时序预测 | MATLAB实现BO-LSTM贝叶斯优化长短期记忆神经网络时间序列预测

news2024/12/25 0:26:30

时序预测 | MATLAB实现BO-LSTM贝叶斯优化长短期记忆神经网络时间序列预测

目录

    • 时序预测 | MATLAB实现BO-LSTM贝叶斯优化长短期记忆神经网络时间序列预测
      • 效果一览
      • 基本介绍
      • 模型搭建
      • 程序设计
      • 参考资料

效果一览

1

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

MATLAB实现BO-LSTM贝叶斯优化长短期记忆神经网络时间序列预测。基于贝叶斯(bayes)优化长短期记忆神经网络的时间序列预测,BO-LSTM/Bayes-LSTM时间序列预测模型。
1.优化参数为:学习率,隐含层节点,正则化参数。
2.评价指标包括:R2、MAE、MSE、RMSE和MAPE等。
3.运行环境matlab2018b及以上。

模型搭建

贝叶斯优化是一种通过迭代优化来提高模型性能的方法,它可以用于优化神经网络的超参数选择。而长短期记忆神经网络(Long Short-Term Memory,LSTM)是一种适用于处理时间序列数据的循环神经网络(Recurrent Neural Network,RNN)架构。
在时间序列预测中,可以将贝叶斯优化用于调整LSTM模型的超参数,以获得更好的预测结果。以下是使用贝叶斯优化调整LSTM模型的步骤:

  • 定义LSTM模型的目标函数:首先,需要定义一个目标函数,它接受LSTM模型的超参数作为输入,并返回一个评估指标,如均方根误差(Root Mean Squared Error,RMSE)或平均绝对误差(Mean Absolute Error,MAE)。

  • 定义超参数空间:确定需要优化的LSTM模型的超参数以及它们的取值范围。例如,超参数可以包括LSTM的学习率,隐含层节点,正则化参数等。

  • 运行贝叶斯优化:使用贝叶斯优化算法(如高斯过程)在定义的超参数空间中进行迭代优化。每次迭代时,根据目标函数的评估结果选择下一个要探索的超参数组合。

  • 训练和评估LSTM模型:使用每个超参数组合训练一个LSTM模型,并在验证集上评估其性能。根据目标函数的评估结果确定最佳的超参数组合。

  • 模型选择和预测:选择具有最佳性能的LSTM模型,并使用该模型进行时间序列的预测。

需要注意的是,贝叶斯优化是一种计算密集型的方法,因为它需要在超参数空间中进行多次模型训练和评估。因此,在实际应用中,可能需要权衡计算资源和模型性能之间的关系。
总结来说,贝叶斯优化可以用于调整LSTM模型的超参数,帮助提高时间序列预测的性能。通过迭代优化超参数,可以找到最佳的超参数组合,从而改善预测结果。

  • 伪代码
    9
  • 通过调整优化算法调整模型参数,学习重复率和贝叶斯优化超参数来调整模型参数。

程序设计

  • 完整程序和数据获取方式1:私信博主回复MATLAB实现BO-LSTM贝叶斯优化长短期记忆神经网络时间序列预测,同等价值程序兑换;
  • 完整程序和数据下载方式2(资源处直接下载):MATLAB实现BO-LSTM贝叶斯优化长短期记忆神经网络时间序列预测;
  • 完整程序和数据下载方式3(订阅《LSTM长短期记忆神经网络》专栏,同时可阅读《LSTM长短期记忆神经网络》专栏内容,数据订阅后私信我获取):MATLAB实现BO-LSTM贝叶斯优化长短期记忆神经网络时间序列预测,专栏外只能获取该程序。
%%  优化算法参数设置
%参数取值上界(学习率,隐藏层节点,正则化系数)
%%  贝叶斯优化参数范围
optimVars = [
    optimizableVariable('NumOfUnits', [10, 50], 'Type', 'integer')
    optimizableVariable('InitialLearnRate', [1e-3, 1], 'Transform', 'log')
    optimizableVariable('L2Regularization', [1e-10, 1e-2], 'Transform', 'log')];

%% 创建混合LSTM网络架构
% 输入特征维度
numFeatures  = f_;
% 输出特征维度
numResponses = 1;
FiltZise = 10;
%  创建"LSTM"模型
    layers = [...
        % 输入特征
        sequenceInputLayer([numFeatures 1 1],'Name','input')
        sequenceFoldingLayer('Name','fold')
        % LSTM特征学习
        lstmLayer(50,'Name','lstm1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
        % LSTM输出
        lstmLayer(optVars.NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
        dropoutLayer(0.25,'Name','drop3')
        % 全连接层
        fullyConnectedLayer(numResponses,'Name','fc')
        regressionLayer('Name','output')    ];

    layers = layerGraph(layers);
    layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');

%% LSTM训练选项
% 批处理样本
MiniBatchSize =128;
% 最大迭代次数
MaxEpochs = 500;
    options = trainingOptions( 'adam', ...
        'MaxEpochs',500, ...
        'GradientThreshold',1, ...
        'InitialLearnRate',optVars.InitialLearnRate, ...
        'LearnRateSchedule','piecewise', ...
        'LearnRateDropPeriod',400, ...
        'LearnRateDropFactor',0.2, ...
        'L2Regularization',optVars.L2Regularization,...
        'Verbose',false, ...
        'Plots','none');

%% 训练混合网络
net = trainNetwork(XrTrain,YrTrain,layers,options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/842785.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

uniapp 微信小程序 分包

1、manifest.json内添加如图所示: "optimization" : {"subPackages" : true },2、在与pages同级上创建各个分包的文件夹 把需要分包的文件对应移入分包文件夹内 3、page.json内修改分包文件的路径 比如: {"path" : &qu…

【从零开始学习JAVA | 第四十篇】了解线程池

目录 前言: 线程池: 线程池的工作流程: 代码实现线程池: 任务拒绝策略: 线程池多大才算合适? 总结: 前言: 在Java编程中,线程池是一个强大的工具,它能…

CentOS下ZLMediaKit的可视化管理网站MediaServerUI使用

一、简介 按照 ZLMediaKit快速开始 编译运行ZLMediaKit成功后,我们可以运行其合作开源项目MediaServerUI,来对ZLMediaKit进行可视化管理。通过MediaServerUI,我们可以实现在浏览器查看ZLMediaKit的延迟率、负载率、正在进行的推拉流、服务器…

摄影入门基础笔记

1.认识相机,传感器和镜头 微单相机和单反相机 运动相机、卡片机 微单和单反的区别? 微单的光学结构少了反光板的结构以及棱镜的结构 DSLR [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PCSYr2Ob-1691407493645)(https:/…

呼叫中心系统管理和优化的关键指标

呼叫中心系统是企业客户服务的重要组成部分,通过电话、邮件、社交媒体等渠道与客户进行沟通和交互。如何管理和优化呼叫中心系统,提高客户满意度和工作效率,是每个企业都需要关注和解决的问题。以下是呼叫中心系统管理和优化的关键指标。 1. …

C语言假期作业 DAY 15

一、选择题 1、有如下代码,则 *(p[0]1) 所代表的数组元素是( ) int a[3][2] {1, 2, 3, 4, 5, 6}, *p[3]; p[0] a[1]; A: a[0][1] B: a[1][0] C: a[1][1] D: a[1][2] 答案解析 正确答案: C p 是一个指针数组, p[0] a…

【Github】Uptime Kuma:自托管监控工具的完美选择

简介: Uptime Kuma 是一款强大的自托管监控工具,通过简单的部署和配置,可以帮助你监控服务器、VPS 和其他网络服务的在线状态。相比于其他类似工具,Uptime Kuma 提供更多的灵活性和自由度。本文将介绍 Uptime Kuma 的功能、如何使…

Leetcode周赛 | 2023-8-6

2023-8-6 题1体会我的代码 题2我的超时代码题目体会我的代码 题3体会我的代码 题1 体会 这道题完全就是唬人,只要想明白了,只要有两个连续的数的和,大于target,那么一定可以,两边一次切一个就好了。 我的代码 题2 我…

JavaScript |(七)BOM及JSON简介 | 轮播图 | 尚硅谷JavaScript基础实战

学习来源:尚硅谷JavaScript基础&实战丨JS入门到精通全套完整版 系列笔记: JavaScript |(一)JavaScript简介及基本语法JavaScript |(二)JavaScript自定义对象及函数JavaScript |(三&#xff…

【JavaEE】Spring Boot - 日志文件

【JavaEE】Spring Boot 开发要点总结(3) 文章目录 【JavaEE】Spring Boot 开发要点总结(3)1. 日志有什么作用2. 日志格式2.1 日志框架原理 3. 日志的打印3.1 System.out.println3.2 使用日志框架3.3 日志级别3.3.1 设置默认日志显…

论文阅读---《Unsupervised T ransformer-Based Anomaly Detection in ECG Signals》

题目:基于Transformer的无监督心电图(ECG)信号异常检测 摘要 异常检测是数据处理中的一个基本问题,它涉及到医疗感知数据中的不同问题。技术的进步使得收集大规模和高度变异的时间序列数据变得更加容易,然而&#xff…

Unity 中检测射线穿过的所有的物体

在开发中 有个需求,射线要检测所有穿过的物体。 代码如下: using UnityEngine;public class HitCollider : MonoBehaviour {public float raycastDistance Mathf.Infinity;// Update is called once per framevoid Update(){Ray ray Camera.main.Scre…

GIT-HUB上传大文件.docx

下载git Github上传大文件(>25MB)教程_UestcXiye的博客-CSDN博客 上传流程 https://blog.csdn.net/weixin_35770067/article/details/116564429?spm1001.2101.3001.6661.1&utm_mediumdistribute.pc_relevant_t0.none-task-blog-2%7Ed…

WebRTC | 音视频直播客户端框架

端到端通信互动技术可分解为以下几个技术难点:客户端技术、服务器技术、全球设备网络适配技术和通信互动质量监控与展示技术。 一、音视频直播 音视频直播可分成两条技术路线:一条是以音视频会议为代表的实时互动直播;另一条是以娱乐直播为代…

Fabric

Fabric Fabric.js是一个非常好用的Javascript HTML5 canvas库,封装了canvas原生较为复杂的api,在canvas元素的顶部提供交互式对象模型,用于实现图片的变形旋转拖拉拽等功能。 在线demo: 官网链接 下载 npm install fabric --save或 yarn …

实力认证 | 百分点科技蝉联中国大数据企业50强

近日,第八届中国大数据产业生态大会在京召开 ,本届大会以“数实共融 生态共建”为主题,由赛迪传媒、大数据产业生态联盟、《软件和集成电路 》杂志社联合主办。会上颁布多个奖项,百分点科技斩获2023中国大数据企业50强、金沙奖“…

由于找不到vcruntime140_1.dll,无法继续执行代码重新安装程序,怎么解决

vcruntime140_1.dll是Microsoft Visual C Redistributable for Visual Studio 2015中的一个动态链接库文件。它是用于支持在Windows操作系统上运行使用Visual C编写的应用程序或游戏所必需的文件之一。当出现vcruntime140_1.dll丢失的错误时,通常是由于缺少或损坏了…

作者推荐 | 【深入了解系统性能优化】「实战技术专题」全方面带你透彻探索服务优化技术方案(系统服务调优)

全方面带你透彻探索服务优化技术方案(服务器系统性能调优) 调优意义计划分析 流程相关分析优化分析Nginx请求服务日志将请求热度最高的接口进行优化异步调用优化方式注意要点 分析调用链路追踪体系建立切面操作分析性能和数据统计存储相关的调用以及耗时…

拓展知识 启望未来 | 记内蒙古移动《AntDB ACA初级认证培训》活动

炎炎六月,迎来了备受期待的“亚信科技AntDB数据库初级认证培训”活动。通过培训,希望内蒙古移动及项目组的伙伴们能够系统学习到国产数据库的核心知识,提升专业技能,为服务感知提升、运维团队培育注入新的活力。 26号上午&#xf…

Pytest测试框架3

目录: pytest结合数据驱动-yamlpytest结合数据驱动-excelpytest结合数据驱动-csvpytest结合数据驱动-jsonpytest测试用例生命周期管理(一)pytest测试用例生命周期管理(二)pytest测试用例生命周期管理(三&a…