Dynamic Few-Shot Visual Learning without Forgetting

news2025/1/13 15:43:39

摘要

人类视觉系统有显著的能力去毫不费力的从零样本示例中学习新颖概念。机器学习视觉系统上模仿相同的行为是一个有趣的非常具有挑战性的研究问题,这些研究问题有许多实际的优势在真实世界视觉应用上。在这篇文章中,我们目标是去设计一个零样本视觉学习系统
(a few-shot visual learning system).
在整个测试阶段,其有能力从一些训练数据中有效的学习新颖类别。于此同时,其将不会遗忘其被训练的初始类别
To achieve that goal we propose (a) to extend an object recognition system with an attention based few-shot classification weight generator, and (b) to redesign the classifier of a ConvNet model as the cosine similarity function between feature representations
and classification weight vectors

摘要提取关键词

The human visual system.
learn novel concepts from only a few examples.

这篇论文的目标:

devise a few-shot visual learning system 其有能力去有效的学习:
learn novel categories from only a few training data while at the same time it will not forget the inital categories.(base categories)

目标实现方法

  • to extend an object recognition system with an attention based few-shot classification weight generator.

  • redesign the classifier of a ConvNet model as the consine similarity function between feature representations and classification weight vectors.

  • unifying the recognition of both novel and base categories.

  • feature representations that generalize better on unseen categories.

  • evaluate our method on Mini-ImageNet

介绍

deep convolutional nerual networks.(ConvNets)
应用在 image classification tasks、object recognition or scene classification.

ConvNet: recognize a set of visual categories.(object categories or scene types)

要求

manually collect and label thousands of training examples per target category and to apply on them an iterative gradient based optimizations ,routine.(迭代梯度)
这种方法计算资源相当昂贵。
而且。the ConvNet model can recognize remains fixed after training.

  • for novel categories to collect training data.
    在曾倩的训练集中,重新开始上述昂贵的训练程序。

  • 我们将会避免灾难性干扰。
    关键点:

  • 有足够的新类别的训练数据至关重要,否则很容易产生过拟合

应用

developing real_time interactive vision application for portable devices.
(portable devices 便携式设备)

许多方法未满足两个非常重要的要求:

  • the learning of the novel categories needs to be fast.
  • to not sacrifice any recognition accuracy on the inital categories.
    that the ConvNet was trained. to not forget。
  • the sole input 唯一输入,
  • 我们想要开发的目标识别学习系统:
    not only to recognize these base categories but also learns to dynamically recognize novel categories from only a few training examples.(provided only at test time), while also not forgetting the base ones or requiring to be re-trained on them
    (dynamic few-shot learning without forgetting)
    为了实现目标,我们提出两个新颖性的技术。

Few-shot classification-weight generator based on attention

  • A typical ConvNet based recoginition model.
  • first extracts a hight level feature representation from it.
  • computes per category classifiction scores by applyiing a set of classification weight vectors to the feature.
  • 为了有能力去识别新颖类别,be able to generaate classification weight vectors for them.

第一个新颖技术的工作

we enhance a typical object recognition system with an extra component.called few-shot classification weight generator :accepts as input a few training examples of a novel category. *

  • generates a classification weight vector. for that novel category.
    其明确要求:利用:the acquired past knowledge about the visual world.by incorporating an attention mechanism over the classifcation weight vectors of the base categories.
    (基类别的权重向量中加入注意力机制)
    注意力机制有有显著的提升效果

Cosine-similarity based ConvNet recognition model.

the ConvNet Model 有能力同时处理 the classification weight vectors of both base and novel categories.

这不是可行的,the typical dot-product based classifier.
(the last linear layer of a classification neural network).

  • 为了克服这些严重的问题,第二个新颖的技术:
    to implement the classifier as a consine similarity funciton between the feature representaions and the classification weight vectors.

验证方式:简单训练一个 by simply training a consine-similarity based ConvNet recognition model.

  • learn feature extractors that when used for image matching they surpass prior state-of-the art approaches .在零样本识别任务上。

贡献

  • 提出了一个 a few shot object recognition sysetm.
    这有能力从小训练数据中动态学习新颖类别,并没有遗忘训练的基类。
  • 实现两个新颖的技术:
    • an attention based few-shot classification weight generator.
    • to implement the classifier of a ConvNet model as a consine similarity function between feature representations and classification vectors.
    • evaluate 目标识别系统在on Mini-ImageNet,

    相关工作

  • Meta-learning based approaches
    • invove a meta-learner model
    • Ravi and Larochelle: a LSTM based meta-learner
    • Finn et a 简化了,a LSTM based meta-learner model
    • Mishra et al :提出了a generic temporal convolutional network.
    • 我们的系统也会包含元学习网络成分,the few-shot classification weight generator
  • Metric-learning based approaches
    • 试图去学习特征表示:preseve the class neighborhood st加粗样式ructure.
    • Koch et al:formulated the one-shot object recognition task as image matching and train Siamese neural networks to compute the similarity between a training example of a novel category and a test example。
    • Vinyals et al:推出 Matching Networks。
    • Mensink et al 提出了一个相似性的方法:Prototypical Networks an adaption of that work for ConvNets。
    • 我们的零样本分类权重迭代器也包括:a feature averaging mechansim.
    • 利用带有注意力机制视觉世界的过去的机制
    • Bharath and Girshick 提出了一个 a l 2 l_2 l2 regularization loss on the feature presentation.使其能够更好的产生不可见类别。
    • the cosine-similarity based classifier

方法

目标识别学习系统的输入:假设存在一个数据集基类
a dataset of K b a s e K_{base} Kbase base categories:
D t r a i n = ⋃ b = 1 K b a s e { x b , i } i = 1 N b D_{train} = \bigcup^{K_{base}}_{b = 1} \{x_{b,i}\}^{N_b}_{i = 1} Dtrain=b=1Kbase{xb,i}i=1Nb
参数解释
N b N_b Nb: the b-th categroy训练例子的数量。
x b , i x_{b,i} xb,i: its i-th training example. 使用这个当做输入。
我们的工作的目标是有能力去准确识别基类和以动态的方式去优化新颖类别的零样本学习。在没有忘记the base ones.
在这里插入图片描述
其包含两个主要成分:

  • a ConvNet-based recognition model.
  • a few-shot classification weight generator:在测试时间为新颖类别动态的产生权重向量

ConvNet-based recognition model

  • a feature extractor F ( . ∣ θ ) F(.| \theta) F(.θ) (学习参数 θ \theta θ)
    这能够提取一个 a d-dimensional feature vector:
    z = F ( x ∣ θ ) ∈ R d z = F(x|\theta) \in R^{d} z=F(xθ)Rd 从一个输入图像 x x x

  • 一个分类器 C ( . ∣ W ∗ ) C(.|W^{*}) C(.W):在这里 W ∗ = { w k ∗ ∈ R d } k = 1 K ∗ W^{*} = \{w_k^{*} \in R^d\}^{K^{*}}_{k = 1} W={wkRd}k=1K
    这里是a set of K ∗ K^{*} K classification weight vectors. :one per object category.

  • input the feature representation z z z and return a K ∗ K^{*} K-dimensional vectors.概率分布得分: p = C ( z ∣ W ∗ ) p = C(z|W^{*}) p=C(zW) of the K ∗ K^{*} K
    categories.

  • a typical convolutional neural network the feature extractor:是网路的一部分,starts from the first layer and ends at the last hidden layer.

  • the classifier is the last classification layer.

总计:这个ConvNet model will be able to recognize the base object categories.

Few-shot classification weight generator

这包括一个:a meta-learning mechanism
input: a set of K n o v e l K_{novel} Knovel novel categories.
D n o v e l = ⋃ n = 1 K n o v e l { X n , i ^ } i = 1 N ^ n D_{novel} = \bigcup^{K_{novel}}_{n = 1}\{\hat{X_{n,i}}\}^{\hat{N}_n}_{i = 1} Dnovel=n=1Knovel{Xn,i^}i=1N^n

公式解释

  • N n ^ \hat{N_n} Nn^ the number of training examples of the n-th novel category.
  • x n , i ^ \hat{x_{n,i}} xn,i^:its i-th training example.
    o dynamically assimilate the novel categories on the
    repertoire of the above ConvNet model
  • each novel category n ∈ [ 1 , N n o v e l ] n \in [1, N_{novel}] n[1,Nnovel]
  • the few-shot classification weight generator : G ( . . , . ∣ ϕ ) G(..,.|\phi) G(..,.ϕ)
  • 输入特征向量 Z n ^ = { Z n , i ^ } i = 1 N n ^ \hat{Z_n} = \{\hat{Z_{n,i}}\}^{\hat{N_n}}_{i = 1} Zn^={Zn,i^}i=1Nn^
  • Z n , i ^ = F ( x n , i ∣ θ ^ ) \hat{Z_{n,i}} = F(\hat{x_{n,i} | \theta}) Zn,i^=F(xn,iθ^)
  • 基类的分类权重向量: W b a s e W_{base} Wbase
  • 产生一个分类权重向量: w n ^ = G ( Z n W b a s e ∣ ϕ ^ ) \hat{w_n} = G(\hat{Z_n W_base | \phi}) wn^=G(ZnWbaseϕ^) for novel category.
  • ϕ \phi ϕ是 the learnable parameters of the few-shot weight generator
    这个参数在我们框架的单一训练阶段中学习。
  • W n o v e l = { w n ^ } n = 1 K n o v e l W_{novel} =\{\hat{w_n}\}^{K_{novel}}_{n = 1} Wnovel={wn^}n=1Knovel
  • the few-shot weight generator产生的新颖类别的分类权重向量。
  • W ∗ = W b a s e ⋃ W n o v e l W^{\ast} = W_{base} \bigcup W_{novel} W=WbaseWnovel
  • C ( . ∣ W ∗ ) C(.|W^{\ast}) C(.W):the ConvNet model 去识别基类和新颖类

Cosine-similarity based recognition model

the standard setting for classification neural networks.:

  • after the extracted the feature vector z z z

  • 计算每个类别的分类得分 s k s_k sk 去估计分类概率向量:
    p = C ( z ∣ W ∗ ) p = C(z|W^{\ast}) p=C(zW)

  • k ∈ [ 1 , K ∗ ] k \in [1,K^{\ast}] k[1,K] 使用点积操作:

  • s k = z T w k ∗ s_k = z^{T}w^{\ast}_k sk=zTwk
    在所有 K ∗ K^{\ast} K操作上应用softmax scores。
    p k = s o f t m a x ( s j ) p_k = softmax(s_j) pk=softmax(sj)
    p k p_k pk is the k-th classification probablity of p p p
    w K ∗ w_K^{\ast} wKcould come both from the category
    w K ∗ ∈ W b a s e w^{\ast}_K \in W_{base} wKWbase

  • small SGD steps.

  • 问题:the weight values in those
    two cases (i.e., base and novel classification weights) can be
    completely different, and so the same applies to the raw classification scores computed with the dot-product operation,
    which can thus have totally different magnitudes depending
    on whether they come from the base or the novel categories.
    This can severely impede the training process and, in general,
    does not allow to have a unified recognition of both type of
    categories.

  • 修改这个分类器 C ( . ∣ W ∗ ) C(.|W^{\ast}) C(.W) 使用余弦相似操作来计算分类得分:
    在这里插入图片描述
    在这里插入图片描述
    另外这个以上的修改,我们也选择删除了 t h e R e L U n o n − l i n e a r i t y the ReLU non-linearity theReLUnonlinearity
    after the last hidden layer of the feature extractor.
    z z z to take both positive and negative values.similar to the classification weight vectors.

l 2 l_2 l2-normalize the feature vectors.

Advantages of cosine-similarity based classifier

  • o minimize the classification loss of a cosine-similarity based ConvNet model
  • the l 2 l_2 l2 normailized feature vector of an image.
  • low intraclass variance:类内方差。
    在这里插入图片描述
  • the cosine-similarity-based ConvNet form more compact and distinctive category-specific clusters

Few-shot classification weight generator

  • the cosine similarity based classifier of the ConvNet model
  • 学习这些类簇的表示特征向量:
    在这里插入图片描述
    最终类的权重向量,我们仅使用the feature averaging mechanism
    在这里插入图片描述
    ⨀ \bigodot is the the Hadamard product
    ϕ a v g ∈ R d \phi_{avg} \in R^d ϕavgRd is a learnable weight vector.

Attention-based weight inference

feature averaging mechanism with an attention based
mechanism
that composes novel classification weight vectors by looking at a memory that contains the base classification weight vectors.
W b a s e = { w b } b = 1 K b a s e W_{base} = \{w_b\}^{K_{base}}_{b = 1} Wbase={wb}b=1Kbase

  • an extra attention-based classification weight vector w a t t ^ \hat{w_{att}} watt^
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里 ⨀ \bigodot 是the Hadamard product
    ϕ a v g ϕ a t t ∈ R d \phi_{avg} \phi_{att} \in R^d ϕavgϕattRd 是可学习的权重向量。

Why using an attention-based weight composition?

(为什么使用基于注意力机制的权重成分)

  • the cosine-similarity based classifier
  • the base classification weight vectors
  • the base classification weight vectors also encode visual similarity

训练步骤

  • learn the ConvNet-based recognition model

  • the feature extractor F ( . ∣ θ ) F(.|\theta) F(.θ)

  • C ( . ∣ W ∗ ) ) C(.|W^{\ast})) C(.W))

  • the few-shot classification weight generator G ( . , . ∣ ϕ ) G(.,.|\phi) G(.,.ϕ)

  • 单一的输入:
    D t r a i n = ⋃ b = 1 K b a s e { x b , i } i = 1 N b D_{train} = \bigcup^{K_{base}}_{b = 1}\{x_{b,i}\}^{N_b}_{i =1} Dtrain=b=1Kbase{xb,i}i=1Nb
    of K b a s e K_{base} Kbase base categories.

  • 将训练程序切分为2个阶段:每个阶段:

  • minimize a different cross-entropy loss
    在这里插入图片描述
    在这里插入图片描述

1st training stage

  • learn the ConvNet recognition model without the few-shot classification weight generator.
  • 特征提取器的参数 θ \theta θ F ( . ∣ θ ) F(.|\theta) F(.θ)
  • the base classification weight vectors: W b a s e = { w b } b = 1 K b a s e W_{base} = \{w_b\}^{K_{base}}_{b = 1} Wbase={wb}b=1Kbase
  • W ∗ 等 价 于 W b a s e W^{\ast}等价于W_{base} WWbase

2nd training stage

在这里插入图片描述
在这里插入图片描述

实验结果

Mini-ImageNet experiments

Evaluation setting for recognition of novel categories.
t h e M i n i − I m a g e N e t d a t a s e t the Mini-ImageNet dataset theMiniImageNetdataset 数据集上评估我们的零样本目标识别系统
(few-shot object recognition system).

数据集介绍

  • dataset that includes 100 different categories,with 600 images per category.
  • each of size 84 × 84 84 \times 84 84×84
  • 64 categories for training.
  • 16 categories for validation.
  • 20 categories for testing.
  • first sampling K n o v e l K_{novel} Knovel categories and one or five training example per category1-(1-shot and 5-shot settings respectively)

Evaluation setting for the recognition of the base categories.

  • the proposed few-shot object recognition system has the ability to not forget the base categoris.
  • 目标
  • evaluate the recognition performance of our model on those base categories

措施

  • **sampled 300 extra images for each training categories.**that we use as validation image set for the evaluation of the recognition performance of the base categories.
  • and also anthor 300 extra images that are used for the same reason as test image set.

Ablation study

想确定这个结构是否有利于最终结果,那就要去掉该结构的网络与加上该结构的网络层的结果进行对比,这就是Ablation study。
在这里插入图片描述
在这里插入图片描述

on the validation set of mini-ImageNet上进行Ablation study。
比较:two prior state-of-the-art approaches :
Prototypical Networks and Matching Nets

  • The feature extractor:

    • is a ConvNet model that has 4 convolutional modules
    • with 3 × 3 3 \times 3 3×3 convolutions.
    • followed by batch normalization
    • ReLU nonlinearity.
    • 2 × 2 2 \times 2 2×2 max-pooling
    • Given as input images of size 84 × 84 84 \times 84 84×84
    • it yields feature maps with spiatal size 5 × 5 5 \times 5 5×5
    • The first two convolutional layers have 64 feature channels.
    • the latter two have 128 feature channels.

    Cosine-similarity based ConvNet model.

    *未训练权重生成器情况下, 查看the cosine-simiarity based ConvNet model (entry Consine Classifier)的效果

    • perform the 1st training stage
    • 为了测试新颖类别的效果:
    • estimate classification weight vectors.using feature averaging.
      *** the cosine-similarity based ConvNet models** (Cosine Classifier entries
    • ConvNet models:模型中引入余弦相似度和dot-product做对比,比较其优劣。

    Removing the last ReLU unit

    • remove the last ReLU non-linearity from the feature extractor.when using a cosine classifier.

    Few-shot classification weight generator

    use both the feature averaging and the attention based mechansim.

    Comparison with state-of-the-art

    Explored feature extractor architectures

    • a 4 module ConvNet network
    • the ResNet [5] like network

    Qualitative evaluation with t-SNE scatter plots

    • cosine-similarity based ConvNet recognition model

    • the typical dot-product based ConvNet recognition model

    • the t − S N E t-SNE tSNE scatter plots
      可视化 the local-structures of the feature representations learned in those two cases。

    • 可视化the l 2 l_2 l2-normalized features.这些特征能够被特征提取器所实际用到。

    Few-shot benchmark of Bharath & Girshick

    • on the ImageNet based few-shot benchmark
    • 将数据集切分成389 base categories. and 611 novel categories.
    • 193 of the base categories and 300 of the novel categories are used for cross validation and the remaining 196 base categories and 311 novel categories are used for the final evaluation.
    • sampling ourselves N ^ \hat{N} N^ training images per novel category.
    • evaluate using the images in the validation set of ImageNet
    • repeat the above experiment 100 times

    Comparison to prior and concurrent work

    • Prototypical-Nets
    • Matching Networks
    • the work of Bharath and Girshick。

    Feature extractor

    • a ResNet-10 [5] network architecture
      gets as input images of 224 × 224 224 \times 224 224×224 size>
    • apply dropout with 0.5 probability on the feature vectors generated by the feature extractor.

结论

  • a cosine-similarity based ConvNet classifier.
  • learn feature representation with better generalization capabilities.

概括

继续下一篇,将其完全的搞明白,全部都将其理解透彻,理解彻底。然后开始搞代码。
针对以零样本为中心开始研究自己的模型及框架,全部都将其搞定都行啦的样子与打算。
*

总结

会自己发现通过啥技术来设计啥目标,以及通过啥如何根据自己的技术来设计优化自己的目标。都行啦的回事与打算。
会根据自己的优化目标,来设计自己的新颖技术。

  • 会判断什么技术可行不可行。会自己的判断都行啦的样子与打算。
  • 会自己比较方法, d o t − p r o d u c t dot-product dotproduct可行还是 t h e c o s i n e − s i m i l a r i t y the cosine-similarity thecosinesimilarity
  • 会自己高明白,啥操作产生啥效果,全部狗将其搞定都行啦的理由与打算。
    • 会自己根据运行代码,并结合论文来进行观察与查看,整个复现代码,好好的将其研究透彻,研究彻底都行的样子与打算。慢慢的将其搞定都行啦的理由与障碍。
  • 会将两个网络一起训练,然后将其做对比。比较其模型效果的优劣。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/82266.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

mysql中MVCC--多版本并发控制

读读:不存在任何安全问题,不需要并发控制 读写:有线程安全问题,脏读、幻读、不可重复读 写写:有线程安全问题,更新丢失 为了解决读写的并发问题 什么是MVCC 只有InnoDB引擎支持mvcc,mysql默认支持可重复读,就是依赖…

常用数据库之mysql的搭建与使用

1. 简介 mysql为关系型数据库,是由瑞典的MySQLAB公司开发的,但是几经辗转,现在是Oracle产品。它是以“客户/服务器”模式实现的,是一个多用户、多线程的小型数据库服务器。而且MySQL是开源数据的,任何人都可…

Qt 模型视图编程之自定义只读数据模型

背景 Qt 中的模型视图架构是用来实现大量数据的存储、处理及其显示的,主要原理是将数据的存储与显示分离:模型定义了标准接口对数据进行访问;视图通过标准接口获取数据并定义显示方式;模型使用信号与槽机制通知视图数据变化。 Q…

基于Java Web技术的动车购票系统

毕 业 设 计 中文题目基于Java Web技术的动车购票系统英文题目Train ticket system based on Web JavaTechnology毕业设计诚信声明书 本人郑重声明:在毕业设计工作中严格遵守学校有关规定,恪守学术规范;我所提交的毕业设计是本人在 指导教师…

零入门容器云网络-7:基于golang编程实现给ns网络命名空间添加额外的网卡

已发表的技术专栏(订阅即可观看所有专栏) 0  grpc-go、protobuf、multus-cni 技术专栏 总入口 1  grpc-go 源码剖析与实战  文章目录 2  Protobuf介绍与实战 图文专栏  文章目录 3  multus-cni   文章目录(k8s多网络实现方案) 4  gr…

“美亚杯”第三届中国电子数据取证大赛答案解析(个人赛)

试题 1 Gary的笔记本电脑已成功取证并制作成镜像 (Forensic Image),下列哪个是其MD5哈希值。 A. 0CFB3A0BB016165F1BDEB87EE9F710C9 B. 5F1BDEB87EE9F710C90CFB3A0BB01616 C. A0BB016160CFB3A0BB0161661670CFB3 D. 16160CFB3A0BB016166A0BB0161661…

独立产品灵感周刊 DecoHack #041 - 那些独立开发者是怎么养活自己的

本周刊记录有趣好玩的独立产品设计开发相关内容,每周发布,往期内容同样精彩,感兴趣的伙伴可以点击订阅我的周刊。为保证每期都能收到,建议邮件订阅。欢迎通过 Twitter 私信推荐或投稿。 💻 产品推荐 1. SOCCER STREAM…

分布式的设计思想

一、分布式设计基础 传统架构问题 ① 单机资源不足 存储:3台机器,每台机器都有2T的硬盘空间,但是现在有1个3T的文件要存储计算:3台机器,每台机器都有8核CPU和8GB内存,但是现在有1个程序需要12核CPU和24G…

启明智显分享| Sigmastar SSD212 SPI+RGB点屏示例(2.1寸 480*480圆屏,可应用于旋钮)

SSD20X 点SPIRGB屏和SSD212 类似,区别在于对应文件名不同、SSD20X没有config.ini文件。 SSD20X SPI初始化文件:vi boot/common/cmd_customer_init.c SSD20X由于没有config.ini 可以用jpeg2disp 中.h 屏参头文件的方式实现显示logo。 这里以SSD212 点屏为…

Java——AVL树

平衡二叉树 在之前的blog中讲到,平衡二叉树是一棵树,任意一个节点的左树的所有节点都小于这个节点,右树的所有节点都大于这个节点 因此,可以利用这个性质来中序遍历,就可以得到一个有序的序列,而如果我们要…

谷歌地图商家抓取工具 G-Business Extractor 7.5

G 业务提取器 | 谷歌地图抓取工具 G-Business Extractor是一款功能强大的工具,可帮助您从 Google 地图中寻找商机。它是最好的Google Maps Scraper工具,能够从最重要的企业目录中提取数据。 Google 地图是一个来源,您可以在其中找到按类别和位…

“美亚杯”第三届中国电子数据取证大赛答案解析(团体赛)

Questions Gary被逮捕后,其计算机被没收并送至计算机取证实验室。经调查后,执法机关再逮捕一名疑犯Eric,并检取其家中计算机(window 8), 并而根据其家中计算机纪录, 执法机关再于其他地方取得一台与案有关的服务器,而该服务器内含四个硬盘。该服务器是运…

跨端开发浪潮中的变与不变

自 90 年代初开启 PC 时代以来,随着移动网络的快速普及,在 2010 年左右,进入移动时代、IOT 时代,各种移动互联设备不断涌现,除了最常见的 PC、Pad、智能手机外,它还可能是小小的一块智能手表,也…

NKOJ P9492 【USACO】视频共享

题目分析 这道题其实最容易想到的方法是离线枚举,但是其时间复杂度为,很明显会超时(这题数据连离线化都救不了) 那该如何办? 并查集;因为他说有一个推荐列表,而这个推荐列表中i号视频推荐了j号视频&#…

SpringSecurity+OAuth2.0+JWT实现单点登录应用

SpringSecurityOAuth2.0JWT实现单点登录应用 gitee项目练习地址:https://gitee.com/xzq25_com/springsecurity.oauth2 OAuth2.0单点登录实践一、搭建OAuth授权服务器,采用授权码模式JWT令牌二、创建服务client:SSOA、SSOB 并进行测试一、搭建…

【云计算与大数据技术】大数据系统总体架构概述(Hadoop+MapReduce )

一、总体架构设计原则 企业级大数据应用框架需要满足业务的需求,一是要求能够满足基于数据容量大,数据类型多,数据流通快的大数据基本处理需求,能够支持大数据的采集,存储,处理和分析,二是要能…

openGauss数据库的使用

目录前言1. 启动/停止/重启数据库(1)极简版启动/停止/重启命令(2)企业版启动/停止/重启命令2. 登录数据库(1)登录数据库时的基本连接参数(2)登录数据库时的常用连接参数(…

如何使用轻量应用服务器搭建高颜值的YesPlayMusic网易云播放器

本文介绍了如何使用腾讯云的Lighthouse轻量应用服务器来搭建一个高颜值的第三方网易云播放器。 ​ 项目简介 本文使用的是YesPlayMusic项目,这是一款高颜值的第三方网易云播放器,它完全可以作为网易云官方应用的替代品。而且还拥有一些网易云官方应用没…

react-dnd 拖拽能力教程

前言 近几年来,低代码、零代码的热度在国内逐年递增。“复杂度同力一样不会消失,也不会凭空产生,它总是从一个物体转移到另一个物体或一种形式转为另一种形式”。用户在使用低零代码构建应用程序时,这些能力只是被平台研发人员提…

SQL SERVER 2019卸载和安装

卸载过程删除SQL Server2019包括sql server这个数据库和它的管理工具SQLServer Management Studio以及他们的注册表信息和安装的目录,以上,最重要的是一定要有耐心,一步一步慢慢来。 首先打开一定要把SQL的服务都关掉,这个很重要…