使用TransBigData快速高效地处理、分析、挖掘出租车GPS数据

news2025/1/8 5:13:21

图片

01、TransBigData简介

TransBigData是一个为交通时空大数据处理、分析和可视化而开发的Python包。TransBigData为处理常见的交通时空大数据(如出租车GPS数据、共享单车数据和公交车GPS数据等)提供了快速而简洁的方法。TransBigData为交通时空大数据分析的各个阶段提供了多种处理方法,代码简洁、高效、灵活、易用,可以用简洁的代码实现复杂的数据任务。

目前,TransBigData主要提供以下方法:

数据预处理:对数据集提供快速计算数据量、时间段、采样间隔等基本信息的方法,也针对多种数据噪声提供了相应的清洗方法。

数据栅格化:提供在研究区域内生成、匹配多种类型的地理栅格(矩形、三角形、六边形及geohash栅格)的方法体系,能够以向量化的方式快速算法将空间点数据映射到地理栅格上。

数据可视化:基于可视化包keplergl,用简单的代码即可在Jupyter Notebook上交互式地可视化展示数据。

轨迹处理:从轨迹数据GPS点生成轨迹线型,轨迹点增密、稀疏化等。

地图底图、坐标转换与计算:加载显示地图底图与各类特殊坐标系之间的坐标转换。

特定处理方法:针对各类特定数据提供相应处理方法,如从出租车GPS数据中提取订单起讫点,从手机信令数据中识别居住地与工作地,从地铁网络GIS数据构建网络拓扑结构并计算最短路径等。

TransBigData可以通过pip或者conda安装,在命令提示符中运行下面代码即可安装:

pip install -U transbigdata

安装完成后,在Python中运行如下代码即可导入TransBigData包。

In [1]:
import transbigdata as tbd

02、数据预处理

TransBigData与数据处理中常用的Pandas和GeoPandas包能够无缝衔接。首先我们引入Pandas包并读取出租车GPS数据:

In [2]:
import pandas as pd  
#读取数据      
data = pd.read_csv('TaxiData-Sample.csv',header = None)   
data.columns = ['VehicleNum','time','lon','lat','OpenStatus','Speed'] 
data.head()

结果如图1所示。

图片

■ 图1 出租车GPS数据

然后,引入GeoPandas包,读取研究范围的区域信息并展示:


In [3]:
import geopandas as gpd  
#读取研究范围区域信息  
sz = gpd.read_file(r'sz/sz.shp')  
sz.plot()

结果如图2所示。

图片

■ 图2  研究范围的区域信息

TransBigData包集成了交通时空数据的一些常用预处理方法。其中,tbd.clean_outofshape方法输入数据和研究范围区域信息,能够剔除研究范围外的数据。而tbd.clean_taxi_status方法则可以剔除出租车GPS数据中载客状态瞬间变化的记录。在使用预处理方法时需要传入数据表中重要信息列所对应的列名,代码如下:


In [4]:
#数据预处理  
#剔除研究范围外的数据,计算原理是在方法中先栅格化后栅格匹配研究范围后实现对应。因此这里需要同时定义栅格大小,越小则精度越高  
data = tbd.clean_outofshape(data, sz, col=['lon', 'lat'], accuracy=500)  
#剔除出租车数据中载客状态瞬间变化的数据  
data = tbd.clean_taxi_status(data, col=['VehicleNum', 'time', 'OpenStatus'])

经过上面代码的处理,我们就已经将出租车GPS数据中研究范围以外的数据和载客状态瞬间变化的数据予以剔除。

03、数据栅格化

栅格形式(地理空间上相同大小的网格)是表达数据分布最基本的方法,GPS数据经过栅格化后,每个数据点都含有其所在的栅格信息。采用栅格表达数据的分布时,其表示的分布情况与真实情况接近。

TransBigData工具为我们提供了一套完整、快速、便捷的栅格处理体系。用TransBigData进行栅格划分时,首先需要确定栅格化的参数(可以理解为定义了一个栅格坐标系),参数可以帮助我们快速进行栅格化:

In [5]:
#定义研究范围边界
bounds = [113.75, 22.4, 114.62, 22.86]
#通过边界获取栅格化参数
params = tbd.area_to_params(bounds,accuracy = 1000)
params

Out [5]:
{'slon': 113.75, 
 'slat': 22.4, 
 'deltalon': 0.00974336289289822, 
 'deltalat': 0.008993210412845813,
 'theta': 0,
 'method': 'rect',
 'gridsize': 1000}

此时输出的栅格化参数params的内容存储了栅格坐标系的原点坐标(slon、slat)、单个栅格的经纬度长宽 (deltalon、deltalat)、栅格的旋转角度(theta)、栅格的形状(method参数,其值可以是方形rect、三角形tri和六边形hexa)以及栅格的大小(gridsize参数,单位为米)。

取得栅格化参数后,我们便可以用TransBigData中提供的方法对GPS数据进行栅格匹配、生成等操作。完整的栅格处理方法体系如图3所示。

图片

■ 图3  TransBigData所提供的栅格处理体系

使用tbd.GPS_to_grid方法能够为每一个出租车GPS点生成,该方法会生成编号列 LONCOL与 LATCOL,由这两列共同指定所在的栅格:


In [6]:
#将GPS数据对应至栅格,将生成的栅格编号列赋值到数据表上作为新的两列
data['LONCOL'],data['LATCOL'] = tbd.GPS_to_grids(data['lon'],data['lat'],params)

 下一步,聚合集计每一栅格内的数据量,并为栅格生成地理几何图形,构建GeoDataFrame:


In [7]:
#聚合集计栅格内数据量  
grid_agg = data.groupby(['LONCOL','LATCOL'])['VehicleNum'].count().reset_index()  
#生成栅格的几何图形  
grid_agg['geometry'] = tbd.grid_to_polygon([grid_agg['LONCOL'],grid_agg['LATCOL']],params)  
#转换为GeoDataFrame  
grid_agg = gpd.GeoDataFrame(grid_agg)  
#绘制栅格  
grid_agg.plot(column = 'VehicleNum',cmap = 'autumn_r')  

结果如图4所示。

图片

  

■ 图 5数据栅格化的结果

对于一个正式的数据可视化图来说,我们还需要添加底图、色条、指北针和比例尺。TransBigData也提供了相应的功能,代码如下:

In [8]:
import matplotlib.pyplot as plt  
fig =plt.figure(1,(8,8),dpi=300)  
ax =plt.subplot(111)  
plt.sca(ax)  
#添加行政区划边界作为底图
sz.plot(ax = ax,edgecolor = (0,0,0,0),facecolor = (0,0,0,0.1),linewidths=0.5)
#定义色条位置  
cax = plt.axes([0.04, 0.33, 0.02, 0.3])  
plt.title('Data count')  
plt.sca(ax)  
#绘制数据  
grid_agg.plot(column = 'VehicleNum',cmap = 'autumn_r',ax = ax,cax = cax,legend = True)  
#添加指北针和比例尺  
tbd.plotscale(ax,bounds = bounds,textsize = 10,compasssize = 1,accuracy = 2000,rect = [0.06,0.03],zorder = 10)  
plt.axis('off')  
plt.xlim(bounds[0],bounds[2])  
plt.ylim(bounds[1],bounds[3])  
plt.show()  

 结果如图5所示。

图片

■ 图5  tbd包绘制的出租车GPS数据分布

04、订单起讫点OD提取与聚合集计

针对出租车GPS数据,TransBigData提供了直接从数据中提取出出租车订单起讫点(OD)信息的方法,代码如下:


In [9]:  
#从GPS数据提取OD  
oddata = tbd.taxigps_to_od(data,col = ['VehicleNum','time','Lng','Lat','OpenStatus'])  
oddata  

 结果如图6所示。

图片

■ 图6  tbd包提取的出租车OD

TransBigData包提供的栅格化方法可以让我们快速地进行栅格化定义,只需要修改accuracy参数,即可快速定义不同大小粒度的栅格。我们重新定义一个2km*2km的栅格坐标系,将其参数传入tbd.odagg_grid方法对OD进行栅格化聚合集计并生成GeoDataFrame:


In [10]:  
#重新定义栅格,获取栅格化参数  
params = tbd.area_to_params(bounds,accuracy = 2000)  
#栅格化OD并集计  
od_gdf = tbd.odagg_grid(oddata,params)  
od_gdf.plot(column = 'count')  

 结果如图7所示。

图片

■ 图7  tbd集计的栅格OD

添加地图底图,色条与比例尺指北针:


In [11]:
#创建图框  
import matplotlib.pyplot as plt  
fig =plt.figure(1,(8,8),dpi=300)  
ax =plt.subplot(111)  
plt.sca(ax)  
#添加行政区划边界作为底图  
sz.plot(ax = ax,edgecolor = (0,0,0,1),facecolor = (0,0,0,0),linewidths=0.5)
#绘制colorbar  
cax = plt.axes([0.05, 0.33, 0.02, 0.3])  
plt.title('Data count')  
plt.sca(ax)  
#绘制OD  
od_gdf.plot(ax = ax,column = 'count',cmap = 'Blues_r',linewidth = 0.5,vmax = 10,cax = cax,legend = True)  
#添加比例尺和指北针  
tbd.plotscale(ax,bounds = bounds,textsize = 10,compasssize = 1,accuracy = 2000,rect = [0.06,0.03],zorder = 10)  
plt.axis('off')  
plt.xlim(bounds[0],bounds[2])  
plt.ylim(bounds[1],bounds[3])  
plt.show()  

 结果如图8所示。

图片

■ 图8  TransBigData绘制的栅格OD数据

同时,TransBigData包也提供了将OD直接聚合集计到区域间的方法:


In [12]:
#OD集计到区域
#方法1:在不传入栅格化参数时,直接用经纬度匹配
od_gdf = tbd.odagg_shape(oddata,sz,round_accuracy=6)  
#方法2:传入栅格化参数时,程序会先栅格化后匹配以加快运算速度,数据量大时建议使用  
od_gdf = tbd.odagg_shape(oddata,sz,params = params)  
od_gdf.plot(column = 'count')  

 结果如图9所示。

图片

■ 图9  tbd集计的小区OD

加载地图底图并调整出图参数:

        


In [13]:
#创建图框  
import matplotlib.pyplot as plt  
import plot_map  
fig =plt.figure(1,(8,8),dpi=300)  
ax =plt.subplot(111)  
plt.sca(ax)  
#添加行政区划边界作为底图  
sz.plot(ax = ax,edgecolor = (0,0,0,0),facecolor = (0,0,0,0.2),linewidths=0.5)
#绘制colorbar  
cax = plt.axes([0.05, 0.33, 0.02, 0.3])  
plt.title('count')  
plt.sca(ax)  
#绘制OD  
od_gdf.plot(ax = ax,vmax = 100,column = 'count',cax = cax,cmap = 'autumn_r',linewidth = 1,legend = True)  
#添加比例尺和指北针  
tbd.plotscale(ax,bounds = bounds,textsize = 10,compasssize = 1,accuracy = 2000,rect = [0.06,0.03],zorder = 10)  
plt.axis('off')  
plt.xlim(bounds[0],bounds[2])  
plt.ylim(bounds[1],bounds[3])  
plt.show()  

 结果如图10所示。

图片

■ 图10  区域间OD可视化结果

05、交互可视化

在TransBigData中,我们可以对出租车数据使用简单的代码在jupyter notebook中快速进行交互可视化。这些可视化方法底层依托了keplergl包,可视化的结果不再是静态的图片,而是能够与鼠标响应交互的地图应用。

tbd.visualization_data方法可以实现数据分布的可视化,将数据传入该方法后,TransBigData会首先对数据点进行栅格集计,然后生成数据的栅格,并将数据量映射至颜色上。代码如下:


In [14]:  
#可视化数据点分布  
tbd.visualization_data(data,col = ['lon','lat'],accuracy=1000,height = 500)

 结果如图11所示。

■ 图11 数据分布的栅格可视化

对于出租车数据中所提取出的出行OD,也可使用tbd.visualization_od方法实现OD的弧线可视化。该方法也会对OD数据进行栅格聚合集计,生成OD弧线,并将不同大小的OD出行量映射至不同颜色。代码如下:


In [15]:  
#可视化数据点分布  
tbd.visualization_od(oddata,accuracy=2000,height = 500) 

结果如图12所示。 

 

■ 图12  OD分布的弧线可视化

对个体级的连续追踪数据,tbd.visualization_trip方法可以将数据点处理为带有时间戳的轨迹信息并动态地展示,代码如下:


In [16]:  
#动态可视化轨迹  
tbd.visualization_trip(data,col = ['lon','lat','VehicleNum','time'],height = 500)  

结果图13所示。点击其中的播放键,可以看到出租车运行的动态轨迹效果。

 ■ 13 出租车轨迹动态可视化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/842398.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JavaScript的对象+内置对象(Math+Date日期+数组+字符串)

一.创建对象 对象是由属性和方法组成的 创建对象的三种方法: 1.利用字面量创建对象 var obj{uname : 张三疯 ,age : 18 ,sex : 男 ,sayHi : function(){console.log(hi~);}} 里面的属性或者方法采用键值对的形式多个属性或者方法用逗号隔开方法冒号后面跟的是一个匿名…

第四次作业 运维高级 构建 LVS-DR 群集和配置nginx负载均衡

1、基于 CentOS 7 构建 LVS-DR 群集。 LVS-DR模式工作原理 首先,来自客户端计算机CIP的请求被发送到Director的VIP。然后Director使用相同的VIP目的IP地址将请求发送到集群节点或真实服务器。然后,集群某个节点将回复该数据包,并将该数据包…

如何创建51单片机KEIL工程

如何创建51单片机KEIL工程步骤: (1)打开keil软件,点击工具栏-Project,选择创建新的工程; (2)然后给工程命名,文章以project为例,然后点击保存 &#xff08…

ubuntu 暂时不能解析域名 解决办法

需要修改系统DNS 打开终端:输入 sudo vi /etc/resolv.conf 回车 在打开的配置文件中添加DNS信息 nameserver 114.114.114.114 nameserver 8.8.8.8 保存退出,重启系统即可。

一、MySql前置知识

文章目录 一、什么是数据库(一)存储数据用文件就可以了,为什么还要弄个数据库?(二)数据库存储介质:(三)主流数据库 二、数据库基本操作(一)连接服务器&#…

ArcGIS在洪水灾害普查、风险评估及淹没制图中应用教程

详情点击链接:ArcGIS在洪水灾害普查、风险评估及淹没制图中应用教程 一:洪水普查技术规范 1.1 全国水旱灾害风险普查实施方案 1.2 洪水风险区划及防治区划编制技术要求 1.3 山丘区中小河流洪水淹没图编制技术要求 二:ArcGIS及数据管理 …

为什么说CSPM考的越早越好?

一、CSPM 含金量怎么样,考了有什么用? 1、国家标准做背书(gj认可) CSPM 更符合项目管理从业者在能力、经验上的需求,有政策的支持,相关理论知识在国内项目管理领域更加容易落地、更实用、更可持续性。 2…

一张图理解非对称加密解密过程

非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对…

postgresql 使用之 存储架构 触摸真实数据的存储结构以及组织形式,存入数据库的数据原来在这里

存储架构 ​专栏内容: postgresql内核源码分析 手写数据库toadb 并发编程 个人主页:我的主页 座右铭:天行健,君子以自强不息;地势坤,君子以厚德载物. 概述 postgresql 数据库服务运行时,数据在磁…

对返回引用函数的进一步解释

#include <iostream> #include <string> using namespace std; class Box { public:Box(string name,int age):name(name),age(age){}string& getname() //返回引用的函数{cout << "&name: " << (int)&name << endl;retur…

Maven入职学习

一、什么是Maven&#xff1f; 概念&#xff1a; Maven是一种框架。它可以用作依赖管理工具、构建工具。 它可以管理jar包的规模、jar包的来源、jar包之间的依赖关系。 它的用途就是管理规模庞大的jar包&#xff0c;脱离IDE环境执行构建操作。 具体使用&#xff1a; 工作机…

Clickhouse 存储引擎

一、常用存储引擎分类 1.1 ReplacingMergeTree 这个引擎是在 MergeTree 的基础上&#xff0c;添加了”处理重复数据”的功能&#xff0c;该引擎和MergeTree的不同之处在于它会删除具有相同主键的重复项。 特点: 1使用ORDERBY排序键作为判断重复的唯一键 2.数据的去重只会在合并…

复习之selinux的管理

一、什么是selinux? SELinux&#xff0c;Security Enhanced Linux 的缩写&#xff0c;也就是安全强化的 Linux&#xff0c;是由美国国家安全局&#xff08;NSA&#xff09;联合其他安全机构&#xff08;比如 SCC 公司&#xff09;共同开发的&#xff0c;旨在增强传统 Linux 操…

x光下危险物品/违禁物品目标识别的模型训练与推理代码

前言 1.安检在公共场合的重要性不言而喻&#xff0c;保障群众人身安全是其首要任务。在各种场合&#xff0c;安检都是不可或缺的环节。x光安检机作为安检的重要工具&#xff0c;尽管其具有人工监控判断成像的特性&#xff0c;但是其局限性也十分明显。 为了解决这一局限性为出…

面试题:bind、call、apply 区别?如何实现一个 bind?

面试题&#xff1a;bind、call、apply 区别&#xff1f;如何实现一个 bind? 一、call()代码描述&#xff1a; 二、apply()代码描述&#xff1a; 三、bind()—最重要代码描述&#xff1a; 四、call、apply、bind 总结 一、call() 代码描述&#xff1a; 二、apply() 代码描述&am…

广州VR制作 | 利用VR元宇宙平台开展林地管理培训的优势

在林业领域&#xff0c;实地调查是获取准确数据和深入了解森林生态的重要手段。然而&#xff0c;传统的实地调查方法存在诸多问题&#xff0c;如时间成本高、人力物力投入大、安全风险高等。为了解决这些教学痛点&#xff0c;我们引入了虚拟现实(VR)技术&#xff0c;通过虚拟林…

PO模式在selenium自动化测试框架有什么好处

PO模式是在UI自动化测试过程当中使用非常频繁的一种设计模式&#xff0c;使用这种模式后&#xff0c;可以有效的提升代码的复用能力&#xff0c;并且让自动化测试代码维护起来更加方便。 PO模式的全称叫page object model&#xff08;POM&#xff09;&#xff0c;有时候叫做 p…

解读百胜中国2023年第二季度财报:聚焦下沉市场,扩店实力几何?

从全网玩梗的“肯德基疯狂星期四”文学&#xff0c;到大小朋友疯狂抢购的六一三丽鸥玩具联名&#xff0c;再到不久前爆火的必胜客原神联名活动&#xff0c;肯德基、必胜客这两大家喻户晓的快餐品牌&#xff0c;被不少新闻调侃为“顶流制造机”。而近日&#xff0c;这两大顶流背…

【c++进阶】--哈希

1.unordered系列关联式容器 在C98中&#xff0c;STL提供了底层为红黑树结构的一系列关联式容器&#xff0c;在查询时效率可达到 &#xff0c;即最差情况下 需要比较红黑树的高度次&#xff0c;当树中的节点非常多时&#xff0c;查询效率也不理想。最好的查询是&#xff0c;进行…

【Linux】五种IO模型

文章目录 1. IO基本概念2. 五种IO模型2.1 五个钓鱼的例子2.2 五种IO模型2.2.1 阻塞IO2.2.2 非阻塞IO2.2.3 信号驱动IO2.2.4 IO多路转接2.2.5 异步IO 1. IO基本概念 认识IO IO就是输入和输出&#xff0c;在冯诺依曼体系结构中&#xff0c;将数据从输入设备拷贝到内存就叫输入&am…