使用langchain与你自己的数据对话(五):聊天机器人

news2024/11/29 2:30:36

之前我已经完成了使用langchain与你自己的数据对话的前四篇博客,还没有阅读这四篇博客的朋友可以先阅读一下:

  1. 使用langchain与你自己的数据对话(一):文档加载与切割
  2. 使用langchain与你自己的数据对话(二):向量存储与嵌入
  3. 使用langchain与你自己的数据对话(三):检索(Retrieval)
  4. 使用langchain与你自己的数据对话(四):问答(question answering) 

今天我们来继续讲解deepleaning.AI的在线课程“LangChain: Chat with Your Data”的第六门课:chat。

Langchain在实现与外部数据对话的功能时需要经历下面的5个阶段,它们分别是:Document Loading->Splitting->Storage->Retrieval->Output,如下图所示:

在前面的四篇博客中我们以及完成了这5给阶段所有的内容介绍,并在第四篇博客中我们还创建了RetrievalQA实现了对数据的问答功能,但是这里有一个小小的缺陷,那就是通过RetrievalQA实现的问答功能只能针对当前问题进行回答,它无法参考上下文来来回答问题,也就是说它没有记忆能力,无法实现连贯性聊。今天我们就来解决这个问题,我们会创建一个真正的个性化聊天机器人,它会学习用户提供的数据,并解答任何关于数据内容的问题,并且它具有记忆能力,能够实现真正的连贯性聊天。

在讨论聊天机器人之前之前,先让我们完成一些基础性工作,比如设置一下openai的api key:

import os
import openai
import sys
sys.path.append('../..')

import panel as pn  # GUI
pn.extension()

from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # read local .env file

openai.api_key  = os.environ['OPENAI_API_KEY']

 先前内容回顾

之前我们介绍了Langchain在实现与外部数据对话的功能时需要经历下面的5个阶段,它们分别是:Document Loading->Splitting->Storage->Retrieval->Output。下面我们通过代码来简单实现一下这5个阶段的功能:

from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings

#加载本地向量数据库
persist_directory = 'docs/chroma/'
embedding = OpenAIEmbeddings()
vectordb = Chroma(persist_directory=persist_directory, 
                  embedding_function=embedding)

#搜索与问题相关的文档
question = "What are major topics for this class?"
docs = vectordb.similarity_search(question,k=3)

#查看搜索结果中的文档数量
len(docs)

 这里我们在向量数据库中搜索到3篇与问题相关的文档,下面我们查看一下这3篇文档:

docs

 下面我们来创建RetrievalQA,同时我们加入一个prompt的模板,在该prompt我们要求llm尽量用简洁的语言来回答问题,并且不能编造答案,最后我们还要求llm在答案的结语上加上“thanks for asking!”,通过这个prompt模板llm能给出简洁的格式化的答案:


from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate

# Build prompt
template = """Use the following pieces of context to answer the question at the end. \
If you don't know the answer, just say that you don't know, don't try to make up an answer. \
Use three sentences maximum. Keep the answer as concise as possible. \
Always say "thanks for asking!" at the end of the answer. 

{context}
Question: {question}
Helpful Answer:"""
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context", "question"],template=template,)

# Run chain
from langchain.chains import RetrievalQA
question = "Is probability a class topic?"
qa_chain = RetrievalQA.from_chain_type(llm=ChatOpenAI(temperature=0),
                                       retriever=vectordb.as_retriever(),
                                       return_source_documents=True,
                                       chain_type_kwargs={"prompt": QA_CHAIN_PROMPT})


result = qa_chain({"query": question})
result["result"]

 ​​​​​

 这里我们看到RetrievalQA返回了一个很简洁的答案,并在最后附加了“thanks for asking!”,这符合我们对它的要求。

ConversationalRetrievalChain

到目前为止我们已经创建好了RetrievalQA,可以实现对数据内容的问答,不过这里会有一个问题,就是通过RetrievalQA创建的检索问答链,它没有记忆功能,它无法记住之前用户已经提出过问题,所以RetrievalQA不能实现连贯性的聊天问答。为了解决这个功能,我们可以通过创建ConversationalRetrievalChain,它会存储每次聊天的历史记录,当LLM在回答当前问题的时候都会参考历史聊天记录,这样就可以实现连贯性的聊天:

为了保存么此用户和LLM之间的聊天记录,我们需要创建一个ConversationBufferMemory组件,该组件会自动保存每一次用户和LLM之间对话记录。ConversationalRetrievalChain包含3给主要的参数:

  • llm: 语言模型,这里我们使用openai的“gpt-3.5-turbo”模型
  • retriever:检索器,这里我们由向量数据库来创建检索器
  • memory:记忆力组件,这里我们使用ConversationBufferMemory
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain


#创建memory
memory = ConversationBufferMemory(
    memory_key="chat_history",
    return_messages=True
)

#创建ConversationalRetrievalChain
qa = ConversationalRetrievalChain.from_llm(
    llm=ChatOpenAI(temperature=0),
    retriever=vectordb.as_retriever(),
    memory=memory
)

这里我们创建了ConversationalRetrievalChain的实例qa,接下来我们来实现连贯性的聊天,我们首先向LLM提出一个问题:概率是这门课的主题吗?

question1="概率是这门课的主题吗?"
result = qa({"question": question1})
print(result['answer'])

 接下来我们第二给问题:为什么需要先修课程呢?,这里需要说明的是该问题其实是衔接第一个问题的答案,如果我们的ConversationalRetrievalChain有记忆功能,那么它一定会知道这里的先修课程是指哪些课程,并且给出正确的回答:

question2 = "为什么需要先修课程呢?"
result = qa({"question": question2})
print(result['answer'])

 这里我们向LLM提出了2个问题,第一个问题是:概率是这门课的主题吗?我们知道,我们的向量数据库中存储的是吴恩达老师著名的机器学习课程cs229的课程讲义,因此课程中涉及到了一些概率的基础知识,那么接下来提出的第二给问题:为什么需要先修课程呢?该问题其实是衔接第一个问题的答案,要回答该问题必须要知道这里的先修课程是指哪些课程,因为LLM在回答第一个问题的时候已经明确告知用户概率是这门课的一个主题,那么概率也就是这门课的先修课程,这里我们看到ConversationalRetrievalChain在回答第二给问题的时候已经参考了之前的历史聊天记录,因此它给出了合理的答案。

创建聊天机器人

下面我们把Langchain在实现与外部数据对话的功能的5个阶段所有的内容整合起来,然后建一个真正意义上的聊天机器人,这里我们在jupyter notebook中使用panel组件来创建一个GUI的聊天对话界面:

from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.vectorstores import DocArrayInMemorySearch
from langchain.document_loaders import TextLoader
from langchain.chains import RetrievalQA,  ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import TextLoader
from langchain.document_loaders import PyPDFLoader
import panel as pn
import param

def load_db(file, chain_type, k):
    # load documents
    loader = PyPDFLoader(file)
    documents = loader.load()
    # split documents
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
    docs = text_splitter.split_documents(documents)
    # define embedding
    embeddings = OpenAIEmbeddings()
    # create vector database from data
    db = DocArrayInMemorySearch.from_documents(docs, embeddings)
    # define retriever
    retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": k})
    # create a chatbot chain. Memory is managed externally.
    qa = ConversationalRetrievalChain.from_llm(
        llm=ChatOpenAI(temperature=0), 
        chain_type=chain_type, 
        retriever=retriever, 
        return_source_documents=True,
        return_generated_question=True,
    )
    return qa 


class cbfs(param.Parameterized):
    chat_history = param.List([])
    answer = param.String("")
    db_query  = param.String("")
    db_response = param.List([])
    
    def __init__(self,  **params):
        super(cbfs, self).__init__( **params)
        self.panels = []
        self.loaded_file = "docs/cs229_lectures/MachineLearning-Lecture01.pdf"
        self.qa = load_db(self.loaded_file,"stuff", 4)
    
    def call_load_db(self, count):
        if count == 0 or file_input.value is None:  # init or no file specified :
            return pn.pane.Markdown(f"Loaded File: {self.loaded_file}")
        else:
            file_input.save("temp.pdf")  # local copy
            self.loaded_file = file_input.filename
            button_load.button_style="outline"
            self.qa = load_db("temp.pdf", "stuff", 4)
            button_load.button_style="solid"
        self.clr_history()
        return pn.pane.Markdown(f"Loaded File: {self.loaded_file}")

    def convchain(self, query):
        if not query:
            return pn.WidgetBox(pn.Row('User:', pn.pane.Markdown("", width=600)), scroll=True)
        result = self.qa({"question": query, "chat_history": self.chat_history})
        self.chat_history.extend([(query, result["answer"])])
        self.db_query = result["generated_question"]
        self.db_response = result["source_documents"]
        self.answer = result['answer'] 
        self.panels.extend([
            pn.Row('User:', pn.pane.Markdown(query, width=600)),
            pn.Row('ChatBot:', pn.pane.Markdown(self.answer, width=600, style={'background-color': '#F6F6F6'}))
        ])
        inp.value = ''  #clears loading indicator when cleared
        return pn.WidgetBox(*self.panels,scroll=True)

    @param.depends('db_query ', )
    def get_lquest(self):
        if not self.db_query :
            return pn.Column(
                pn.Row(pn.pane.Markdown(f"Last question to DB:", styles={'background-color': '#F6F6F6'})),
                pn.Row(pn.pane.Str("no DB accesses so far"))
            )
        return pn.Column(
            pn.Row(pn.pane.Markdown(f"DB query:", styles={'background-color': '#F6F6F6'})),
            pn.pane.Str(self.db_query )
        )

    @param.depends('db_response', )
    def get_sources(self):
        if not self.db_response:
            return 
        rlist=[pn.Row(pn.pane.Markdown(f"Result of DB lookup:", styles={'background-color': '#F6F6F6'}))]
        for doc in self.db_response:
            rlist.append(pn.Row(pn.pane.Str(doc)))
        return pn.WidgetBox(*rlist, width=600, scroll=True)

    @param.depends('convchain', 'clr_history') 
    def get_chats(self):
        if not self.chat_history:
            return pn.WidgetBox(pn.Row(pn.pane.Str("No History Yet")), width=600, scroll=True)
        rlist=[pn.Row(pn.pane.Markdown(f"Current Chat History variable", styles={'background-color': '#F6F6F6'}))]
        for exchange in self.chat_history:
            rlist.append(pn.Row(pn.pane.Str(exchange)))
        return pn.WidgetBox(*rlist, width=600, scroll=True)

    def clr_history(self,count=0):
        self.chat_history = []
        return 


cb = cbfs()

file_input = pn.widgets.FileInput(accept='.pdf')
button_load = pn.widgets.Button(name="Load DB", button_type='primary')
button_clearhistory = pn.widgets.Button(name="Clear History", button_type='warning')
button_clearhistory.on_click(cb.clr_history)
inp = pn.widgets.TextInput( placeholder='Enter text here…')

bound_button_load = pn.bind(cb.call_load_db, button_load.param.clicks)
conversation = pn.bind(cb.convchain, inp) 

jpg_pane = pn.pane.Image( './img/convchain.jpg')

tab1 = pn.Column(
    pn.Row(inp),
    pn.layout.Divider(),
    pn.panel(conversation,  loading_indicator=True, height=300),
    pn.layout.Divider(),
)
tab2= pn.Column(
    pn.panel(cb.get_lquest),
    pn.layout.Divider(),
    pn.panel(cb.get_sources ),
)
tab3= pn.Column(
    pn.panel(cb.get_chats),
    pn.layout.Divider(),
)
tab4=pn.Column(
    pn.Row( file_input, button_load, bound_button_load),
    pn.Row( button_clearhistory, pn.pane.Markdown("Clears chat history. Can use to start a new topic" )),
    pn.layout.Divider(),
    pn.Row(jpg_pane.clone(width=400))
)
dashboard = pn.Column(
    pn.Row(pn.pane.Markdown('# ChatWithYourData_Bot')),
    pn.Tabs(('Conversation', tab1), ('Database', tab2), ('Chat History', tab3),('Configure', tab4))
)

#启动聊天应用程序
dashboard

 总结

 今天我们学习了如何开发一个具有记忆能力的个性化问答机器人,所谓个性化是指该机器人可以针对用户数据的内容进行问答,我们在实现该机器人时使用了ConversationalRetrievalChain组件,它是一个具有记忆能力的检索链,也是机器人的核心组件。希望今天的内容对大家有所帮助!

参考资料

Overview — Panel v1.2.1

Welcome to Param! — param v1.13.0

https://github.com/sophiamyang/tutorials-LangChain

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/843521.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[Securinets CTF Quals 2023] Admin Service,ret2libc,One is enough

只作了3个pwn,第4个附件没下下来,第5个不会 Admin Service 这是个最简单的题,最后来弄出来。原来只是看过关于maps文件的,一直没什么印象。 题目一开始设置seccomp禁用execv等,看来是用ORW,然后建了个mm…

STM32 4G学习

硬件连接 ATK-IDM750C模块可直接与正点原子 MiniSTM32F103开发板板载的ATK模块接口(ATK-MODULE)进行连接。 功能说明 ATK-IDM750C是正点原子(ALIENTEK)团队开发的一款高性能4G Cat1 DTU产品,支持移动4G、联通4G和…

详细介绍golang中.()类型断言的使用方法

文章目录 一、什么是.()用法?二、.()的基本用法三、.()用法的高级应用3.1 nil类型的转换3.2 将函数作为参数传递 四、.()使用中的注意事项五、总结 Golang是一门非常流行的编程语言,在很多领域都有着广泛的应用。在开发过程中,很多时候我们需…

verxriscv中Fpu中的加法器add源码分析

一 加法器端口 case class AddInput() extends Bundle{val source = Source()val rs1, rs2 = FpuFloat(exponentSize = p.internalExponentSize, mantissaSize = p.internalMantissaSize+addExtraBits)val rd = p.rfAddress()val roundMode = FpuRoundMode()val format = p.wit…

华为harmonyos4.0鸿蒙4.0安装谷歌服务框架Play商店,解决从服务器检索信息时出错

8月4号华为手机发布了全新的harmonyos4.0鸿蒙4.0系统,很多人需要问还是不是支持谷歌服务框架?那么答案是肯定的,它和鸿蒙3是一样的,一样的操作,一样的支持安装谷歌服务框架,安装Google play商店。测试机型&…

【新】通达OA前台反序列化漏洞分析

0x01 前言 注:本文仅以安全研究为目的,分享对该漏洞的挖掘过程,文中涉及的所有漏洞均已报送给国家单位,请勿用做非法用途。 通达OA作为历史上出现漏洞较多的OA,在经过多轮的迭代之后已经很少前台的RCE漏洞了。一般来说…

python+requests+json 接口测试思路示例

实际项目中用python脚本实现接口测试的步骤: 1 发送请求,获取响应 》》2 提取响应里的数据,对数据进行必要的处理 》》3 断言响应数据是否与预期一致 以豆瓣接口为例,做一个简单的接口测试吧。使用到的知识涉及requests库&…

Vue3 第三节 计算属性,监视属性,生命周期

1.computed计算属性 2.watch监视函数 3.watchEffect函数 4.Vue的生命周期函数 一.computed计算属性 计算属性简写和完整写法 <template><h1>一个人的信息</h1>姓&#xff1a;<input type"text" v-model"person.firstName" />…

车载A2B总线AD2428主从模式调试问题汇总

一&#xff0c;简介 在实际A2B总线一主一从模式的调试过程中下载程序出现许多报错提示&#xff0c;本文将遇到的错误进行汇总记录&#xff0c;方便相关开发者进行参考。 二&#xff0c;错误现象 2.1 Cable Terminal Shorted to Ground 主机IIS&#xff08;TDM&#xff09;线…

Mir 2.14 正式发布,Ubuntu 使用的 Linux 显示服务器

Canonical 公司最近发布了 Mir 2.14&#xff0c;这是该项目的最新版本。 Mir 2.14 在 Wayland 方面通过 ext-session-lock-v1 协议增加了对屏幕锁定器 (screen lockers) 的支持&#xff0c;并最终支持 Wayland 拖放。此外还整合了渲染平台的实现&#xff0c;放弃了之前在 Raspb…

常见监控网络链路和网络设备的方法

网络监控主要包括网络链路监控和网络设备监控&#xff0c;通常系统运维人员会比较关注。 一、网络链路监控 网络链路监控主要包含三个部分&#xff0c;网络连通性、网络质量、网络流量。 连通性和质量的监控手段非常简单&#xff0c;就是在链路一侧部署探针&#xff0c;去探…

搭建 elasticsearch8.8.2 伪集群 windows

下载windows 版本 elasticsearch8.8.2 以下链接为es 历史版本下载地址&#xff1a; Past Releases of Elastic Stack Software | Elastic windows 单节点建立方案&#xff1a; 下载安装包 elasticsearch-8.8.2-windows-x86_64.zip https://artifacts.elastic.co/download…

设计模式原来是这样

目录 概述: 什么是模式&#xff01;&#xff01; 为什么学习模式&#xff01;&#xff01; 模式和框架的比较&#xff1a; 设计模式研究的历史 关于pattern的历史 Gang of Four(GoF) 关于”Design”Pattern” 重提&#xff1a;指导模式设计的三个概念 1.重用(reuse)…

Linux:shell脚本:基础使用(2)

test命令 格式1&#xff1a;test 条件表达式 格式2&#xff1a;[ 条件表达式 ] (前后至少应有一个空格) 常用的测试操作符 -d&#xff1a;测试是否为目录&#xff08;Directory) -e&#xff1a;测试目录或文件是否存在&#xff08;Exist&#xff09; -f&#xff1a;测试是否…

【C++】Lambda表达式的使用

学习目标&#xff1a; 例如&#xff1a; 了解Lambda的优点 掌握Lambda表达式的使用 了解Lambda表达式的底层原理 学习内容&#xff1a; Lambda表达式的语法 文章目录 学习目标&#xff1a;学习内容&#xff1a;Lambda表达式排序案例Lambda表达式语法捕捉列表Lambda表达式模拟…

20230806将ASF格式的视频转换为MP4

20230806将ASF格式的视频转换为MP4 2023/8/6 18:47 缘起&#xff0c;自考中山大学的《计算机网络》&#xff0c;考试《数据库系统原理》的时候找到视频&#xff0c;由于个人的原因&#xff0c;使用字幕更加有学习效率&#xff01; 由于【重型】的PR2023占用资源较多&#xff0c…

laravel语言包问题

1、更新vendor composer require "overtrue/laravel-lang:3.0" 2、修正配置文件 config/app.php 3、 php artisan config:clear 更新缓存 4、设定新的语言包 在这个resources\lang目录下加即可

海康威视摄像头配置RTSP协议访问、onvif协议接入、二次开发SDK接入

一、准备工作 (1)拿到摄像头之后,将摄像头电源线插好,再将网线插入到路由器上。 (2)将自己的笔记本电脑也连接到路由器网络,与摄像头出在同一个局域网。 二、配置摄像头 2.1 激活方式选择 第一次使用设备需要激活,在进行配置。 最简单,最方便的方式是选择浏览器激…

【嵌入式环境下linux内核及驱动学习笔记-(18)LCD驱动框架1-LCD控制原理】

目录 1、LCD显示系统介绍1.1 LCD显示基本原理1.1.1 颜色的显示原理&#xff1a;1.1.2 图像的构成 1.2 LCD接口介绍1.2.1 驱动接口 - MCU接口1.2.2 驱动接口 - RGB接口1.2.3 驱动接口 - LVDS接口1.2.4 驱动接口 - MIPI接口1.2.5 RGB / MIPI / LVDS三种接口方式的区别&#xff1a…

【数据结构OJ题】轮转数组

原题链接&#xff1a;https://leetcode.cn/problems/rotate-array/ 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 1. 方法一&#xff1a;暴力求解&#xff0c;将数组的第一个元素用临时变量tmp存起来&#xff0c;再将数组其他元素往右挪动一步&…