Redis 搭建主从集群

news2024/9/23 13:25:40

文章目录

  • 1. 主从集群架构
    • 1.1 准备实例和配置
    • 1.2 启动
    • 1.3 开启主从关系
    • 1.4 测试
  • 2. 主从同步原理
    • 2.1 全量同步
    • 2.2 增量同步
      • repl_backlog原理
    • 2.3 主从同步优化
    • 小结


在这里插入图片描述

单节点的 Redis 并发能力有限,要进一步提高 Redis 的并发能力,就需要搭建主从集群,实现读写分离。

1. 主从集群架构

集群架构

共包含三个节点,一个主节点,两个从节点。
这里我们会在同一台虚拟机中开启3个redis实例,模拟主从集群,信息如下:

IPPORT角色
192.168.150.1017001master
192.168.150.1017002slave
192.168.150.1017003slave

注:192.168.150.101 为redis所在虚拟机或者服务器的 ip 。

1.1 准备实例和配置

要在同一台虚拟机开启3个实例,必须准备三份不同的配置文件和目录,配置文件所在目录也就是工作目录。
1)创建目录
我们创建三个文件夹,名字分别叫7001、7002、7003:

# 进入/tmp目录
cd /tmp
# 创建目录
mkdir 7001 7002 7003

如下图:
image.png

2)恢复原始配置
修改redis-6.2.4/redis.conf文件,将其中的持久化模式改为默认的RDB模式,AOF保持关闭状态。

# 开启RDB
# save ""
save 3600 1
save 300 100
save 60 10000

# 关闭AOF
appendonly no

3)拷贝配置文件到每个实例目录
然后将redis-6.2.4/redis.conf文件拷贝到三个目录中(在/tmp目录执行下列命令):

# 方式一:逐个拷贝
cp redis-6.2.4/redis.conf 7001
cp redis-6.2.4/redis.conf 7002
cp redis-6.2.4/redis.conf 7003

# 方式二:管道组合命令,一键拷贝
echo 7001 7002 7003 | xargs -t -n 1 cp redis-6.2.4/redis.conf

4)修改每个实例的端口、工作目录
修改每个文件夹内的配置文件,将端口分别修改为7001、7002、7003,将rdb文件保存位置都修改为自己所在目录(在/tmp目录执行下列命令):

sed -i -e 's/6379/7001/g' -e 's/dir .\//dir \/tmp\/7001\//g' 7001/redis.conf
sed -i -e 's/6379/7002/g' -e 's/dir .\//dir \/tmp\/7002\//g' 7002/redis.conf
sed -i -e 's/6379/7003/g' -e 's/dir .\//dir \/tmp\/7003\//g' 7003/redis.conf

注意上面的命可能不会改成功!

5)修改每个实例的声明IP
虚拟机本身有多个IP,为了避免将来混乱,我们需要在redis.conf文件中指定每一个实例的绑定ip信息,格式如下:

# redis实例的声明 IP
replica-announce-ip 192.168.150.101

每个目录都要改,我们一键完成修改(在/tmp目录执行下列命令):

# 逐一执行
sed -i '1a replica-announce-ip 192.168.150.101' 7001/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7002/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7003/redis.conf

# 或者一键修改
printf '%s\n' 7001 7002 7003 | xargs -I{} -t sed -i '1a replica-announce-ip 192.168.150.101' {}/redis.conf

1.2 启动

为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:

# 第1个
redis-server 7001/redis.conf
# 第2个
redis-server 7002/redis.conf
# 第3个
redis-server 7003/redis.conf

启动后:
image-20210630183914491.png

如果要一键停止,可以运行下面命令:

printf '%s\n' 7001 7002 7003 | xargs -I{} -t redis-cli -p {} shutdown

1.3 开启主从关系

现在三个实例还没有任何关系,要配置主从可以使用replicaof 或者 slaveof(5.0以前)命令。
有临时和永久两种模式:

  • 修改配置文件(永久生效)
    • 在redis.conf中添加一行配置:slaveof <masterip> <masterport>
  • 使用redis-cli客户端连接到redis服务,执行slaveof命令(重启后失效):
slaveof <masterip> <masterport>

注意:在5.0以后新增命令replicaof,与salveof效果一致。

这里我们为了演示方便,使用方式二。

通过redis-cli命令连接7002,执行下面命令:

# 连接 7002
redis-cli -p 7002
# 执行slaveof
slaveof 192.168.150.101 7001

通过redis-cli命令连接7003,执行下面命令:

# 连接 7003
redis-cli -p 7003
# 执行slaveof
slaveof 192.168.150.101 7001

然后连接 7001节点,查看集群状态:

# 连接 7001
redis-cli -p 7001
# 查看状态
info replication

结果:
image.png

1.4 测试

执行下列操作以测试:

  • 利用redis-cli连接7001,执行set num 123
  • 利用redis-cli连接7002,执行get num,再执行set num 666
  • 利用redis-cli连接7003,执行get num,再执行set num 888

可以发现,只有在7001这个master节点上可以执行写操作,7002 和 7003 这两个 slave 节点只能执行读操作。


2. 主从同步原理

2.1 全量同步

主从第一次建立连接时,会执行全量同步,将 master 节点的所有数据都拷贝给 slave 节点,流程:
image-20210725152222497.png
这里有一个问题,master如何得知salve是第一次来连接呢??
有几个概念,可以作为判断依据:

  • Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个 master 都有唯一的 replid,slave 则会继承 master 节点的 replid
  • offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。

因此slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据。
因为slave原本也是一个master,有自己的replid和offset,当第一次变成slave,与master建立连接时,发送的replid和offset是自己的replid和offset。
master判断发现slave发送来的replid与自己的不一致,说明这是一个全新的slave,就知道要做全量同步了。
master会将自己的replid和offset都发送给这个slave,slave保存这些信息。以后slave的replid就与master一致了。
因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致
如图:
image-20210725152700914.png

完整流程描述:

  • slave节点请求增量同步
  • master节点判断replid,发现不一致,拒绝增量同步
  • master将完整内存数据生成RDB,发送RDB到slave
  • slave清空本地数据,加载master的RDB
  • master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave
  • slave执行接收到的命令,保持与master之间的同步

2.2 增量同步

全量同步需要先做RDB,然后将RDB文件通过网络传输个slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步
什么是增量同步?就是只更新slave与master存在差异的部分数据。如图:
image-20210725153201086.png

那么 master 怎么知道 slave 与自己的数据差异在哪里呢?

repl_backlog原理

master怎么知道slave与自己的数据差异在哪里呢?
这就要说到全量同步时的repl_baklog文件了。
这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。
repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset:
image-20210725153359022.png

slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。
随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset:
image-20210725153524190.png
直到数组被填满:
image-20210725153715910.png
此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分。

但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset:
image-20210725153937031.png
如果master继续写入新数据,其offset就会覆盖旧的数据,直到将slave现在的offset也覆盖:
image-20210725154155984.png
棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果slave恢复,需要同步,却发现自己的offset都没有了,无法完成增量同步了。只能做全量同步。
image-20210725154216392.png

2.3 主从同步优化

主从同步可以保证主从数据的一致性,非常重要。
可以从以下几个方面来优化Redis主从就集群:

  • 在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO(适用于网络好、磁盘慢 的场景)。
  • Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO。
  • 适当提高 repl_baklog 的大小,发现 slave 宕机时尽快实现故障恢复,尽可能避免全量同步。
  • 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力。

主从从架构图:
主从架构图

小结

简述全量同步和增量同步区别?

  • 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。
  • 增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave

什么时候执行全量同步?

  • slave节点第一次连接master节点时
  • slave节点断开时间太久,repl_baklog中的offset已经被覆盖时

什么时候执行增量同步?

  • slave节点断开又恢复,并且在repl_baklog中能找到offset时



在这里插入图片描述



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/823533.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Eureka 学习笔记5:InstanceRegistry

版本 awsVersion ‘1.11.277’ LeaseManager 接口管理实例的租约信息&#xff0c;提供以下功能&#xff1a; 注册实例取消注册实例实例续约剔除过期实例 public interface LeaseManager<T> {/** 注册实例并续约*/void register(T r, int leaseDuration, boolean isRep…

8.1day02苍穹外卖开发

今天完善的功能是新增员工的功能&#xff1b; 新增员工需要添加的数据和员工表中的字段存在差异&#xff0c;用DTO封装传入进来的数据&#xff0c;将DTO实体的数据拷贝给employ类中去&#xff0c;采用的方式是用 BeanUtils.copyProperties(employeeDTO,employee); //前面是数据…

lodop学习

lodop 前提&#xff1a;为满足js调用打印机功能&#xff0c;浏览器自带的打印会弹出一个预览框&#xff0c;实际在应用场景上不需要这个预览弹窗&#xff0c;点击页面打印要直接根据预设好的参数直接打印&#xff0c;这个时候看到了lodop这个插件。 步骤1&#xff1a;官网下载…

一文搞懂Redis架构演化之路

目录 从最简单的开始&#xff1a;单机版 Redis 数据持久化&#xff1a;有备无患 主从复制&#xff1a;多副本 哨兵&#xff1a;故障自动切换 分片集群&#xff1a;横向扩展 总结 这篇文章我想和你聊一聊 Redis 的架构演化之路。 现如今 Redis 变得越来越流行&#xff0c;…

C++ ——stack、queue容器模拟实现及deque容器底层介绍

deque文档 stack文档 deque文档 文章目录 &#x1f345;1. deque容器&#x1f352;deque底层&#x1f352;deque的优势&#x1f352;deque的劣势 &#x1fad0;2. stack模拟实现&#x1f95d;3. queue模拟实现 &#x1f345;1. deque容器 查看文档可发现&#xff0c;栈和队列都…

前中后序迭代统一格式遍历法(最好理解)js版本

说实话,有关二叉树遍历这块,特别是迭代版本,网上好多写的糊里糊涂的,尤其是将三种遍历统一风格的,基本都是看到一头雾水,我想了个比较直观点(自认为) 首先,以下图二叉树为例, 使用迭代法,无论哪种遍历顺序都要首先要开一个栈,同时还需要一个指针cur用于控制当前 接…

Java三大特征之继承【超详细】

文章目录 一、继承概念二、继承的语法三、父类成员访问3.1子类中访问父类的成员变量3.2子类和父类成员变量同名3.3子类中访问父类的成员方法 四、super关键字五、子类构造方法六、super和this七、再谈初始化八、protected 关键字九、继承方式十、final 关键字十一、继承与组合 …

RK DWC3 gadget模块 分析

1. dw3 core代码分析 文件&#xff1a;[drivers/usb/dwc3/core.c] dwc3_probe 函数主要申请dwc3_vendor 参数内存&#xff08;dwc3_vendor的dwc成员即是 struct dwc3结构体参数&#xff09;&#xff0c;对dwc3 通过设备树 以及寄存器信息对 dwc3的成员进行初始化&#xff0c;…

cloudstack平台host加入后,显示CPU speed为0GHz

一、环境说明 操作系统&#xff1a;openEuler 22.03CPU&#xff1a;Kunpeng-920&#xff0c;arm v8cloudstack&#xff1a;4.18libvirtd&#xff1a;6.2.0 二、问题描述 cloudstack平台初始化完成后&#xff0c;第一次加入host&#xff0c;系统虚拟机一直无法正常创建&#…

瑞吉外卖项目----(2)缓存优化

1 缓存优化 1.0 问题说明 1.1 环境搭建 将项目推送到远程仓库里&#xff0c;教程在git 提交远程仓库前建议取消代码检查 创建新的分支v1.0&#xff08;用于实现缓存优化&#xff09;并推送到远程仓库 1.1.1 maven坐标 导入spring-data-redis的maven坐标&#xff1a; &l…

PyTorch代码实战入门

人这辈子千万不要马虎两件事 一是找对爱人、二是选对事业 因为太阳升起时要投身事业 太阳落山时要与爱人相拥 一、准备数据集 蚂蚁蜜蜂数据集 蚂蚁蜜蜂的图片&#xff0c;文件名就是数据的label 二、使用Dataset加载数据 打开pycharm&#xff0c;选择Anaconda创建的pytorch环…

FTP Server

简介 FTP&#xff1a;File Transfer Protocol 文件传输协议&#xff1b;它工作在 OSI 模型的第七层&#xff0c; TCP 模型的第四层&#xff0c; 即应用层&#xff0c; 使用 TCP 传输而不是 UDP&#xff0c; 客户在和服务器建立连接前要经过一个“三次握手”的过程&#xff0c;…

捷码低代码|FreeContainer 自由布局组件详解

背景知识&#xff1a; 1、布局组件&#xff1a; 布局组件是一种用于在用户界面中安排和组织其他组件的组件。它们提供了一种简单的方法来控制和管理页面上组件的位置、大小和层次结构。布局组件可以是容器&#xff0c;可以包含其他组件&#xff0c;并确定它们在界面上的显示方式…

【MyBatis】 框架原理

目录 10.3【MyBatis】 框架原理 10.3.1 【MyBatis】 整体架构 10.3.2 【MyBatis】 运行原理 10.4 【MyBatis】 核心组件的生命周期 10.4.1 SqlSessionFactoryBuilder 10.4.2 SqlSessionFactory 10.4.3 SqlSession 10.4.4 Mapper Instances 与 Hibernate 框架相比&#…

深入理解MVVM架构模式

MVVM原理 MVVM是一种用于构建用户界面的软件架构模式&#xff0c;它的名称代表着三个组成部分&#xff1a;Model&#xff08;模型&#xff09;、View&#xff08;视图&#xff09;和ViewModel&#xff08;视图模型&#xff09;。MVVM的主要目标是将应用程序的UI与其底层数据模…

SERDES关键技术

目录 一、SERDES介绍 二、SERDES关键技术 2.1 多重相位技术 2.2 线路编解码技术 2.2.1 8B/10B编解码 2.2.2 控制字符&#xff08;Control Characters&#xff09; 2.2.3 Comma检测 2.2.4 扰码&#xff08;Scrambling&#xff09; 2.2.5 4B/5B与64B/66B编解码技术 2.3 包传…

Halcon学习之一维测量实战之测量矩形(一)

一、采集图像 (1)测量充电器 测量充电器的引脚,然后每次旋转充电器,让测量矩形都跟着它转,这就是定位+测量, (2)测量钥匙 (3)测量瓶盖 我们后面还会涉及到拟合的问

牛客网Verilog刷题——VL53

牛客网Verilog刷题——VL53 题目答案 题目 设计一个单端口RAM&#xff0c;它有&#xff1a; 写接口&#xff0c;读接口&#xff0c;地址接口&#xff0c;时钟接口和复位&#xff1b;存储宽度是4位&#xff0c;深度128。注意rst为低电平复位。模块的接口示意图如下。 输入输出描…

HDFS的QJM方案

Quorum Journal Manager仲裁日志管理器 介绍主备切换&#xff0c;脑裂问题解决---ZKFailoverController&#xff08;zkfc&#xff09;主备切换&#xff0c;脑裂问题解决-- Fencing&#xff08;隔离&#xff09;机制主备数据状态同步问题解决 HA集群搭建集群基础环境准备HA集群规…

解决git仓库无效问题

解决fatal: … not valid: is this a git repository?问题 凭证编辑修改成自己的账号密码即可解决