Spark 3.1.1 遇到的 from_json regexp_replace组合表达式慢问题的解决

news2024/11/16 19:33:39

背景

目前公司在从spark 2.4.x升级到3.1.1的时候,遇到了一类SQL极慢的情况,该SQL的如下(只列举了关键的):

 
 select device_personas.* 
 from
 (select
        device_id, ads_id, 
        from_json(regexp_replace(device_personas, '(?<=(\\{|,))"device_', '"user_device_'), ${device_schema}) as device_personas
        from input )

其${device_schema} 有几百个字段

在没有调优之前 在360core 720GB内存的情况下,需要运行43分钟:
在这里插入图片描述

调优之后,资源不变的情况下,只需要运行6分钟:
在这里插入图片描述

结论

先说结论:
主要的原因是 Spark 3.1.x 引入的 org.apache.spark.sql.catalyst.optimizer.OptimizeJsonExprs 新规则,该规则对于该SQL作用是裁剪了不必要的列:
导致 regexp_replace 会被调用很多次,具体的原因如该规则的解释:

if JsonToStructs(json) is shared among all fields of CreateNamedStruct. prunedSchema contains all accessed fields in original CreateNamedStruct.

所以设置 spark.sql.optimizer.enableJsonExpressionOptimization 为 false,或者设置

spark.sql.adaptive.optimizer.excludedRules	    org.apache.spark.sql.catalyst.optimizer.OptimizeJsonExprs
spark.sql.optimizer.excludedRules	              org.apache.spark.sql.catalyst.optimizer.OptimizeJsonExprs

跳过该规则。

分析

该SQL的物理计划如下:
在这里插入图片描述

没有跳过该规则的情况下:

该主要的物理计划为:

(6) Project
Output [10]: [device_id#62, ads_id#63, from_json(StructField(user_device_adv_age_year,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_adv_age_year AS user_device_adv_age_year#292, from_json(StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_child_age AS user_device_child_age#293, from_json(StructField(ads_material_text_tag,StringType,true), ads_personas#70, Some(Asia/Shanghai)).ads_material_text_tag AS ads_material_text_tag#294, from_json(StructField(ads_ad_pic_resolution,StringType,true), ads_personas#70, Some(Asia/Shanghai)).ads_ad_pic_resolution AS ads_ad_pic_resolution#295, from_json(StructField(ctx_sound_patch_scene,StringType,true), ctx_personas#73, Some(Asia/Shanghai)).ctx_sound_patch_scene AS ctx_sound_patch_scene#296, from_json(StructField(ctx_position,StringType,true), ctx_personas#73, Some(Asia/Shanghai)).ctx_position AS ctx_position#297, from_json(StructField(album_category_id,StringType,true), album_personas#72, Some(Asia/Shanghai)).album_category_id AS album_category_id#298, from_json(StructField(album_nlp_labels_app,StringType,true), album_personas#72, Some(Asia/Shanghai)).album_nlp_labels_app AS album_nlp_labels_app#299]
Input [6]: [device_id#62, ads_id#63, device_personas#69, ads_personas#70, album_personas#72, ctx_personas#73]

经过该规则的处理计划转换如下(以两个字段为例):

=== Applying Rule org.apache.spark.sql.catalyst.optimizer.OptimizeJsonExprs ===
 InsertIntoHadoopFsRelationCommand oss://xima-bd-data3.cn-shanghai.oss-dls.aliyuncs.com/reslib/droplet/generate/data/ai-ad/102041271/1723411818435/xqldata/.staging_1691066243227, false, Parquet, Map(coalesceNum -> 500, path -> oss://xima-bd-data3.cn-shanghai.oss-dls.aliyuncs.com/reslib/droplet/generate/data/ai-ad/102041271/1723411818435/xqldata/.staging_1691066243227), Overwrite, [device_id, ads_id, user_device_adv_age_year, user_device_child_age, ads_material_text_tag, ads_ad_pic_resolution, ctx_sound_patch_scene, ctx_position, album_category_id, album_nlp_labels_app]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        InsertIntoHadoopFsRelationCommand oss://xima-bd-data3.cn-shanghai.oss-dls.aliyuncs.com/reslib/droplet/generate/data/ai-ad/102041271/1723411818435/xqldata/.staging_1691066243227, false, Parquet, Map(coalesceNum -> 500, path -> oss://xima-bd-data3.cn-shanghai.oss-dls.aliyuncs.com/reslib/droplet/generate/data/ai-ad/102041271/1723411818435/xqldata/.staging_1691066243227), Overwrite, [device_id, ads_id, user_device_adv_age_year, user_device_child_age, ads_material_text_tag, ads_ad_pic_resolution, ctx_sound_patch_scene, ctx_position, album_category_id, album_nlp_labels_app]
 +- Repartition 500, true                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              +- Repartition 500, true
!   +- Project [device_id#62, ads_id#63, from_json(StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_adv_age_year AS user_device_adv_age_year#292, from_json(StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_child_age AS user_device_child_age#293, from_json(StructField(ads_material_text_tag,StringType,true), StructField(ads_ad_pic_resolution,StringType,true), ads_personas#70, Some(Asia/Shanghai)).ads_material_text_tag AS ads_material_text_tag#294, from_json(StructField(ads_material_text_tag,StringType,true), StructField(ads_ad_pic_resolution,StringType,true), ads_personas#70, Some(Asia/Shanghai)).ads_ad_pic_resolution AS ads_ad_pic_resolution#295, from_json(StructField(ctx_sound_patch_scene,StringType,true), StructField(ctx_position,StringType,true), ctx_personas#73, Some(Asia/Shanghai)).ctx_sound_patch_scene AS ctx_sound_patch_scene#296, from_json(StructField(ctx_sound_patch_scene,StringType,true), StructField(ctx_position,StringType,true), ctx_personas#73, Some(Asia/Shanghai)).ctx_position AS ctx_position#297, from_json(StructField(album_category_id,StringType,true), StructField(album_nlp_labels_app,StringType,true), album_personas#72, Some(Asia/Shanghai)).album_category_id AS album_category_id#298, from_json(StructField(album_category_id,StringType,true), StructField(album_nlp_labels_app,StringType,true), album_personas#72, Some(Asia/Shanghai)).album_nlp_labels_app AS album_nlp_labels_app#299]      +- Project [device_id#62, ads_id#63, from_json(StructField(user_device_adv_age_year,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_adv_age_year AS user_device_adv_age_year#292, from_json(StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_child_age AS user_device_child_age#293, from_json(StructField(ads_material_text_tag,StringType,true), ads_personas#70, Some(Asia/Shanghai)).ads_material_text_tag AS ads_material_text_tag#294, from_json(StructField(ads_ad_pic_resolution,StringType,true), ads_personas#70, Some(Asia/Shanghai)).ads_ad_pic_resolution AS ads_ad_pic_resolution#295, from_json(StructField(ctx_sound_patch_scene,StringType,true), ctx_personas#73, Some(Asia/Shanghai)).ctx_sound_patch_scene AS ctx_sound_patch_scene#296, from_json(StructField(ctx_position,StringType,true), ctx_personas#73, Some(Asia/Shanghai)).ctx_position AS ctx_position#297, from_json(StructField(album_category_id,StringType,true), album_personas#72, Some(Asia/Shanghai)).album_category_id AS album_category_id#298, from_json(StructField(album_nlp_labels_app,StringType,true), album_personas#72, Some(Asia/Shanghai)).album_nlp_labels_app AS album_nlp_labels_app#299]
       +- Filter (if ((label_click#84 = 0)) (rand(7794855199306151884) >= 0.95) else true AND (NOT (isnull(device_personas#69) AND isnull(ads_personas#70)) OR NOT isnull(ctx_personas#73)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 +- Filter (if ((label_click#84 = 0)) (rand(7794855199306151884) >= 0.95) else true AND (NOT (isnull(device_personas#69) AND isnull(ads_personas#70)) OR NOT isnull(ctx_personas#73)))
          +- Filter ((((dt#82 >= 20230710) AND (dt#82 <= 20230712)) AND NOT coalesce(appshadow#76, ) IN (2,3)) AND ((NOT (position_name#75 = sound_agg) AND isnotnull(get_json_object(ads_personas#70, $.ads_first_trade))) AND NOT coalesce(get_json_object(ads_personas#70, $.ads_business_type), -11111) IN (1,2,3)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        +- Filter ((((dt#82 >= 20230710) AND (dt#82 <= 20230712)) AND NOT coalesce(appshadow#76, ) IN (2,3)) AND ((NOT (position_name#75 = sound_agg) AND isnotnull(get_json_object(ads_personas#70, $.ads_first_trade))) AND NOT coalesce(get_json_object(ads_personas#70, $.ads_business_type), -11111) IN (1,2,3)))
             +- Relation[device_id#62,ads_id#63,response_id#64,track_id#65,album_id#66,imp_ts#67,click_ts#68,device_personas#69,ads_personas#70,track_personas#71,album_personas#72,ctx_personas#73,label_conv#74,position_name#75,appshadow#76,play_num#77,sub_num#78,leave_num#79,pay_num#80,live_num#81,dt#82,hour#83,label_click#84] parquet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   +- Relation[device_id#62,ads_id#63,response_id#64,track_id#65,album_id#66,imp_ts#67,click_ts#68,device_personas#69,ads_personas#70,track_personas#71,album_personas#72,ctx_personas#73,label_conv#74,position_name#75,appshadow#76,play_num#77,sub_num#78,leave_num#79,pay_num#80,live_num#81,dt#82,hour#83,label_click#84] parquet

可以看到最主要的转换为:

from_json(StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_adv_age_year AS user_device_adv_age_year#292, from_json(StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_child_age AS user_device_child_age#293

              ||
              \/

from_json(StructField(user_device_adv_age_year,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_adv_age_year AS user_device_adv_age_year#292, from_json(StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_child_age AS user_device_child_age#293

from_json 中的 schema 由 StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true)分开成了
StructField(user_device_adv_age_year,StringType,true)
StructField(user_device_child_age,StringType,true)单独的两个schema

那为什么会变慢呢?是因为JsonToStructs中的处理逻辑:

case class JsonToStructs(
    schema: DataType,
    options: Map[String, String],
    child: Expression,
    timeZoneId: Option[String] = None)
  extends UnaryExpression with TimeZoneAwareExpression with CodegenFallback with ExpectsInputTypes
    with NullIntolerant {
    ...
    @transient lazy val parser = {
    val parsedOptions = new JSONOptions(options, timeZoneId.get, nameOfCorruptRecord)
    val mode = parsedOptions.parseMode
    if (mode != PermissiveMode && mode != FailFastMode) {
      throw new IllegalArgumentException(s"from_json() doesn't support the ${mode.name} mode. " +
        s"Acceptable modes are ${PermissiveMode.name} and ${FailFastMode.name}.")
    }
    val (parserSchema, actualSchema) = nullableSchema match {
      case s: StructType =>
        ExprUtils.verifyColumnNameOfCorruptRecord(s, parsedOptions.columnNameOfCorruptRecord)
        (s, StructType(s.filterNot(_.name == parsedOptions.columnNameOfCorruptRecord)))
      case other =>
        (StructType(StructField("value", other) :: Nil), other)
    }

    val rawParser = new JacksonParser(actualSchema, parsedOptions, allowArrayAsStructs = false)
    val createParser = CreateJacksonParser.utf8String _

    new FailureSafeParser[UTF8String](
      input => rawParser.parse(input, createParser, identity[UTF8String]),
      mode,
      parserSchema,
      parsedOptions.columnNameOfCorruptRecord)
  }
  ...
  override def nullSafeEval(json: Any): Any = {
    converter(parser.parse(json.asInstanceOf[UTF8String]))
  }

最主要关心的是 parser这个变量,因为由于上述规则的原因,两个schema单独在不同的parser中,而这里的 Child是由regexp_replace表达式组成的,所以该正则表达式会计算两次,
而由于该字段会有10多个,所以该正则表达式会被重复计算100多次(正则表达式的是比较消耗时间的)

跳过该规则的情况下

该主要的物理计划为:

(6) Project
Output [10]: [device_id#62, ads_id#63, from_json(StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_adv_age_year AS user_device_adv_age_year#292, from_json(StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_child_age AS user_device_child_age#293, from_json(StructField(ads_material_text_tag,StringType,true), StructField(ads_ad_pic_resolution,StringType,true), ads_personas#70, Some(Asia/Shanghai)).ads_material_text_tag AS ads_material_text_tag#294, from_json(StructField(ads_material_text_tag,StringType,true), StructField(ads_ad_pic_resolution,StringType,true), ads_personas#70, Some(Asia/Shanghai)).ads_ad_pic_resolution AS ads_ad_pic_resolution#295, from_json(StructField(ctx_sound_patch_scene,StringType,true), StructField(ctx_position,StringType,true), ctx_personas#73, Some(Asia/Shanghai)).ctx_sound_patch_scene AS ctx_sound_patch_scene#296, from_json(StructField(ctx_sound_patch_scene,StringType,true), StructField(ctx_position,StringType,true), ctx_personas#73, Some(Asia/Shanghai)).ctx_position AS ctx_position#297, from_json(StructField(album_category_id,StringType,true), StructField(album_nlp_labels_app,StringType,true), album_personas#72, Some(Asia/Shanghai)).album_category_id AS album_category_id#298, from_json(StructField(album_category_id,StringType,true), StructField(album_nlp_labels_app,StringType,true), album_personas#72, Some(Asia/Shanghai)).album_nlp_labels_app AS album_nlp_labels_app#299]
Input [6]: [device_id#62, ads_id#63, device_personas#69, ads_personas#70, album_personas#72, ctx_personas#73]

如果跳过该规则的话,那么该规则不会被应用,还是以两个字段为例,所以from_json的Schema不会变:

from_json(StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_adv_age_year AS user_device_adv_age_year#292, from_json(StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_child_age AS user_device_child_age#293

其实从物理计划我们看到:其实在regexp_replace这个表达式还是会出现多次,难道不会被调用多次么?当然不会被调用多次,直接看物理计划ProjectExec

ProjectExec

  protected override def doExecute(): RDD[InternalRow] = {
    child.execute().mapPartitionsWithIndexInternal { (index, iter) =>
      val project = UnsafeProjection.create(projectList, child.output)
      project.initialize(index)
      iter.map(project)
    }
  }

该方法的调用链如下:

UnsafeProjection.create
              ||
              \/
InterpretedUnsafeProjection.createProjection/GenerateUnsafeProjection.generate
              ||
              \/
             create
              ||
              \/
createCode(ctx, expressions, subexpressionEliminationEnabled)
              ||
              \/
ctx.generateExpressions(expressions, useSubexprElimination)
              ||
              \/
subexpressionElimination

subexpressionElimination 这里主要是提取公共表达式,也就是说后续的公共表达式的计算只会被计算一次
那对应到我们的表达式为:

 Alias(GetStructField(attribute.get, i), f.name)()
 其中 attribute.get 为 JsonToStructs(StructType(StructField(user_device_adv_age_year,StringType,true),StructField(user_device_child_age,StringType,true)), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai))

这里的刚好能和Spark UI上显示的计划能对上:

from_json(StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_adv_age_year AS user_device_adv_age_year#292, from_json(StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_child_age AS user_device_child_age#293

(主要就是调用JsonToStructs.toString的方法)

其他

  • Alias 的toString方法为:
s"$child AS $name#${exprId.id}$typeSuffix$delaySuffix" 
  • GetStructField 的toString方法为:
val fieldName = if (resolved) childSchema(ordinal).name else s"_$ordinal"
s"$child.${name.getOrElse(fieldName)}" 
  • UnresolvedStar这个类里有对 SELECT record. from (SELECT struct(a,b,c) as record …)*的解释

  • ResolveReferences 规则中的方法buildExpandedProjectList 进行 UnresolvedStar 的expand方法的调用
    这里就会解析为 Alias(GetStructField(attribute.get, i), f.name)()

  • 具体的优化规则见Optimize Json expression chain

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/838372.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ospf于mgre中应用(直连与星型拓扑)

题目 地址配置 R1&#xff1a; R2&#xff1a; R3&#xff1a; R4&#xff1a; R5&#xff1a; ISP&#xff1a; R1/2/3的星型拓扑结构 R1配置&#xff1a; interface Tunnel0/0/0 ip address 192.168.6.1 255.255.255.0 tunnel-protocol gre p2mp source 200.1.1.1 ospf …

DB2 数据库基础使用

1.启动步骤 Last login: Sun Jul 23 09:38:48 2023 from 192.168.56.101 [rootlocalhost ~]# cd /usr/local/src/expc [rootlocalhost expc]# cd /opt/ibm/db2/V10.5/instance/ [rootlocalhost instance]# su - db2inst1 Last login: Sun Jul 23 09:40:13 UTC 2023 on pts/0 […

网络安全(秋招)如何拿到offer?(含面试题)

以下为网络安全各个方向涉及的面试题&#xff0c;星数越多代表问题出现的几率越大&#xff0c;祝各位都能找到满意的工作。 注&#xff1a;本套面试题&#xff0c;已整理成pdf文档&#xff0c;但内容还在持续更新中&#xff0c;因为无论如何都不可能覆盖所有的面试问题&#xf…

美术:动画

一、3dmax动画 动画制作流程:模型 -> 骨骼(Bone/Biped) -> 蒙皮(Skin/Bone Pro) -> 动画 1.基础 1.1创建bones骨骼 骨骼分为2种,一种是bones另一种是biped。它们的区别是用bones需要自己创建骨骼系统(比如人,动物,怪物等的骨骼)会使用到很多的约束、参数关…

STM32CubeMx之FreeRTOS的中断优先级+配置

编译运行即可 例如我编写的是一个灯亮500ms 一个等200ms的亮灭 如果他们的优先级是同等的&#xff0c;那么任务都可以实现&#xff0c;时间片会自动切换 但是如果亮500ms的灯 任务优先级更高 还用HALdelay的话 就会让任务二饿死&#xff0c;从而就会只看到任务一的内容 解…

Django Rest_Framework(三)

文章目录 1. 认证Authentication2. 权限Permissions使用提供的权限举例自定义权限 3. 限流Throttling基本使用可选限流类 4. 过滤Filtering5. 排序Ordering6. 分页Pagination可选分页器 7. 异常处理 ExceptionsREST framework定义的异常 8. 自动生成接口文档coreapi安装依赖设置…

C语言参悟-数据类型

C语言的数据类型 一、概述二、基础数据类型1. 整数1. 计算2. 索引 2. 浮点数3. 字符4. 字符串5. 指针 三、特殊数据类型1. 枚举2. 共用体2. struct结构体 四、数据类型修饰符1. const2. unsigned、signed 一、概述 编程语言为抽象这个物理世界提供了依据&#xff0c;其中对于描…

[Docker实现测试部署CI/CD----自由风格和流水线的CD操作(6)]

目录 12、自由风格的CD操作发布 V1.0.0 版本修改代码并推送GitLab 中项目打 Tag 发布 V2.0.0 版本Jenkins 配置 tag 参数添加 Git 参数添加 checkout 命令修改构建命令配置修改 SSH 配置 部署 v1.0.0重新构建工程构建结果 部署 v2.0.0重新构建工程访问 部署v3.0.0 13、流水线任…

Delphi Architect Crack,部署支持Swagger

Delphi Architect Crack,部署支持Swagger 单一代码库-用更少的编码工作为所有主要平台创建应用程序。写一次&#xff0c;到处编译。 Windows-使用最新的用户界面控件、WinRT API和HighDPI相关功能&#xff0c;使Windows的VCL应用程序现代化。 远程桌面-使用改进的VCL和IDE远程桌…

Java问题排查工具Arthas安装教程

Java问题排查工具Arthas入门教程 什么是阿里Arthas&#xff1f; 在生产环境经常遇到大量的日志&#xff0c;同时还有一些性能问题&#xff0c;需要进行进程分析&#xff0c;排查&#xff0c;有时候确实比较花时间&#xff0c;所以可以借助一些开源的框架来实现&#xff0c;Art…

全志F1C200S嵌入式驱动开发(从DDR中截取内存)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 linux内核起来的时候,不一定所有的内存都是分配给linux使用的。有的时候,我们是希望能够截留一部分内存的。为什么保留这部分内存呢?这里面可以有很多的用途。比如说,第一,如果…

Python GUI编程(Tkinter)

Python GUI编程(Tkinter) Python 提供了多个图形开发界面的库&#xff0c;几个常用 Python GUI 库如下&#xff1a; Tkinter&#xff1a; Tkinter 模块(Tk 接口)是 Python 的标准 Tk GUI 工具包的接口 .Tk 和 Tkinter 可以在大多数的 Unix 平台下使用,同样可以应用在 Windows …

Qt下载慢/无法下载解决方式

文章目录 一. Qt在线安装下载二. 安装方式 一. Qt在线安装下载 官网下载&#xff1a;https://www.qt.io/download清华源下载&#xff1a;https://mirrors.tuna.tsinghua.edu.cn/qt/official_releases/online_installers/ 二. 安装方式 进入下载好的目录 在目录栏输入CMD&…

vue+element中如何设置单个el-date-picker开始时间和结束时间关联

功能&#xff1a;选了开始时间&#xff0c;则结束时间只能选择开始时间之后的&#xff1b;选了结束时间&#xff0c;则开始时间只能选择结束时间之前的 重点是picker-options属性 图示&#xff1a; 代码展示: // body 内部<el-form-item><el-date-pickerv-model&qu…

vscode无法连接远程服务器的可能原因:远程服务器磁盘爆了

vscode输入密码后一直等待&#xff0c;无法进入远程服务器终端&#xff1a; 同时Remote-SSH输出包含以下内容 在日志中的以下几个部分&#xff1a; [17:15:05.529] > wget download failed 这表明VS Code尝试在远程服务器上下载VS Code服务器时失败了。> Cannot write…

程序环境和预处理(含C语言程序的编译+链接)--1

&#x1f389;个人名片&#xff1a; &#x1f43c;作者简介&#xff1a;一名乐于分享在学习道路上收获的大二在校生 &#x1f43b;‍❄个人主页&#x1f389;&#xff1a;GOTXX &#x1f43c;个人WeChat&#xff1a;ILXOXVJE &#x1f43c;本文由GOTXX原创&#xff0c;首发CSDN…

嵌入式面试刷题(day3)

文章目录 前言一、怎么判断两个float是否相同二、float数据可以移位吗三、数据接收和发送端大小端不一致怎么办四、怎么传输float类型数据1.使用联合进行传输2.使用字节流3.强制类型转换 总结 前言 本篇文章我们继续讲解嵌入式面试刷题&#xff0c;给大家继续分享嵌入式中的面…

docker search 镜像报错: connect: no route to host (桥接模式配置静态IP)

如下 原因 可能有多种&#xff1a; ① 没有开放防火墙端口 ② ip地址配置有误 解决 我是因为虚拟机采用了桥接模式&#xff0c;配置静态ip地址有问题。 先确认虚拟机采用的是 桥接模式&#xff0c;然后启动虚拟机。 1、打开命令行&#xff0c;输入下面指令&#xff0c;打开…

【Docker】Docker容器数据卷、容器卷之间的继承和DockerFIle的详细讲解

&#x1f680;欢迎来到本文&#x1f680; &#x1f349;个人简介&#xff1a;陈童学哦&#xff0c;目前学习C/C、算法、Python、Java等方向&#xff0c;一个正在慢慢前行的普通人。 &#x1f3c0;系列专栏&#xff1a;陈童学的日记 &#x1f4a1;其他专栏&#xff1a;CSTL&…

大数据教材推荐|Python数据挖掘入门、进阶与案例分析

主 编&#xff1a; 卢滔&#xff0c;张良均&#xff0c;戴浩&#xff0c;李曼&#xff0c;陈四德 出版社&#xff1a; 机械工业出版社 内容提要 本书从实践出发&#xff0c;结合11个“泰迪杯”官方推出的赛题&#xff0c;按照赛题的难易程度进行排序&#xff0c;由浅入深…