1)|(3,1)|...
            # |(1,2)|(2,2)|(3,2)|...
            # |(1,3)|(2,3)|(3,3)|...
            # |....
            x0,y0,x1,y1 = self.canvas.coords(rect)
            x_center = (x0+x1)/2
            y_center = (y0+y1)/2
            state = (int((x_center-(UNIT/2))/UNIT + 1), int((y_center-(UNIT/2))/UNIT + 1))
            return state


    def reset(self):
        self.update()
        self.after(500) # delay 500ms

        # print("\nCurrent objects on canvas:", self.canvas.find_all())  # 查看画布上的所有对象
        # if self.rect is not None:
        #     self.canvas.delete(self.rect)   # delete origin rectangle
        # else:
        #     print("self.rect is None. Cannot delete.")

        self.canvas.delete(self.rect)   # delete origin rectangle
        origin = np.array([UNIT/2, UNIT/2])
        self.rect = self.canvas.create_rectangle(
            origin[0] - (UNIT/2 - 5), origin[1] - (UNIT/2 - 5),
            origin[0] + (UNIT/2 - 5), origin[1] + (UNIT/2 - 5),
            fill='red')
        # return observation 
        return self.get_state(self.rect)   

    

    def step(self, action):
        # agent和环境进行一次交互
        s = self.get_state(self.rect)   # 获得智能体的坐标
        base_action = np.array([0, 0])
        reach_boundary = False
        if action == self.action_space[0]:   # up
            if s[1] > 1:
                base_action[1] -= UNIT
            else: # 触碰到边界reward=-1并停留在原地
                reach_boundary = True

        elif action == self.action_space[1]:   # down
            if s[1] < MAZE_H:
                base_action[1] += UNIT
            else:
                reach_boundary = True   

        elif action == self.action_space[2]:   # right
            if s[0] < MAZE_W:
                base_action[0] += UNIT
            else:
                reach_boundary = True

        elif action == self.action_space[3]:   # left
            if s[0] > 1:
                base_action[0] -= UNIT
            else:
                reach_boundary = True

        self.canvas.move(self.rect, base_action[0], base_action[1])  # move agent

        s_ = self.get_state(self.rect)  # next state

        # reward function
        if s_ == self.get_state(self.oval):     # reach the terminal
            reward = 1
            done = True
            s_ = 'success'
        elif s_ == self.get_state(self.hell1): # reach the block
            reward = -1
            s_ = 'block_1'
            done = False
        elif s_ == self.get_state(self.hell2):
            reward = -1
            s_ = 'block_2'
            done = False
        else:
            reward = 0
            done = False
            if reach_boundary:
                reward = -1

        return s_, reward, done

    def render(self):
        time.sleep(0.15)
        self.update()




if __name__ == '__main__':
    def test():
        for t in range(10):
            s = env.reset()
            print(s)
            while True:
                env.render()
                a = 'right'
                s, r, done = env.step(a)
                print(s)
                if done:
                    break
    env = Maze()
    env.after(100, test)      # 在延迟100ms后调用函数test
    env.mainloop()

RL_brain.py 主要用于实现强化学习的更新算法,这里使用的是Monte-Carlo ϵ \epsilon ϵ-greedy 算法,使用first visit策略
如图所示

Image
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt


class RL():
    def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        self.actions = actions  # action list
        self.lr = learning_rate
        self.gamma = reward_decay
        self.epsilon = e_greedy # epsilon greedy update policy
        self.q_table = pd.DataFrame(columns=self.actions, dtype=np.float64)
        # 维护访问的state-action pair and return
        self.reward_sa_pair = []
        self.reward_list = []
        # 维护保存每个episode return的列表
        self.return_list = []

    def check_state_exist(self, state):
        # check if there exists the state
        if str(state) not in self.q_table.index:
            self.q_table = pd.concat(
                [
                self.q_table,
                pd.DataFrame(
                        data=np.zeros((1,len(self.actions))),
                        columns = self.q_table.columns,
                        index = [str(state)]
                    )
                ]
            )


    def choose_action(self, observation):
        """
            Use the epsilon-greedy method to update policy
        """
        self.check_state_exist(observation)
        # action selection
            # epsilon greedy algorithm
        if np.random.uniform() < self.epsilon:
            
            state_action = self.q_table.loc[observation, :]
            # some actions may have the same value, randomly choose on in these actions
            # state_action == np.max(state_action) generate bool mask
            # choose best action
            action = np.random.choice(state_action[state_action == np.max(state_action)].index)
        else:
            # choose random action
            action = np.random.choice(self.actions)
        return action

    def write_sa_r(self, s, a, r):
        # 写入state-action pair 和 reward
        self.reward_sa_pair.append((s,a))
        self.reward_list.append(r)
    
    def _calculate_return(self, s, a):
        # 计算从 state action pair (s,a) 出发的return 采用first visit策略
        ret = 0
        sa_index = self.reward_sa_pair.index((s,a))
        for i in range(sa_index, len(self.reward_sa_pair)):
            ret = ret * self.gamma + self.reward_list[i]
        return ret
    
    def calculate_episode_return(self):
        (s,a) = self.reward_sa_pair[0]
        self.return_list.append(self._calculate_return(s, a))


    def show_q_table(self):
        print()
        print(self.q_table)
    
    def plot_episode_return(self, name):
        # plot
        episodes_list = list(range(len(self.return_list)))
        plt.plot(episodes_list, self.return_list)
        plt.xlabel('Episodes')
        plt.ylabel('Returns')
        plt.title('{} on {}'.format(name,'Maze Walking'))
        plt.show()


class MonteCarloTable(RL):
    def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        super(MonteCarloTable, self).__init__(actions, learning_rate, reward_decay, e_greedy)
        
    def learn(self):
        # show info
        # print(self.reward_sa_pair)
        # print(self.reward_list)
        # self.show_q_table()

        for (s,a) in self.reward_sa_pair:
            self.check_state_exist(s)
            q_predict = self.q_table.loc[str(s), a]
            q_target = self._calculate_return(s, a)
            self.q_table.loc[str(s),a] += self.lr * (q_target - q_predict)
        # clear
        self.reward_list = []
        self.reward_sa_pair = []

main.py是运行的主函数

from maze_env_custom import Maze
from RL_brain import MonteCarloTable
from tqdm import tqdm


MAX_EPISODE = 100
Batch_Size = 10
num_iteration = int(MAX_EPISODE / Batch_Size)

def update():
    for i in range(num_iteration):
        with tqdm(total=(MAX_EPISODE/num_iteration), desc="Iteration %d"%(i+1)) as pbar:


            for i_episode in range(int(MAX_EPISODE/num_iteration)):

                # initial observation, observation is the rect's coordiante
                # observation is [x0,y0, x1,y1]
                observation = env.reset()  
                done = False
                while not done:
                    # fresh env
                    env.render()

                    # RL choose action based on observation ['up', 'down', 'right', 'left']
                    action = RL.choose_action(str(observation))

                    # RL take action and get next observation and reward
                    observation_, reward, done = env.step(action)
                    
                    RL.write_sa_r(observation, action, reward)


                    # swap observation
                    observation = observation_

                # calculate the return of this episode
                RL.calculate_episode_return()

                # after one episode update the q_value
                RL.learn()


                if (i_episode+1) % num_iteration == 0:
                    pbar.set_postfix({
                        "episode": "%d"%(MAX_EPISODE/num_iteration*i + i_episode+1)
                    })
                # update the tqdm
                pbar.update(1)
                
                # show q_table
                print(RL.q_table)
                print('\n')


    # end of game
    print('game over')
    # destroy the maze_env
    env.destroy()

    RL.plot_episode_return('Monte_Carlo')

    



if __name__ == "__main__":
    env = Maze()
    RL = MonteCarloTable(env.action_space)
    
    #指定env演示100ms后执行update函数
    env.after(100, update)
    env.mainloop()

最终获得的Q table如下

              up      down     right      left
(1, 1)  -2.564431  0.328240 -2.384846 -0.616915
(2, 1)  -0.035416  0.063559 -0.031118 -2.470048
(2, 2)   0.070173 -0.117370 -0.037543 -0.030519
block_1 -0.020951  0.077255  0.000000  0.001000
(1, 2)  -0.145853  0.435657 -0.181815 -0.108147
(1, 3)  -0.037165  0.465386 -0.076265 -1.942067
block_2  0.000000  0.000000  0.182093 -0.133333
(3, 1)  -0.062227  0.002970 -0.034015 -0.000105
(4, 1)  -0.199058 -0.006290 -0.011604  0.000000
(4, 2)   0.000000 -0.006290  0.000000  0.002970
(4, 3)   0.002970  0.000000 -0.006290  0.000000
(1, 4)   0.013556 -0.030012  0.485312  0.007172
(2, 4)   0.000000 -0.008719  0.499194  0.000000
(3, 4)   0.515009  0.001990  0.001990  0.000000
(4, 4)   0.001990  0.000000  0.000000  0.000000

回报(return)的变化曲线如下:


Reference

赵世钰老师的课程
莫烦ReinforcementLearning course
Chapter 6. Stochastic Approximation
Chapter 7. Temporal Difference Learning

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/849144.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

成功搞定H7-TOO的FreeRTOS Trace图形化链表方式展示任务管理

之前推出了H7-TOOL的RTOS Trace功能&#xff0c;已经支持RTX5&#xff0c;ThreadX&#xff0c;uCOS-III&#xff0c;uCOS-II和FreeRTOS&#xff0c;特色是不需要目标板额外做任何代码&#xff0c;实时检测RTOS任务执行情况&#xff0c;支持在线和脱机玩法&#xff0c;效果是下面…

网络编程——字节序和地址转换

字节序和地址转换 一、字节序 1、字节序概念 是指多字节数据的存储顺序,数据在内存中存储的方式 2、分类 大端序(网络字节序)&#xff1a;高位的数据存放在低地址位 arm架构、交换机、路由器 小端序(主机字节序)&#xff1a;高位的数据存放在高地址位 x86架构计算机 注意 …

10_Vue3 其它的组合式API(Composition API)

Vue3 中的其它组合式API 1.shallowReactive 与 shallowRef 2. readonly 与 shallowReadonly 3.toRaw 与 markRaw 4.customRef 5.provide 与 inject 6.响应式数据的判断

pytest测试框架之fixture测试夹具详解

fixture的优势 ​ pytest框架的fixture测试夹具就相当于unittest框架的setup、teardown&#xff0c;但相对之下它的功能更加强大和灵活。 命名方式灵活&#xff0c;不限于unittest的setup、teardown可以实现数据共享&#xff0c;多个模块跨文件共享前置后置可以实现多个模块跨…

fastadmin自定义键值组件Fieldlist

需求场景&#xff1a; 后台设置前端的固定话费充值金额。编辑时要求能够增删改&#xff0c;给到前端的数据&#xff0c;是要根据金额正序排列&#xff0c;用fastadmin的键值组件(Fieldlist)&#xff0c;使用Art-Template模板语法自定义模板。 最终效果如下图所示&#xff1a; …

【深度学习注意力机制系列】—— ECANet注意力机制(附pytorch实现)

ECANet&#xff08;Efficient Channel Attention Network&#xff09;是一种用于图像处理任务的神经网络架构&#xff0c;它在保持高效性的同时&#xff0c;有效地捕捉图像中的通道间关系&#xff0c;从而提升了特征表示的能力。ECANet通过引入通道注意力机制&#xff0c;以及在…

CSDN 直播:腾讯云大数据 ES 结合 AI 大模型与向量检索的新一代云端检索分析引擎 8月-8号 19:00-20:30

本次沙龙围绕腾讯云大数据ES产品展开&#xff0c;重点介绍了腾讯云ES自研的存算分离技术&#xff0c;以及能与AI大模型和文本搜索深度结合的高性能向量检索能力。同时&#xff0c;本次沙龙还将为我们全方位介绍腾讯云ES重磅推出的Elasticsearch Serverless服务&#xff0c;期待…

Go重写Redis中间件 - Go实现Redis集群

Go实现Redis集群 这章的内容是将我们之前实现的单机版的Redis扩充成集群版,给Redis增加集群功能,在增加集群功能之前,我们先学习一下在分布式系统中引用非常广泛的技术一致性哈希,一致性哈希在我们项目里就应用在我们Redis集群的搭建这块 详解一致性哈希 Redis集群需求背…

SDXL 1.0出图效果直逼Midjourney!手把手教你快速体验!

介绍 最近&#xff0c;Stability AI正式推出了全新的SDXL 1.0版本。经过我的实际测试&#xff0c;与之前的1.5版本相比&#xff0c;XL的效果有了巨大的提升&#xff0c;可以说是全方位的超越。不仅在理解提示词方面表现出色&#xff0c;而且图片的构图、颜色渲染和画面细腻程度…

【uniapp】一文读懂app端安装包升级

一、前言 首先&#xff0c;在app端开发上线的过程中&#xff0c;会面临一个问题&#xff0c;就是关于app端的版本升级的问题。如果不做相关处理来引导用户的话&#xff0c;那么app就会出现版本没有更新出现的各种问题&#xff0c;我们常见的有在线升级和去指定地址下载安装两种…

Tecnomatix Plant Simulation 2302切换本地帮助的方法[2302]

Tecnomatix Plant Simulation 2302切换本地帮助的方法[2302] 说明-官方帮助是无需秘钥的 任意电脑均可按下面要求he顺序完成安装&#xff01;从以下位置获取帮助Plant Simulation本地访问 获取操作系统的安装文件。完成后入下图&#xff1a;Tecnomatix Plant Simulation 2302切…

pytest自动化测试框架之断言

前言 断言是完整的测试用例中不可或缺的因素&#xff0c;用例只有加入断言&#xff0c;将实际结果与预期结果进行比对&#xff0c;才能判断它的通过与否。 unittest 框架提供了其特有的断言方式&#xff0c;如&#xff1a;assertEqual、assertTrue、assertIn等&#xff0c;py…

小程序商品如何设置规格

商品规格是指商品在不同属性上的区分&#xff0c;比如颜色、尺寸、款式等。通过设置规格&#xff0c;商家可以更好地展示商品的多样性&#xff0c;并方便用户选择和购买。下面是怎么设置小程序产品规格的方法和步骤。 1. 添加/修改商品的时候&#xff0c;点击规格&#xff0c;会…

YOLOv5源码中的参数超详细解析(2)— 配置文件yolov5s.yaml

前言&#xff1a;Hello大家好&#xff0c;我是小哥谈。YOLOv5配置了5种不同大小的网络模型&#xff0c;分别是YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x&#xff0c;其中YOLOv5n是网络深度和宽度最小但检测速度最快的模型&#xff0c;其他4种模型都是在YOLOv5n的基础上不断…

(力扣)用两个队列实现栈---C语言

分享一首歌曲吧&#xff0c;希望在枯燥的刷题生活中带给你希望和勇气&#xff0c;加油&#xff01; 题目&#xff1a; 请你仅使用两个队列实现一个后入先出&#xff08;LIFO&#xff09;的栈&#xff0c;并支持普通栈的全部四种操作&#xff08;push、top、pop 和 empty&#…

SpringBoot操作Jedis

SpringBoot操作Jedis 1、pom依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://ma…

odoo系统局域网及外网访问?快解析内网穿透方案教程

首先&#xff0c;带着大家了解一下odoo是什么&#xff1f; 前身是 OpenERP。Odoo是一个广泛使用的开源ERP&#xff08;企业资源规划&#xff09;系统&#xff0c;它的主要特点之一就是高度模块化的设计。此套装可满足中小型企业的一切应用需求&#xff0c;例如&#xff0c;企业…

性能测试怎么做?性能测试步骤指标

前言 性能测试的目的是发现系统处理能力的瓶颈而系统调优才是最终的目的&#xff0c;如果能进一步提高各业务服务器、数据库服务器的调优技能&#xff0c;对性能测试工作来说是如虎添翼。 相信我们进行性能测试的时候&#xff0c;都遇到过这样的问题&#xff1a; 1、你的性能测…

Docker+Consul+Registrator 实现服务注册与发现

第四阶段 时 间&#xff1a;2023年8月8日 参加人&#xff1a;全班人员 内 容&#xff1a; DockerConsulRegistrator 实现服务注册与发现 目录 一、服务注册中心引言 CAP理论是分布式架构中重要理论&#xff1a; 二、服务注册中心软件 &#xff08;一&#xff09;Zoo…

SpringBoot+MyBatis多数据源配置

1.先在配置文件application.yml中配置好数据源 spring:datasource:type: com.alibaba.druid.pool.DruidDataSourcedb1:driver-class-name: com.mysql.cj.jdbc.Driverusername: rootpassword: rootjdbc-url: jdbc:mysql://192.168.110.128:3306/CampusHelp?useUnicodeyes&…