MySQL的索引使用的数据结构,事务知识

news2024/11/19 1:55:31

一、索引的数据结构🌸

索引的数据结构(非常重要)

mysql的索引的数据结构,并非定式!!!取决于MySQL使用哪个存储引擎

数据库这块组织数据使用的数据结构是在硬盘上的。我们平时写的代码是存在内存里面,内存里面的数据结构,对于访问操作不敏感,(找数据的过程花费的时间多,但是真正用于访问的数据不多,硬盘上的数据操作,对于访问操作比较敏感,但是⚠️读写一个的硬盘

开销是远大于内存的,读写一次硬盘,差不多可以多些一万次内存了。 

数据结构简单回顾,引入innodb💘💘💘 

MySQL包含很多模块,

有的解析SQL,有的用于网络通信,有的存储数据结构->如:存储引擎,本质上就是代码中的一个模块(这里包含若干个代码文件····以及一大堆具体的代码)

✨✨✨最主流的存储引擎:innodb

索引用的数据结构我们也只介绍innodb

我们要先知道索引是为了查找!!!(查找快的才牛波一)

让我们简单的回顾一下数据结构的知识吧 (🌝 🌚 🌑正好学的次)

顺序表:尾插,随机访问很屌

链表:中间位置的插入删除很屌

栈和队列:特定位置的增删查改

二叉树->二叉搜索树->平衡机制的二叉树(红黑树)或许可以查找速度还是很屌的

堆:适合排序,找最大最小

哈希表:查找嘎嘎🐮牛波一(以后工作常用)

 👲 👳 👷

那来看看哪个更适合呢 

红黑树:插入,删除,修改,查询,-元素有序,可以处理范围查询

最大问题,红黑树会在元素比较多的时候变的很高->对应比较次数就会变得很多,每次比较都意味着硬盘IO操作!!!(很耗硬盘开销)

单单这几个数,他就已经树高变成这样了

哈希表:哈希表的问题是只可以精准查询,不能支持模糊查询,范围查询(哈希表需要通过给定的key,通过hash函数映射出一个具体下标,才能定位到具体位置)。

二、B树💓💓💓

那么索引(innodb引擎)到是用的什么数据结构呢?

为了数据库,大佬们专门搞了个数据结构叫B+树(其他存储引擎中可能用到hash(哈希表)作为索引->只能应对这种精准匹配自己的情况了

那么什么是B+树呢,那我们需要了解B树也叫(B-树。叫B杠树 不要当土狗😨)

B树的本质是一个N叉搜索树,一个节点可以保存多个key,N个key就可以延伸出n+1个分叉来,N个key划分出了N+1个空间,(4个数5个空间)如下图

注意:一个节点多个key和一个key 都差不多的硬盘开销 

此时每个节点上,都可以保存多个元素,当总的元素个数固定时,相较于二叉搜索树,涉及到的节点总数大大降低,树高也大大降低了,B树和B+树高度远远小于红黑树,于是这么查询,硬盘的IO次数也就随之减少了。

对于B树插入和删除元素,就涉及拆封和合并的操作(比如,拆分是确认区间,合并是给他聚到一起)当然了一个节点也不可以无脑存key(就是数),要不然存的太多就要变成数组了,所以要把这个节点一部分key以树节点的方式重新组织。

如1,2,3,4,此时再加入个5,就有点多了,所以说此时就会把 1,2,3,4,5

拆分成如下图,保持当前节点的key始终不会太多,此时就会生出新的叶节点

B树不如B+树的一个点:B+树全集有叶子和非叶子,如果写元素存到每一个节点上,非叶节点占据空间比较大,从而无法从内存中缓存了。

补充一个小知识点(HashMap负载因子是多少 ‘0.75’,链表长度多少时候转化为红黑树 ‘8’ 但是首先HashMap不是哈希表,只是哈希表的一种表达方式,但是最好不要记参数,最好要根据实际情况。 

 三、B+树💚 💚 💚 

B+树在B树的情况下,又做出了一些改进->针对数据库的场景展开的

1.B+也是二叉搜索树,但是N个key分出了N个区间,其中最后一个就是相当于最大值 

2.父节点的key在子节点重复出现(而且是以最大值的身份)

看起来会有很多的元素,浪费空间,但实际上可以起到非常重要的作用(上面存在的,下面都有,叶子节点这一层,包含了整个数据的全集!)

3.把叶子节点,按照链表方式首尾相连,此时可以通过叶子节点之间的连接,快速找到上一个/下一个的元素)

 

  四、B+树的优点产生的优势💞

1.特别擅长范围查询             

2.所有的查询操作最终都会落在叶子节点,比较次数,是均衡的,查询时间是稳定的,还是那句话‘有时候稳定比快更好’,时快时慢,用户的体验会不好,慢点但是稳定才好。

3.在B+树中,叶子节点上是完整的数据全集(注意哈,1不是只代表1,而是代表ID为1的连接。如同 1 -张三-90分),因此表中的每一个数据的其他列都可以得到在叶子节点上,只存储构建索引的id就行(就相当于一个网址链接)

物理层面:不需要表格这样的数据结构,直接使用B+树来存储这个表的数据,‘表格’只是用户看起来这个像是个表格而已,此时,非叶子节点的存储空间消耗是非常小的!!!(叶子存在硬盘,非叶子可以存在内存中),此时,进行数据查询的时候,就可以通过内存来直接比较,从而更快速的找到叶子节点上的记录(进一步又减少了硬盘IO的次数)


五、事务的基本情况💖

什么叫事务呢?

假如说表balance(accountId,balance)

                                       1     ,   1000

                                       2     ,  1000

1号给2号转账500,分为两步,第一步给1账户扣500,给2账户+500,中间还不能有差错,不然用户脑袋气死了😡

执行的时候,肯定是不知道哪一步会失败,❗️❗️然后事务的本质是把多个操作,打包成一个操作完成的,让这个操作,要不我就全部完成,要不我就完全失败那种——原子性😃😃

⚠️⚠️完全失败不是说一个没做,而是说假如第一步做了,但是第二步失败了,他的选择是把第一步给还原回去。(这个还原我们也管他叫回滚

如何实现回滚呢:只要把事务中执行的每个操作都记录下来(通过特定的日志,来记录数据库事务操作的中间过程),如果需要回滚,按照之前的操作的“逆操作”就可以了。

如:1号-500,2号+500  

若执行第一步的过程中,如果程序崩溃了~此时,就要对第一步进行回滚~~

数据库会自动把第一步操作的修改还原回去,那么假如数据库挂了呢🌚重启了捏🌚

我们是通过日志,来记录事务执行的中间过程的,日志中的数据始终在硬盘上存在的。即便是数据库服务器重启~就会在启动之后,针对之前没回滚完成的情况,继续处理~

要么是全部成功,要么是一个都不执行。

事务->原子性->回顾->特定日志

六、事务的使用方式💘

开启事务:start transaction  (下面就可以输入多个sql语句了 )

提交事务:commit。     (把这些SQL按照原子的方式进行执行)

手动出发回滚:rollback  手动触发回滚~~

一个事务务必以后两条操作结尾(当然了解命令即可,不会用这个命令,我们一般是使用代码去操作事务)

 

 七、事务的基本特性(面试题,理解的去思考去记)💜 💜 💜 

1.原子性:保证多个操作被打包成一个整体,要不全成,要不一个也不做。

2.一致性:事务执行之前,和事务执行之后,数据能对上,数据不能够太牛马离谱

3.持久性;事务这里的各种操作,都是持久生效最终写到硬盘上,即使关机,也不影响的

4.隔离性:并发执行事务时候,隔离性,会在执行效率和数据可靠之间做出权衡,隔离描述的是在同时执行的事务之间,相互的影响,隔离性越高,并发性越低,数据越可靠,性能也就越低。(下一篇会介绍并发的,家人们别急)

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/831068.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

编译原理陈火旺第三版第九章课后题答案

下面的答案仅供参考! 1. 有哪些存储分配策略?并叙述何时用何种存储分配策略? 答:存储分配策略分为静态分配策略和动态分配策略两大类,而动态分配策略又可分为栈式动态分配策略和堆式动态分配策略两类。 在一个的具体的编译…

软件测试需求分析的常用方法

软件测试需求分析时,应要求产品人员对需求进行讲解,并使用相对应的方法进行科学分析,否则无法保障软件测试的完整性和科学性,从而造成在项目中后期Bug频出、风险增大等问题。 而常用的测试需求分析的方法: 1、功能分解…

腾讯云MSS多项能力获IDC五星评价,综合实力位列第一

近日,IDC发布了《IDC Technology Assessement: 中国公有云托管安全服务能力,2023》报告(以下简称“报告”)。腾讯云安全托管服务MSS凭借多年的技术积累和出色的服务能力,在报告的专家能力、漏洞及威胁检测、事件分析、…

二叉搜索树(BST)的模拟实现

序言: 构造一棵二叉排序树的目的并不是为了排序,而是为了提高查找效率、插入和删除关键字的速度,同时二叉搜索树的这种非线性结构也有利于插入和删除的实现。 目录 (一)BST的定义 (二)二叉搜…

刘汝佳の树状数组详解

引入 二叉索引树,也叫树状数组是一种便于数组单点修改和区间求和的数据结构 主要根据下标的lowbit值来建树 至于lowbit(x),则是(x)&(-(x)),也就是一个二进制数从右边数第一个1代表的数 #define lowbit(x) ((x)&(-(x)))基础树状数组…

GF(2)上矩阵秩的快速计算

https://github.com/mhostetter/galois/issues

uniapp发布插件显示components/xxx文件没找到,插件格式不正确

uniapp发布插件显示components/xxx文件没找到,插件格式不正确 将插件文件这样一起选中,然后右键压缩成zip文件,而不是外层文件压缩

亚马逊、美客多卖家如何运营,养号技巧和硬件要求有哪些?

流量等于销量、等于利润,没有流量,一切都是白搭, 流量是一切销量的前提,我们平时做的优化、推广也是为了引入流量。所有亚马逊卖家都在围着一个目标而努力,那就是流量。那么亚马逊新卖家该如何引流呢? 我们需要从以下…

无涯教程-Perl - 条件判断

以下是在大多数编程语言中找到的典型判断结构的概述- Perl编程语言提供以下类型的条件语句。 Sr.No.Statement & 描述1 if statement if语句由布尔表达式和一个或多个语句组成。 2 if...else statement在 if语句之后可以是可选的 else语句。 3 if...elsif...else statemen…

如何将镜像体积海量缩减

点击上方蓝色字体,选择“设为星标” 回复”云原生“获取基础架构实践 镜像的传统构建 我们随便找个Golang代码项目作为案例,来开始构建一个镜像。下面我们以我的一个实战项目开始讲解:https://gitee.com/damon_one/uranus。 第一步&#xff1…

uC-OS2 V2.93 STM32L476 移植:系统移植篇

前言 上一篇已经 通过 STM32CubeMX 搭建了 NUCLEO-L476RG STM32L476RG 的 裸机工程,并且下载了 uC-OS2 V2.93 的源码,接下来,开始系统移植 开发环境 win10 64位 Keil uVision5,MDK V5.36 uC-OS2 V2.93 开发板:NUC…

机器学习深度学习——从全连接层到卷积

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习&&深度学习——非NVIDIA显卡怎么做深度学习(坑点排查) 📚订阅专栏:机器…

D. Different Arrays

Problem - 1783D - Codeforces 思路: 这是一个计数问题,我们要统计不同数组的个数,可以用dp,让f[i][j]表示只考虑前i个,并且结尾为j的情况,那么转移方程为我们枚举i,与枚举前一个是多少&#xf…

电脑安装新系统不知道去哪里下载,看我就够了

大家在日常生活中肯定都会遇到电脑安装系统的需求,如果去微软官方购买正版的系统又很贵,又不太想花这个冤枉钱,这个时候我们就不得不去网上查找一些免费好用的系统,可是百度一下,或者Google一下,各种下载系…

【css】css设置表格样式-边框线合并

<style> table, td, th {border: 1px solid black;//设置边框线 }table {width: 100%; }td {text-align: center;//设置文本居中 } </style> </head> <body><table><tr><th>Firstname</th><th>Lastname</th><t…

【uniapp】样式合集

1、修改uni-data-checkbox多选框的样式为单选框的样式 我原先是用的单选&#xff0c;但是单选并不支持选中后&#xff0c;再次点击取消选中&#xff1b;所以我改成了多选&#xff0c;然后改变多选样式&#xff0c;让他看起来像单选 在所在使用的页面上修改样式即可 <uni-d…

1-搭建一个最简单的验证平台UVM,已用Questasim实现波形!

UVM-搭建一个最简单的验证平台&#xff0c;已用Questasim实现波形 1&#xff0c;背景知识2&#xff0c;".sv"文件搭建的UVM验证平台&#xff0c;包括代码块分享3&#xff0c;Questasim仿真输出&#xff08;1&#xff09;compile all&#xff0c;成功&#xff01;&…

kubernetes 集群利用 efk 收集容器日志

文章目录 [toc]前情提要制作 centos 基础镜像准备 efk 二进制文件部署 efk 组件配置 namespace配置 gfs 的 endpoints配置 pv 和 pvc部署 elasticsearchefk-cmefk-svcefk-sts 部署 filebeatfilebeat-cmfilebeat-ds 部署 kibanakibana-cmkibana-svckibana-dp使用 nodeport 访问 …

免费快速下载省市区县行政区的Shp数据

摘要&#xff1a;一般非专业的GIS应用通常会用到省市等行政区区划边界空间数据做分析&#xff0c;本文简单介绍了如何在互联网上下载省&#xff0c;市&#xff0c;区县的shp格式空间边界数据&#xff0c;并介绍了一个好用的在线数据转换工具&#xff0c;并且开源。 一、首先&am…

图卷积网络(GCN)和池化

一、说明 GCN&#xff08;Graph Convolutional Network&#xff09;是一种用于图形数据处理和机器学习的神经网络架构。GCN 可以在图形中捕获节点之间的关系&#xff0c;从而能够更好地处理图形数据。GCN 可以沿着图形上的边缘执行滤波器操作&#xff0c;将每个节点的特征向量进…