二叉树的性质、前中后序遍历【详细】

news2025/1/17 6:08:11

  • 1. 树概念
  • 2.二叉树的概念
    • 1.2二叉树的性质
  • 3.二叉树遍历
    • 3.2前序遍历
    • 3.2 中序遍历
    • 3.3 后序遍历

1. 树概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合,有二叉树,N叉树等等。

  • 子树是互不相交的(比如B不能连接C,D不能连接E)
  • 除了根节点外,每个节点有且只有一个父节点。(A是B、C、D、E的父节点,B是F、G的父节点)
  • 一颗有N个节点的树,有N-1条边。 (下图有10个节点,9条边)

image-20230804134301126

在树结构中,度是指一个节点的子节点个数的最大值。如果一个节点没有子节点,则其度为0;如果一个节点只有一个子节点,则其度为1;如果一个节点有两个子节点,则其度为2,以此类推。【二叉树不存在度大于2的节点,上图是个N叉树】

  • 结点的度:一个结点含有子树的个数称为该结点的度; 如上图:A的度为4,B的度为2,F的度为0
  • 树的度:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为4
  • 叶子结点或终端结点:度为0的结点称为叶结点; 如上图:C、F、G、H、等节点为叶结点
  • 双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点,B是F的父节点,同样也是G的父节点。
  • 孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点,C是A的孩子节点…
  • 根结点:一棵树中,没有父结点的结点;如上图:A
  • 结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推。上图树的层次是3层
  • 树的高度或深度:树中结点的最大层次; 如上图:树的高度为3
  • 非终端结点或分支结点:度不为0的结点; 如上图:B、D、E…等节点为分支结点
  • 兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点,共同的父节点是A
  • 堂兄弟结点:在同一层的结点互为堂兄弟;如上图:G、H互为兄弟结点
  • 结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先,B是F的祖先
  • 子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙
  • 森林:由m(m>=0)棵互不相交的树组成的集合称为森林

2.二叉树的概念

二叉树是一种树形结构,其中每个节点最多有两个子节点。 二叉树的递归定义为:二叉树是一棵空树,或者是一棵由一个根节点和两棵互不相交的,分别称作根的左子树和右子树组成的非空树;左子树和右子树又同样都是二叉树。

image-20230804141452493

  • 二叉树有左右之分,次序不能颠倒,因此二叉树是有序树。如上图,从上到下,从左往右,依次为1、2、3、4、5、6。所谓有序是指从左往

  • . **满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。**也就是说,如果一棵 二叉树的层数为K,且结点总数是
    2 k − 1 2^k-1 2k1
    ,则它就是满二叉树。

  • 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n 个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0至n-1的结点一一对应时称之为完 全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

image-20230804144134900

1.2二叉树的性质

  1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1)(i>0)个结点

  2. 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是
    2 k − 1 2^k-1 2k1
    (k>=0)

  3. 对任何一棵二叉树, **如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1,**也就是叶子节点比非叶子节点多1个。

    image-20230804150038769

  4. 具有n个结点的完全二叉树的深度K为
    l o g 2 ( n + 1 ) log2(n+1) log2(n+1)
    上取整。

    • 根据第二点性质可以推导出,2^k -1= n --> 2^k = n+1,这个k就等于第4点中提到的k,因为k为log2(n+1);那么也就是求2的多少次方等于k,假设有9个节点,9+1 等于10,2的3次方等于8,2的4次方等于16,向上取整就是取4。该二叉树深度为4。
  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i 的结点有:

    • 若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点【知道孩子序号,求父节点】
    • 若2i+1<N,左孩子序号:2i+1,否则无左孩子
    • 若2i+2<n,右孩子序号:2i+2,否则无右孩子。

3.二叉树遍历

二叉树的遍历是指从根节点出发,按照某种次序依次访问二叉树中的所有节点,使每个节点被且仅被访问一次。二叉树的遍历方式主要有:先序遍历、中序遍历、后序遍历、层次遍历。

  • 先序遍历:根节点 -> 左子树 -> 右子树
  • 中序遍历:左子树 -> 根节点 -> 右子树
  • 后序遍历:左子树 -> 右子树 -> 根节点
  • 层次遍历:按照从上到下顺序访问每个节点

3.2前序遍历

先序遍历:根节点 -> 左子树 -> 右子树,依次打印节点
遍历结果:1、2、 4 、 5、 3 、6

image-20230804163341543

首先访问根节点1,打印1,然后递归地访问左子树和右子树。在左子树中,打印2,站在节点2的视角,也是一棵二叉树,节点2是这棵二叉树的根节点,于是又要先访问节点2的左子树,打印4,站在节点4的角度,节点4是根节点,节点4也有左子树和右子树,于是又要再去访问节点4的左子树,4的左子树为空,递归回来,访问节点4的右子树,右子树为空,递归回来。然后访问节点2的右子树;

递归回来,此时站在根节点1的视角,它的左子树遍历完了,于是访问右子树,站在右子树的视角,它此时也是一个独立 的二叉树,打印3后,于是要访问节点3的左子树和右子树。

以此类推,如下图,因此每个节点可以当做是一个二叉树,由多个小的二叉树结合成一个大的二叉树。

在这里插入图片描述

3.2 中序遍历

中序遍历:左子树 -> 根节点 -> 右子树依次打印节点
遍历结果:4、 2 、5、 1、6、3

image-20230804163305832

**还是一样的图,只是访问的根节点的时机不一样!前序遍历,先打印根节点,中序遍历先打印最左的一个节点,后续遍历,最后打印根节点!**进来先访问到了根节点1,不打印,直到把左子树走完,此时遍历到了节点4,4没有左子树,于是递归回来打印4,4没有右子树,递归回来打印2,只有把节点2的左子树遍历完后,才会打印2;依次类推。所以只有把每个节点的左子树遍历完,才会打印当前节点,然后再去遍历右子树,右子树也有它的左子树,同理。

3.3 后序遍历

后序遍历:左子树 -> 右子树 -> 根节点
遍历结果:4、 5、 2、 6、 3、 1

根据前中后序遍历,得出,后序遍历,只有当左子树和右子树遍历完,才会回来打印根节点。

image-20230804163853384

遍历开始,遇到1,不能打印,只有把1的左子树和右子树遍历完才能打印1,

走到节点2,不能打印,要先把节点2的左子树和右子树遍历完才能打印2,

走到4,由于4的左子树和右子树为空,递归回来打印4,

走到5,由于5的左子树和右子树为空,递归回来打印5,

此时再递归回来就可以打印节点2了,因为2的左子树和右子树都遍历完了。

依次类推,最后才能打印根节点1。

  • 得出一个规律:前序遍历的第一个打印的节点肯定是根节点,后序遍历最后打印的节点肯定是根节点。【重点】

根据上述规律,做出这道题:

1.设一课二叉树的中序遍历序列:badce,后序遍历序列:bdeca,则二叉树前序遍历序列为()

A: adbce B: decab C: debac D: abcde

根据规律可以画出如下图:

根据后序遍历,最后一个打印的节点是a,那么a肯定就是这颗二叉树的根节点,再根据中序遍历,按照a的位置,划分左右子树,a的左边是a的左子树,a的右边是a的右子树,由于a的右边有多个节点,不确定哪个节点是a的孩子节点,所以要继续化简,于是得出:

image-20230804165301570

再根据后序遍历的倒数第二个节点,因为后序遍历中的a已经被刨除出去了,所以当前后序遍历的最后一个节点是c,再根据规律后序遍历的最后一个节点肯定是根节点,按照c的位置,划分出中序遍历的左右子树,在中序遍历中,c的左边是c的左子树,c的右边是c的右子树,由于c的左右皆剩下1个节点,那么这两个节点就是c的孩子节点,于是得出:

,因为后序遍历中的a已经被刨除出去了,所以当前后序遍历的最后一个节点是c,再根据规律后序遍历的最后一个节点肯定是根节点,按照c的位置,划分出中序遍历的左右子树,在中序遍历中,c的左边是c的左子树,c的右边是c的右子树,由于c的左右皆剩下1个节点,那么这两个节点就是c的孩子节点,于是得出:

image-20230804165354551
答案是:D

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/838049.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[CKA]考试之一个 Pod 封装多个容器

由于最新的CKA考试改版&#xff0c;不允许存储书签&#xff0c;本博客致力怎么一步步从官网把答案找到&#xff0c;如何修改把题做对&#xff0c;下面开始我们的 CKA之旅 题目为&#xff1a; Task 创建一个Pod&#xff0c;名字为kucc1&#xff0c;这个Pod包含4容器&#xff…

Python:Spider爬虫工程化入门到进阶(1)创建Scrapy爬虫项目

Python&#xff1a;Spider爬虫工程化入门到进阶系列: Python&#xff1a;Spider爬虫工程化入门到进阶&#xff08;1&#xff09;创建Scrapy爬虫项目Python&#xff1a;Spider爬虫工程化入门到进阶&#xff08;2&#xff09;使用Spider Admin Pro管理scrapy爬虫项目 本文通过简…

眼科医生推荐的台灯 护眼台灯买什么好?

我家孩子需要一个护眼灯&#xff0c;就请教了我的一个医生朋友。大家都知道医生白天对着电脑长时间的工作&#xff0c;晚上还要看书&#xff0c;查文献&#xff0c;写论文&#xff0c;选一个对眼睛友好的高质量护眼台灯对他们是刚需&#xff0c;同时又是医生&#xff0c;所以他…

网络安全(黑客)自学建议一一附学习路线

温馨提示&#xff1a;为了避免误入歧途&#xff0c;自学请优先看《网络安全法》。 下面是一些学习建议&#xff1a; 1、多请教有经验的人 切忌钻牛角尖&#xff0c;特别是刚入门的什么都不了解的情况下&#xff0c;可能你花好几天研究的一个东西&#xff0c;人10分钟就能搞定…

windows永久暂停更新

目录 1.winr,输入regedit打开注册表 2.打开注册表的这个路径: 计算机\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsUpdate\UX\Settings 右键空白地方新建QWORD值命名为:FlightSettingsMaxPauseDays 3.双击FlightSettingsMaxPauseDays,修改里面的值为100000,右边基数设置…

互联网同摄影技术结合,图片直播的优势有哪些?

互联网同摄影技术结合&#xff0c;诞生了图片直播技术&#xff0c;这是一种区别传统摄影的商业拍摄模式。但是很多人听到图片直播都是一头雾水&#xff0c;图片直播依托于互联网和摄影技术&#xff0c;实现了边拍摄、边上传、边修图、边分享&#xff0c;实时将照片上传至互联网…

深入理解机器学习与极大似然之间的联系

似然函数&#xff1a;事件A的发生含着有许多其它事件的发生。所以我就把这些其它事件发生的联合概率来作为事件A的概率&#xff0c;也就是似然函数。数据类型的不同&#xff08;离散型和连续性&#xff09;就有不同的似然函数 极大似然极大似然估计方法&#xff08;Maximum Li…

棒球1号位:棒球联盟成立棒球学院计划

棒球联盟成立棒球学院计划 1. 引言 棒球学院&#xff0c;是一个致力于培养棒球运动员的综合性机构。我们的目标是建立一个集训练、教育和娱乐于一体的体育中心&#xff0c;将孩子们带入棒球的世界&#xff0c;发掘他们的潜力&#xff0c;培养他们的团队协作精神和体育精神。 …

开源社区寻找八月创作之星!你准备好了吗~

活动页面&#xff1a;https://openlab.cosmoplat.com/createStarCampaign-202308​​​​​​卡奥斯开源社区定位打造工业互联网行业顶级开源社区生态平台&#xff0c;为开发者、企业等用户提供代码托管、技术交流/共享、硬件认证/接入、培训认证、大赛活动等服务&#xff0c;目…

【移动机器人运动规划】02 —— 基于采样的规划算法

文章目录 前言相关代码整理:相关文章&#xff1a; 基本概念概率路线图&#xff08;Probabilistic Road Map&#xff09;基本流程预处理阶段查询阶段 优缺点&#xff08;pros&cons&#xff09;一些改进算法Lazy collision-checking Rapidly-exploring Random Tree算法伪代码…

性能分析记录

4实例压测TPS浮动在200-300 1.TPS浮动200-300&#xff0c;ART浮动的可能性是10-20ms&#xff0c;链路复杂是可接受的&#xff0c;链路简单则需要分析原因。 1&#xff09;缓存没命中&#xff0c;对某些账号缓存没命中&#xff0c;或缓存失效后导致隔段时间耗时升高。 2&…

机器学习入门之 pandas

pandas 有三种数据结构 一种是 Series 一种是 Dataframe import pandas as pd import numpy as np score np.random.randint(0,100,[10,5])score[0,0] 100Datascore pd.DataFrame(score)subject ["语文","数学","英语","物理&quo…

孙哥撕毁协议侵占“火币”商标,在港吃官司胜算几何?

李林与孙哥的“火币”使用权之争正在进入新的法律阶段&#xff1a;消息人士透露&#xff0c;X-Spot有限公司&#xff08;实控人李林&#xff09;起诉火必-Huobi Global Limited&#xff08;实控人孙宇晨&#xff09;违反合同约定侵权使用中文‘火币’、‘火幣’商标一案&#x…

【redis】能ping通虚拟机但是端口无法访问

问题 虚拟机上有redis&#xff0c;能ping通虚拟机的ip&#xff0c;但是idea连不上虚拟机里的redis&#xff0c;telnet已启动的redis6379端口失败 基本情况 虚拟机网络模式是NAT模式&#xff0c;linux防火墙firewalld已关闭&#xff0c;没有iptables&#xff0c;主机和虚拟机…

东南亚跨境电商必看,使用代理IP洞察市场先机-IPIDEA全球HTTP

东南亚连续第三年成为全球电子商务增长最快的地区&#xff0c;预计到2025年&#xff0c;东南亚电商的市场规模将会达到2,340亿美元。虽然起步较晚&#xff0c;但随着移动互联网和数字支付的普及&#xff0c;东南亚跨境市场迅速崛起&#xff0c;呈现出蓬勃的发展态势。 人口基数…

Consul屏蔽api

consul 没有设置密码 需要屏蔽api&#xff1a;/v1/internal/ui/nodes?dc&token 防止信息泄露 配置config.json {"http_config": {"block_endpoints": ["/v1/internal/ui/nodes"]} }启动consul时使用该配置&#xff1a; consul agent -de…

模块化原理:source-map

1. webpack打包基本配置 1.安装webpack与webpack-cli npm i webpack webpack-cli 2.配置 "build":"webpack" 3. 新建webpack.config.js const path require(path); module.exports {// mode: "development",// 默认production&#xff08;什么…

2023年土木、建筑与环境工程国际会议(ICCAEE 2023) | EI Compendex, Scopus双检索

会议简介 Brief Introduction 2023年土木、建筑与环境工程国际会议(ICCAEE 2023) 会议时间&#xff1a;2023年11月17日-19日 召开地点&#xff1a;中国广州 大会官网&#xff1a;ICCAEE 2023-2023 International Conference on Civil, Architectural and Environmental Enginee…

常见的设计模式(超详细)

文章目录 单例模式饿汉式单例模式懒汉式单例模式双重检索单例模式 工厂模式简单工厂模式工厂&#xff08;方法&#xff09;模式抽象工厂模式 原型模式代理模式 单例模式 确保一个类只有一个实例&#xff0c;并且自行实例化并向整个系统提供这个实例。 饿汉式单例模式 饿汉式单…

读书笔记-《ON JAVA 中文版》-摘要21第十九章 类型信息-2]

文章目录 第十九章 类型信息7. 动态代理8. Optional类9. 接口和类型10. 本章小结 第十九章 类型信息 7. 动态代理 代理是基本的设计模式之一。一个对象封装真实对象&#xff0c;代替其提供其他或不同的操作—这些操作通常涉及到与“真实”对象的通信&#xff0c;因此代理通常…