python与深度学习(十二):CNN和猫狗大战二

news2025/1/17 0:57:09

目录

  • 1. 说明
  • 2. 猫狗大战的CNN模型测试
    • 2.1 导入相关库
    • 2.2 加载模型
    • 2.3 设置保存图片的路径
    • 2.4 加载图片
    • 2.5 图片预处理
    • 2.6 对图片进行预测
    • 2.7 显示图片
  • 3. 完整代码和显示结果
  • 4. 多张图片进行测试的完整代码以及结果

1. 说明

本篇文章是对上篇文章猫狗大战训练的模型进行测试。首先是将训练好的模型进行重新加载,然后采用opencv对图片进行加载,最后将加载好的图片输送给模型并且显示结果。

2. 猫狗大战的CNN模型测试

2.1 导入相关库

在这里导入需要的第三方库如cv2,如果没有,则需要自行下载,自行下载时候一般建议镜像源,这样下载的快。

from tensorflow import keras
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw  # PIL就是pillow包(保存图像)
import numpy as np
# 导入tensorflow
import tensorflow as tf
# 导入keras
from tensorflow import keras

2.2 加载模型

把训练好的模型也加载进来,这里不用加载数据,因为数据是自制的。

# 加载my_cnn_cat_dog_3.h5文件,重新生成模型对象
recons_model = keras.models.load_model('my_cnn_cat_dog_3.h5')

2.3 设置保存图片的路径

将数据集的某个数据以图片的形式进行保存,便于测试的可视化,这里在之前已经分了测试集,因此设置图片路径即可。
在这里设置图片存储的位置,便于将图片进行存储。

# 创建图片保存路径
test_file_path = os.path.join('dog-cats', 'test', '1.jpg')
# 加载本地test.png图像
image = cv2.imread(test_file_path)

上述代码是将test文件夹里面的1.jpg进行测试,如果想测试其它的只需改为x.jpg即可。
在这里插入图片描述

2.4 加载图片

采用cv2对图片进行加载,用opencv库也就是cv2读取图片的时候,图片是三通道的,而训练的模型是三通道的,因此不只用取单通道,而是三通道,这里和之前的灰度图不同。

# 复制图片
test_img = image.copy()
# 将图片大小转换成(150,150)
test_img = cv2.resize(test_img, (150,150))

2.5 图片预处理

对图片进行预处理,即进行归一化处理和改变形状处理,这是为了便于将图片输入给训练好的模型进行预测。因此在这里将形状改变为1501503的,前面的1是样本数,所以是(1,150,150,3)。

# 预处理: 归一化 + reshape
new_test_img = (test_img/255.0).reshape(1, 150,150, 3)

2.6 对图片进行预测

将图片输入给训练好我的模型并且进行预测。
因为是二分类,所以预测的结果是1个概率值,所以需要进行处理, 大于0.5的是狗,小于0.5的是猫。

# 预测
y_pre_pro = recons_model.predict(new_test_img, verbose=1)
# 哪一类
class_id = np.argmax(y_pre_pro, axis=1)[0]
print('test.png的预测概率:', y_pre_pro)
print('test.png的预测概率:', y_pre_pro[0, class_id])
if y_pre_pro[0, class_id] > 0.5:
    print('png的所属类别:', 'dog')
else:
    print('png的所属类别:', 'cat')

2.7 显示图片

对预测的图片进行显示,把预测的数字显示在图片上。
下面5行代码分别是创建窗口,设定窗口大小,显示图片,停留图片,清除内存。

# # 显示
cv2.namedWindow('img', 0)
cv2.resizeWindow('img', 500, 500)  # 自己设定窗口图片的大小
cv2.imshow('img', image)
cv2.waitKey()
cv2.destroyAllWindows()

3. 完整代码和显示结果

以下是完整的代码和图片显示结果。

from tensorflow import keras
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw  # PIL就是pillow包(保存图像)
import numpy as np
# 导入tensorflow
import tensorflow as tf
# 导入keras
from tensorflow import keras


# 加载my_cnn_cat_dog_3.h5文件,重新生成模型对象
recons_model = keras.models.load_model('my_cnn_cat_dog_3.h5')
# 创建图片保存路径
test_file_path = os.path.join('dog-cats', 'test', '1.jpg')
# 加载本地test.png图像
image = cv2.imread(test_file_path)
# 复制图片
test_img = image.copy()
# 将图片大小转换成(150,150)
test_img = cv2.resize(test_img, (150,150))
# 预处理: 归一化 + reshape
new_test_img = (test_img/255.0).reshape(1, 150,150, 3)
# 预测
y_pre_pro = recons_model.predict(new_test_img, verbose=1)
# 哪一类
class_id = np.argmax(y_pre_pro, axis=1)[0]
print('test.png的预测概率:', y_pre_pro)
print('test.png的预测概率:', y_pre_pro[0, class_id])
if y_pre_pro[0, class_id] > 0.5:
    print('png的所属类别:', 'dog')
else:
    print('png的所属类别:', 'cat')
# # 显示
cv2.namedWindow('img', 0)
cv2.resizeWindow('img', 500, 500)  # 自己设定窗口图片的大小
cv2.imshow('img', image)
cv2.waitKey()
cv2.destroyAllWindows()

To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
1/1 [==============================] - 3s 3s/step
test.png的预测概率: [[0.999939]]
test.png的预测概率: 0.999939
png的所属类别: dog

在这里插入图片描述

4. 多张图片进行测试的完整代码以及结果

为了测试更多的图片,引入循环进行多次测试,效果更好。

from tensorflow import keras
from keras.datasets import cifar10
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw  # PIL就是pillow包(保存图像)
import numpy as np

# 加载my_cnn_cat_dog_3.h5文件,重新生成模型对象
recons_model = keras.models.load_model('my_cnn_cat_dog_3.h5')

prepicture = int(input("input the number of test picture :"))
for i in range(prepicture):
    path1 = input("input the test picture path:")
    # 创建图片保存路径
    test_file_path = os.path.join('dog-cats', 'test', path1)
    # 加载本地test.png图像
    image = cv2.imread(test_file_path)
    # 复制图片
    test_img = image.copy()
    # 将图片大小转换成(150,150)
    test_img = cv2.resize(test_img, (150, 150))
    # 预处理: 归一化 + reshape
    new_test_img = (test_img / 255.0).reshape(1, 150, 150, 3)
    # 预测
    y_pre_pro = recons_model.predict(new_test_img, verbose=1)
    # 哪一类数字
    class_id = np.argmax(y_pre_pro, axis=1)[0]
    print('test.png的预测概率:', y_pre_pro)
    print('test.png的预测概率:', y_pre_pro[0, class_id])
    if y_pre_pro[0, class_id] > 0.5:
        print('png的所属类别:', 'dog')
    else:
        print('png的所属类别:', 'cat')
    # # 显示
    cv2.namedWindow('img', 0)
    cv2.resizeWindow('img', 500, 500)  # 自己设定窗口图片的大小
    cv2.imshow('img', image)
    cv2.waitKey()
    cv2.destroyAllWindows()

To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
input the number of test picture :2
input the test picture path:2.jpg
1/1 [==============================] - 2s 2s/step
test.png的预测概率: [[0.99774814]]
test.png的预测概率: 0.99774814
png的所属类别: dog

在这里插入图片描述

input the test picture path:3.jpg
1/1 [==============================] - 0s 87ms/step
test.png的预测概率: [[0.9999783]]
test.png的预测概率: 0.9999783
png的所属类别: dog

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/817811.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【构造】CF1758 D

Problem - D - Codeforces 题意: 思路: 如果需要构造一个和为定值的序列,那么考虑n-d,n-d1,.....nd-1,nd这种形式 如果要保证不能重复,那么先考虑一个排列,然后在排列上操作 如果根据小数据构造出了一些简单情形&a…

给初学嵌入式的菜鸟一点建议.学习嵌入式linux

学习嵌入式,我认为两个重点,cpu和操作系统,目前市场是比较流行arm,所以推荐大家学习arm。操作系统很多,我个人对开始学习的人,特别不是计算机专业的,推荐学习ucos。那是开源的,同时很…

CSDN 一周年创作纪念日(PS:vnjohn)

🔭 嗨,您好 👋 我是 vnjohn,在互联网企业担任 Java 开发,CSDN 优质创作者 📖 推荐专栏:Spring、MySQL、Nacos、Java,后续其他专栏会持续优化更新迭代 🌲文章所在专栏&…

【方法】PDF可以转换成Word文档吗?如何操作?

很多人喜欢在工作中使用PDF,因为PDF格式可以准确地保留文档的原始格式,比如字体、图像、布局和颜色等。 但如果编辑文档的话,PDF还是没有Word文档方便。那可以将PDF转换成Word格式,再来编辑吗?如何操作呢?…

HttpRunner自动化工具之实现参数化传递

参数化实现及重复执行 参数化测试:在接口测试中,为了实现不同组数据对同一个功能模块进行测试,需要准备多组测试数据对模块进行测试的过程。 在httprunner中可以通过如下方式实现参数化: 1、在YAML/JSON 中直接指定参数列表 2、…

用Apache Echarts展示数据

目录 1.后端代码 1.1 实体类: 1.2 SQL语句: 2.前端代码 2.1 安装 Apach Echarts安装包: 2.2 查找数据并赋值给Echarts 思路:后端查到数据,包装为map,map里有日期和每日就诊人数,返回给前端…

[操作系统] 进程的详细认识----从概念到调度

目录 前言 一.进程的概念 二.进程和程序之间的关系 2.1二者的关系 2.2资源的占用 三.进程的任务 四.进程的管理 五.PCB中的信息 5.1pid进程标识 5.2内存指针 5.3文件描述符表 六.进程的调度 6.1CPU的简单认识 6.2调度的方式 6.3PCB中调度相关属性 七.进程的…

【计算机网络】网络层协议 -- IP协议

文章目录 1. 网络层做了什么事2. IP协议的简介3. IP协议格式4. 分片与组装5. 网段划分6. 特殊的IP地址7. IP地址的数量限制8. 私网IP地址和公网IP地址9. 路由 1. 网络层做了什么事 保证数据可靠地从一台主机到另一台主机 当双方在进行基于TCP的网络通信时,要保证将数…

redis高级篇2 springboot+redis+bloomfilter实现过滤案例

一 bloomfilter的作用 1.1 作用 Bloomfilter:默认是有0组成bit数组和hash函数构成的数据结构,用来判断在海量数据中是否存在某个元素。 应用案例:解决缓存穿透。Bloomfilter放在redis前面,如果查询bf中没有则直接返回&#xff0…

opencv中轮廓相关属性

一、介绍 findContours() :The function retrieves contours from the binary image。 二、代码 void main() {Mat src imread("match00.bmp", IMREAD_GRAYSCALE);Mat mask;threshold(src, mask, 128, 255, cv::THRESH_BINARY_INV);Mat element cv::g…

tcl学习之路(一)(Vivado与Tcl)

学习第一步:安装tcl编译软件 点击这里进入activestate的官网,下载你喜欢的操作系统所需的安装包。这里我下载的是windows下的安装包。一步一步安装即可。   那么,安装后,我们可以在开始的菜单栏处看到三个应用程序。      …

Python爬取微博相册, 批量下载

xpath插件解析到所有图片的url地址 xpath下载地址: https://www.crxsoso.com/webstore/detail/hgimnogjllphhhkhlmebbmlgjoejdpjl 快捷键: CtrlShiftX 不会xpath语法可以看这里: https://www.w3school.com.cn/xpath/xpath_syntax.asp //div[class"woo-box-item-inlineBl…

P1090 [NOIP2004 提高组] 合并果子

题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出&#xff0…

图解TCP 三次握手和四次挥手的高频面试题(2023最新版)

大家好,最近重新整理了一版 TCP 三次握手和四次挥手的面试题(2023最新版)。 ----- 任 TCP 虐我千百遍,我仍待 TCP 如初恋。 巨巨巨巨长的提纲,发车!发车! img TCP 基本认识 TCP 头格式有哪些…

[VRTK4.0]获取指针,并提供有效无效位置

学习目标: 演示如何将场景中的游戏对象设置为弯曲指针的无效目标。 流程: 紧接上篇,我们已经创建了一个曲线,并且使用 OpenXR 指针姿势来确保指针方向始终与 OpenXR 控制器的正确方向匹配。 接下来我们要实现如何将场景中的游戏对…

web-6-深入理解JSP:探索其核心概念和特性

JSP 今日目标: 理解 JSP 及 JSP 原理 能在 JSP中使用 EL表达式 和 JSTL标签 1,JSP 概述 JSP(全称:Java Server Pages):Java 服务端页面。是一种动态的网页技术,其中既可以定义 HTML、JS、CSS…

计算机视觉:卷积层的参数量是多少?

本文重点 卷积核的参数量是卷积神经网络中一个重要的概念,它决定了网络的复杂度和计算量。在深度学习中,卷积操作是一种常用的操作,用于提取图像、语音等数据中的特征。卷积神经网络的优势点在于稀疏连接和权值共享,这使得卷积核的参数相较于传统的神经网络要少很多。 举例…

leetcode每日一题Day2——344. 反转字符串

✨博主:命运之光 🦄专栏:算法修炼之练气篇(C\C版) 🍓专栏:算法修炼之筑基篇(C\C版) 🐳专栏:算法修炼之练气篇(Python版) …

WEB:mfw

背景知识 Git泄露 Githack使用 命令执行漏洞 题目 这里页面里有Git,猜测是Git泄露 先用dirsearch扫一下 确实存在.git目录,可以尝试访问一下 使用Githack来下载并恢复.git文件 这里记得使用的时候关闭杀毒软件 结果会自动保存 点进去先看一下flag这个…

Flyway——修改表名称与序列名称

文章目录 前言脚本修改表名称修改序列 前言 开发中一次偶然的机会,Oracle 12c 更换为 11g ,需要对表名称的长度和序列长度做限制要求。 11g相对12c而言,表名称与序列名称的长度,不能超过30个字符。 在开发中做了更改,…