Python实现GA遗传算法优化BP神经网络分类模型(BP神经网络分类算法)项目实战

news2024/11/23 12:32:27

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。



 


1.项目背景

遗传算法(Genetic Algorithm,GA)最早是由美国的 John holland于20世纪70年代提出,该算法是根据大自然中生物体进化规律而设计提出的。是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。该算法通过数学的方式,利用计算机仿真运算,将问题的求解过程转换成类似生物进化中的染色体基因的交叉、变异等过程。在求解较为复杂的组合优化问题时,相对一些常规的优化算法,通常能够较快地获得较好的优化结果。遗传算法已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。

本项目通过GA遗传算法优化BP神经网络分类模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

数据详情如下(部分展示):

 

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

 

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

 

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

 

 关键代码如下:

 

4.探索性数据分析

4.1 y变量柱状图

用Matplotlib工具的plot()方法绘制柱状图:

 

4.2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

 

4.3 相关性分析

 

 从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

 

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

 

6.构建GA遗传算法优化BP神经网络分类模型

主要使用GA遗传算法优化BP神经网络分类算法,用于目标分类。

6.1 GA遗传算法寻找最优参数值   

最优参数:

 

6.2 最优参数值构建模型 

 

6.3 最优参数模型摘要信息

 

6.4 最优参数模型网络结构 

 

6.5 最优参数模型训练集测试集损失和准确率曲线图

 

7.模型评估

7.1 评估指标及结果

评估指标主要包括准确率、查准率、查全率、F1分值等等。

从上表可以看出,F1分值为0.9773,说明模型效果较好。

关键代码如下:

7.2 分类报告

 

从上图可以看出,分类为0的F1分值为0.98;分类为1的F1分值为0.98。

7.3 混淆矩阵

 

从上图可以看出,实际为0预测不为0的 有5个样本;实际为1预测不为1的 有4个样本,整体预测准确率良好。

8.结论与展望

综上所述,本文采用了GA遗传算法寻找BP神经网络算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

# 初始化种群、初始解
Sol = np.zeros((N_pop, d))  # 初始化位置
Fitness = np.zeros((N_pop, 1))  # 初始化适用度
for i in range(N_pop):  # 迭代种群
    Sol[i] = np.random.uniform(Lower_bound, Upper_bound, (1, d))  # 生成随机数
    Fitness[i] = objfun(Sol[i])  # 适用度
 
 
 
# ******************************************************************************
 
# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 链接:https://pan.baidu.com/s/1c6mQ_1YaDINFEttQymp2UQ
 
# 提取码:thgk
 
# ******************************************************************************
 
 
# y=1样本x1变量分布直方图
fig = plt.figure(figsize=(8, 5))  # 设置画布大小
plt.rcParams['font.sans-serif'] = 'SimHei'  # 设置中文显示
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
data_tmp = df.loc[df['y'] == 1, 'x1']  # 过滤出y=1的样本
# 绘制直方图  bins:控制直方图中的区间个数 auto为自动填充个数  color:指定柱子的填充色
plt.hist(data_tmp, bins='auto', color='g')

 更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/825242.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

STM32F4_内存管理(Malloc、Free)

目录 前言 1. 内存管理介绍 1.1 分块式内存管理 2. 实验程序 2.1 main.c 2.2 Malloc.c 2.3 Malloc.h 前言 相信大家在学习C语言的过程中,都会学习到 malloc 动态开辟函数和 free 释放内存函数;这两个函数带给我们的优越性是: 我们在使…

[深度学习] GPU处理能力(TFLOPS/TOPS)

计算能力换算 理论峰值 = GPU芯片数量GPU Boost主频核心数量*单个时钟周期内能处理的浮点计算次数 只不过在GPU里单精度和双精度的浮点计算能力需要分开计算,以最新的Tesla P100为例: 双精度理论峰值 = FP64 Cores *…

Scratch Blocks自定义组件之「下拉图标」

一、背景 由于自带的下拉图标是给水平布局的block使用,放在垂直布局下显得别扭,而且下拉选择后回修改image字段的图片,这让我很不爽,所以在原来的基础上稍作修改,效果如下: 二、使用说明 (1&am…

转机来了,国内全新芯片技术取得突破,关键驱动引擎开始提速

芯片技术转机来了 我们都知道,芯片技术是现代信息技术的基石,它驱动着计算机、智能手机、物联网设备等各类电子设备的运行。 科技的不断进步,芯片技术也在不断演进。 从传统的集成电路到现代的微处理器和系统芯片,其计算能力和能…

Total Variation loss

Total Variation loss 适合任务 图像复原、去噪等 处理的问题 图像上的一点点噪声可能就会对复原的结果产生非常大的影响,很多复原算法都会放大噪声。因此需要在最优化问题的模型中添加一些正则项来保持图像的光滑性,图片中相邻像素值的差异可以通过…

Pytorch深度学习框架入门

1.pytorch加载数据 唤醒指定的python运行环境的命令: conda activate 环境的名称 from torch.utils.data import Dataset #Dataset数据处理的包 from PIL import Image import os#定义数据处理的类 class MyData(Dataset):#数据地址处理方法def __init__(self,ro…

从《信息技术服务数据中心业务连续性等级评价准则》看数据备份

​​​​​​​ 5月23日,国家标准化管理委员会与国家市场监督管理总局发布了《信息技术服务数据中心业务连续性等级评价准则》,旨在适应各行各业逐步深入的数字化转型,提升全社会对数据中心服务中断风险的重视。 信息技术服务数据中心业务连续…

KL15 是什么?ACC,crank,on等

KL含义 KL is the abbreviation for klemme which is the German term for connector / connection.KL是“ klemme”的缩写,这是德语中连接器或连接的术语。 KL30 ,通常表示电瓶的正极。positive KL31,通常表示电瓶的负极。negative KL15, 通…

【NLP概念源和流】 04-过度到RNN(第 4/20 部分)

接上文 【NLP概念源和流】 03-基于计数的嵌入,GloVe(第 3/20 部分) 一、说明 词嵌入使许多NLP任务有了显著的改进。它对单词原理图的理解以及将不同长度的文本表示为固定向量的能力使其在许多复杂的NLP任务中非常受欢迎。大多数机器学习算法可以直接应用于分类和回归任务的…

go初识iris框架(三) - 路由功能处理方式

继了解get,post后 package mainimport "github.com/kataras/iris/v12"func main(){app : iris.New()//app.Handle(请求方式,url,请求方法)app.Handle("GET","/userinfo",func(ctx iris.Context){path : ctx.Path()app.Logger().Info(path) //获…

MTS性能监控你知道多少

前言 说到MySQL的MTS,相信很多同学都不陌生,从5.6开始基于schema的并行回放,到5.7的LOGICAL_CLOCK支持基于事务的并行回放,这些内容都有文章讲解,在本篇文章不再赘述。今天要讲的是,你知道如何查看并行回放…

最新AI系统ChatGPT网站源码/支持GPT4.0/GPT联网功能/支持ai绘画/mj以图生图/支持思维导图生成

使用Nestjs和Vue3框架技术,持续集成AI能力到系统! 同步mj图片重新生成指令 同步 Vary 指令 单张图片对比加强 Vary(Strong) | Vary(Subtle) 同步 Zoom 指令 单张图片无限缩放 Zoom out 2x | Zoom out 1.5x 新增GPT联网提问功能、签到功能 一、功能演示 …

基于springboot生鲜物流系统-计算机毕设 附源码13339

springboot生鲜物流系统 摘要 生鲜产品易于腐烂、难贮存、不易长时间运输,生产者所面临的市场风险很大,很多生鲜产品无法实现“货畅其流”和“物尽其值”,适宜的生鲜产品物流体系就显得尤为重要。本文将广东省生鲜产品物流体系的构建作为一个…

删除链表中等于给定值 val 的所有节点

203. 移除链表元素 - 力扣(LeetCode) 给出链表 1->2->3->3->4->5->3, 和 val 3, 你需要返回删除3之后的链表:1->2->4->5。 分析思路:这道题的思路,与之前删除链表中重复的结点相似。 因…

腾讯云从业者认证考试考点——云网络产品

文章目录 腾讯云网络产品功能网络产品概述负载均衡(Cloud Load Balancer)私有网络(Virtual Private Cloud,VPC)专线接入弹性网卡(多网卡热插拔服务)NAT网关(NAT Gateway)…

了解 spring MVC + 使用spring MVC - springboot

前言 本篇介绍什么是spring MVC ,如何使用spring MVC,了解如何连接客户端与后端,如何从前端获取各种参数;如有错误,请在评论区指正,让我们一起交流,共同进步! 文章目录 前言1. 什么…

RD算法(四)登堂入室 —— 成像完成

SAR成像专栏目录_lightninghenry的博客-CSDN博客https://lightning.blog.csdn.net/article/details/122393577?spm=1001.2014.3001.5502先放RD算法最终的成像结果: 经简单的地距投影后为(地距投影的内容在后面的几何校正章节中讲解): 温哥华这地形还真像是一张怪兽的巨嘴呀…

商城-学习整理-基础-商品服务API-三级分类(五)

目录 一、启动之前创建的环境1、启动虚拟机2、启动mysql3、启动redis4、启动nacos5、导入三级分类测试数据 二、开发商品服务三级分类列表1、后台模块1)书写商品三级分类表后台业务逻辑 2、前端模块1)启动renren-fast前后端项目2)在系统管理-…

js逆向 - X-Zse-96分析(JsRPC实战)

本文仅供学习交流,只提供关键思路不会给出完整代码,严禁用于非法用途,若有侵权请联系我删除! 目标网站:aHR0cHM6Ly93d3cuemhpaHUuY29tLw 目标接口:aHR0cHM6Ly93d3cuemhpaHUuY29tL2FwaS92NC9zZWFyY2hfdjM …

卸载 Postman!一款 IDEA 神级插件,更便捷、高效...

Restful Fast Request 是 IDEA 版 Postman,它是一个强大的 restful api 工具包插件,可以根据已有的方法帮助您快速生成 url 和 params。 Restful Fast Request API 调试工具 API 管理工具 API 搜索工具。 它有一个漂亮的界面来完成请求、检查服务器…