1. Java内存模型
很多人将Java 内存结构与java 内存模型傻傻分不清,java 内存模型是 Java Memory Model(JMM)的意思。
简单的说,JMM 定义了一套在多线程读写共享数据时(成员变量、数组)时,对数据的可见性、有序 性、和原子性的规则和保障。
2. 原子性
下面通过一个例子来说明一下原子性
1.问题提出:两个线程对初始值为 0 的静态变量一个做自增,一个做自减,各做 5000 次,结果是 0 吗?
2.问题分析:以上的结果可能是正数、负数、零。为什么呢?因为 Java 中对静态变量的自增,自减并不是原子操作。
例如对于 i++ 而言(i 为静态变量),实际会产生如下的 JVM 字节码指令:
getstatic i // 获取静态变量i的值
iconst_1 // 准备常量1
iadd // 加法
putstatic i // 将修改后的值存入静态变量i
而对应 i-- 也是类似:
getstatic i // 获取静态变量i的值
iconst_1 // 准备常量1
isub // 减法
putstatic i // 将修改后的值存入静态变量i
而 Java 的内存模型如下,完成静态变量的自增,自减需要在主存和线程内存中进行数据交换:
如果是单线程以上 8 行代码是顺序执行,不会交错,所以没有问题:
// 假设i的初始值为0
getstatic i // 线程1-获取静态变量i的值 线程内i=0
iconst_1 // 线程1-准备常量1
iadd // 线程1-自增 线程内i=1
putstatic i // 线程1-将修改后的值存入静态变量i 静态变量i=1
getstatic i // 线程1-获取静态变量i的值 线程内i=1
iconst_1 // 线程1-准备常量1
isub // 线程1-自减 线程内i=0
putstatic i // 线程1-将修改后的值存入静态变量i 静态变量i=0
但多线程下这 8 行代码可能交错运行。为什么会交错?思考一下
出现负数的情况:
// 假设i的初始值为0
getstatic i // 线程1-获取静态变量i的值 线程内i=0
getstatic i // 线程2-获取静态变量i的值 线程内i=0
iconst_1 // 线程1-准备常量1
iadd // 线程1-自增 线程内i=1
putstatic i // 线程1-将修改后的值存入静态变量i 静态变量i=1
iconst_1 // 线程2-准备常量1
isub // 线程2-自减 线程内i=-1
putstatic i // 线程2-将修改后的值存入静态变量i 静态变量i=-1
出现正数的情况:
// 假设i的初始值为0
getstatic i // 线程1-获取静态变量i的值 线程内i=0
getstatic i // 线程2-获取静态变量i的值 线程内i=0
iconst_1 // 线程1-准备常量1
iadd // 线程1-自增 线程内i=1
iconst_1 // 线程2-准备常量1
isub // 线程2-自减 线程内i=-1
putstatic i // 线程2-将修改后的值存入静态变量i 静态变量i=-1
putstatic i // 线程1-将修改后的值存入静态变量i 静态变量i=1
3.解决方法
使用 synchronized 来解决
语法
synchronized( 对象 ) {
要作为原子操作代码
}
用 synchronized 解决并发问题:
static int i = 0;
static Object obj = new Object();
public static void main(String[] args) throws InterruptedException {
Thread t1 = new Thread(() -> {
for (int j = 0; j < 5000; j++) {
synchronized (obj) {
i++;
}
}
});
Thread t2 = new Thread(() -> {
for (int j = 0; j < 5000; j++) {
synchronized (obj) {
i--;
}
}
});
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println(i);
}
如何理解呢:
可以把 obj 想象成一个房间,线程 t1,t2 想象成两个人。 当线程 t1 执行到 synchronized(obj) 时就好比 t1 进入了这个房间,并反手锁住了门,在门内执行 count++ 代码。 这时候如果 t2 也运行到了 synchronized(obj) 时,它发现门被锁住了,只能在门外等待。 当 t1 执行完 synchronized{} 块内的代码,这时候才会解开门上的锁,从 obj 房间出来。t2 线程这时才 可以进入 obj 房间,反锁住门,执行它的 count-- 代码。
注意:上例中 t1 和 t2 线程必须用 synchronized 锁住同一个 obj 对象,如果 t1 锁住的是 m1 对 象,t2 锁住的是 m2 对象,就好比两个人分别进入了两个不同的房间,没法起到同步的效果。
3. 可见性
1.退不出的循环
先来看一个现象,main 线程对 run 变量的修改对于 t 线程不可见,导致了 t 线程无法停止:
static boolean run = true;
public static void main(String[] args) throws InterruptedException {
Thread t = new Thread(()->{
while(run){
// ....
}
});
t.start();
Thread.sleep(1000);
run = false; // 线程t不会如预想的停下来
}
2.原因分析
初始状态, t 线程刚开始从主内存读取了 run 的值到工作内存。
因为 t 线程要频繁从主内存中读取 run 的值,JIT 编译器会将 run 的值缓存至自己工作内存中的高 速缓存中,减少对主存中 run 的访问,提高效率
1 秒之后,main 线程修改了 run 的值,并同步至主存,而 t 是从自己工作内存中的高速缓存中读 取这个变量的值,结果永远是旧值
3.解决方法
可以通过volatile(易变关键字)来解决
它可以用来修饰成员变量和静态成员变量,避免线程从自己的工作缓存中查找变量的值,必须到 主存中获取它的值,线程操作 volatile 变量都是直接操作主存
4.可见性理解
前面例子体现的实际就是可见性,它保证的是在多个线程之间,一个线程对 volatile 变量的修改对另一个线程可见, 不能保证原子性,仅用在一个写线程,多个读线程的情况:
getstatic run // 线程 t 获取 run true
getstatic run // 线程 t 获取 run true
getstatic run // 线程 t 获取 run true
getstatic run // 线程 t 获取 run true
putstatic run // 线程 main 修改 run 为 false, 仅此一次
getstatic run // 线程 t 获取 run false
比较一下之前我们将线程安全时举的例子:两个线程一个 i++ 一个 i-- ,只能保证看到最新值,不能解决指令交错
//假设i的初始值为0
getstatic i // 线程1-获取静态变量i的值 线程内i=0
getstatic i // 线程2-获取静态变量i的值 线程内i=0
iconst_1 // 线程1-准备常量1
iadd // 线程1-自增 线程内i=1
putstatic i // 线程1-将修改后的值存入静态变量i 静态变量i=1
iconst_1 // 线程2-准备常量1
isub // 线程2-自减 线程内i=-1
putstatic i // 线程2-将修改后的值存入静态变量i 静态变量i=-1
注意:
synchronized 语句块既可以保证代码块的原子性,也同时保证代码块内变量的可见性。但缺点是 synchronized是属于重量级操作,性能相对更低
4. 有序性
1.诡异的结果
int num = 0;
boolean ready = false;
// 线程1 执行此方法
public void actor1(I_Result r) {
if(ready) {
r.r1 = num + num;
} else {
r.r1 = 1;
}
}
// 线程2 执行此方法
public void actor2(I_Result r) {
num = 2;
ready = true;
}
I_Result 是一个对象,有一个属性 r1 用来保存结果,问,可能的结果有几种?
一般情况下大家会这么分析
- 情况1:线程1 先执行,这时 ready = false,所以进入 else 分支结果为 1
- 情况2:线程2 先执行 num = 2,但没来得及执行 ready = true,线程1 执行,还是进入 else 分支,结 果为1
- 情况3:线程2 执行到 ready = true,线程1 执行,这回进入 if 分支,结果为 4(因为 num 已经执行过了)
但我告诉你,结果还有可能是 0 😁😁😁,信不信吧!
- 这种情况下是:线程2 执行 ready = true,切换到线程1,进入 if 分支,相加为 0,再切回线程2 执行 num = 2
这种现象叫做指令重排,是 JIT 编译器在运行时的一些优化,这个现象需要通过大量测试才能复现:
借助 java 并发压测工具 jcstress https://wiki.openjdk.java.net/display/CodeTools/jcstress
mvn archetype:generate -DinteractiveMode=false -
DarchetypeGroupId=org.openjdk.jcstress -DarchetypeArtifactId=jcstress-java-test-
archetype -DgroupId=org.sample -DartifactId=test -Dversion=1.0
创建 maven 项目,提供如下测试类
@JCStressTest
@Outcome(id = {"1", "4"}, expect = Expect.ACCEPTABLE, desc = "ok")
@Outcome(id = "0", expect = Expect.ACCEPTABLE_INTERESTING, desc = "!!!!")
@State
public class ConcurrencyTest {
int num = 0;
boolean ready = false;
@Actor
public void actor1(I_Result r) {
if(ready) {
r.r1 = num + num;
} else {
r.r1 = 1;
}
}
@Actor
public void actor2(I_Result r) {
num = 2;
ready = true;
}
}
执行
mvn clean install
java -jar target/jcstress.jar
会输出我们感兴趣的结果,摘录其中一次结果:
*** INTERESTING tests
Some interesting behaviors observed. This is for the plain curiosity.
2 matching test results.
[OK] test.ConcurrencyTest
(JVM args: [-XX:-TieredCompilation])
Observed state Occurrences Expectation Interpretation
0 1,729 ACCEPTABLE_INTERESTING !!!!
1 42,617,915 ACCEPTABLE ok
4 5,146,627 ACCEPTABLE ok
[OK] test.ConcurrencyTest
(JVM args: [])
Observed state Occurrences Expectation Interpretation
0 1,652 ACCEPTABLE_INTERESTING !!!!
1 46,460,657 ACCEPTABLE ok
4 4,571,072 ACCEPTABLE ok
可以看到,出现结果为 0 的情况有 638 次,虽然次数相对很少,但毕竟是出现了。
2.解决方法
也是通过 volatile 关键字去修饰变量,可以禁用指令重排
@JCStressTest
@Outcome(id = {"1", "4"}, expect = Expect.ACCEPTABLE, desc = "ok")
@Outcome(id = "0", expect = Expect.ACCEPTABLE_INTERESTING, desc = "!!!!")
@State
public class ConcurrencyTest {
int num = 0;
volatile boolean ready = false;
@Actor
public void actor1(I_Result r) {
if(ready) {
r.r1 = num + num;
} else {
r.r1 = 1;
}
}
@Actor
public void actor2(I_Result r) {
num = 2;
ready = true;
}
}
结果为:
*** INTERESTING tests
Some interesting behaviors observed. This is for the plain curiosity.
0 matching test results.
3.有序性理解
JVM 会在不影响正确性的前提下,可以调整语句的执行顺序,思考下面一段代码
static int i;
static int j;
// 在某个线程内执行如下赋值操作
i = ...; // 较为耗时的操作
j = ...;
可以看到,至于是先执行 i 还是 先执行 j ,对最终的结果不会产生影响。所以,上面代码真正执行 时,既可以是
i = ...; // 较为耗时的操作
j = ...;
也可以是
j = ...;
i = ...; // 较为耗时的操作
这种特性称之为『指令重排』,多线程下『指令重排』会影响正确性,例如著名的 double-checked locking 模式实现单例
public final class Singleton {
private Singleton() { }
private static Singleton INSTANCE = null;
public static Singleton getInstance() {
// 实例没创建,才会进入内部的 synchronized代码块
if (INSTANCE == null) {
synchronized (Singleton.class) {
// 也许有其它线程已经创建实例,所以再判断一次
if (INSTANCE == null) {
INSTANCE = new Singleton();
}
}
}
return INSTANCE;
}
}
以上的实现特点是:
- 懒惰实例化
- 首次使用 getInstance() 才使用 synchronized 加锁,后续使用时无需加锁
但在多线程环境下,上面的代码是有问题的, INSTANCE = new Singleton() 对应的字节码为:
0: new #2 // class cn/itcast/jvm/t4/Singleton
3: dup
4: invokespecial #3 // Method "<init>":()V
7: putstatic #4 // Field
INSTANCE:Lcn/itcast/jvm/t4/Singleton;
其中 4、7 两步的顺序不是固定的,也许 jvm 会优化为:先将引用地址赋值给 INSTANCE 变量后,再执行构造方法,如果两个线程 t1,t2 按如下时间序列执行:
时间1 t1 线程执行到 INSTANCE = new Singleton();
时间2 t1 线程分配空间,为Singleton对象生成了引用地址(0 处)
时间3 t1 线程将引用地址赋值给 INSTANCE,这时 INSTANCE != null(7 处)
时间4 t2 线程进入getInstance() 方法,发现 INSTANCE != null(synchronized块外),直接
返回 INSTANCE
时间5 t1 线程执行Singleton的构造方法(4 处)
这时 t1 还未完全将构造方法执行完毕,如果在构造方法中要执行很多初始化操作,那么 t2 拿到的是将 是一个未初始化完毕的单例
对 INSTANCE 使用 volatile 修饰即可,可以禁用指令重排,但要注意在 JDK 5 以上的版本的 volatile 才 会真正有效