【数据结构】之十分好用的“链表”赶紧学起来!(第一部分单向链表)

news2025/1/20 17:09:47

在这里插入图片描述

💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤
📃个人主页 :阿然成长日记 👈点击可跳转
📆 个人专栏: 🔹数据结构与算法🔹C语言进阶
🚩 不能则学,不知则问,耻于问人,决无长进
🍭 🍯 🍎 🍏 🍊 🍋 🍒 🍇 🍉 🍓 🍑 🍈 🍌 🍐 🍍

文章目录

  • 一、链表的概念
  • 二、特点
  • 三、链表的分类
  • 四、单向链表的结构体
    • 命名规范:
    • 二级指针
    • ❗️注意事项
  • 五、函数实现
    • 1.单链表的打印
    • 2.单链表的头插
    • 3.单链表的尾插
    • 4.单链表的头删
    • 5.单链表尾删
    • 6.在pos位置之前插入x
    • 7.在pos位置之后插入x
    • 8.删除pos位置 节点
    • 9.删除pos位置之后的节点
    • 10.单链表的查找

前言

🎸小伙伴们,又见面了🌻 🌺 🍁 🍃 前面我们学习啦顺序表,其实顺序表的时间复杂度是很高的,尤其是在插入,删除等问题上,需要移动整个数组,十分麻烦费时。有没有更好的办法呢????当然有呀,就是链表,也是本篇博客要详细讲解的。

一、链表的概念

链表是一种物理存储结构上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表 中的指针链接次序实现的 。

链表就像是一列火车,链表中的每一个节点,就像是火车的一节节车厢。
在这里插入图片描述
图1.1
在这里插入图片描述图1.2

上面两幅图片生动地解释了链表的物理结构。想必看到这里已经对链表有了初步的认识。

二、特点

1️⃣ 链式结构在逻辑上是连续的,但在物理层上不一定连续。
2️⃣节点一般都是从堆上申请出来的一块空间。
3️⃣从堆上申请的空间,按照它的规则来进行分配,两次申请的空间,不一定连续。

三、链表的分类

1.单向或者双向
2. 带头或者不带头
3. 循环或者非循环

四、单向链表的结构体

❌误区:以下这种结构体定义会报错,那么是为什么呢?

typedef int SLTDataType;
typedef struct SListNode
{
	SLTDataType data;
	SLTNode* next;//错误

}SLTNode;

我们的typedef关键字给结构体重新命名为SLTNode,但是他是在结构体最后才生效,如果现在就在结构体中使用新命名,那么就会找不到。

👍正解是:

typedef int SLTDataType;
typedef struct SListNode
{
	SLTDataType data;
	struct SListNode* next;

 }SLTNode;

1.node:是存储的数据;
2.next 的类型是一个节点型的指针变量,它保存的是下一个节点的地址,即指向下一个节点

命名规范:

当我们在给结构体命名或者是函数的命名我们都应该使用用英文或者英文的简写来进行命名这样有利于人们的理解。例如单链表英文名:single List table,所以我给节点命名为SLTNode.

二级指针

在下面的学习中,会使用二级指针,不太清楚的小伙伴,可以去看我的📋C进阶专栏中的👉高级指针一篇

❗️注意事项

我们现在定义的头指针在函数结束之后都会销毁,因为它存在栈上。我们的每一个节点是使用动态内存函数在堆上进行开辟如果不进行free释放那么它会持续保存到程序结束。

五、函数实现

1.单链表的打印

//打印单链表
void PrintSlistTable(SLTNode* phead)
{
	SLTNode* cur = phead;
	while (cur != NULL)
	{
		printf("%d->", cur->data);
		cur = cur->next;
	}
	printf("NULL");
}

2.单链表的头插

头插思路分析:
在这里插入图片描述

头插代码

//头插
void SLTPusFront(SLTNode** pphead, SLTDataType x)//放入新插入节点
{
	SLTNode* newnode = CreatNode(x);
	newnode->next = *pphead;
	*pphead = newnode;
}

这里有很多小伙伴都不知道为什么使用了二级指针。因为在传参时我们使用的是结构体地址传参,这样能节省空间,提高效率,传入的是一级指针phead的地址,所以我们需要使用二级指针pphead来接收。

3.单链表的尾插

尾插思路分析:

在这里插入图片描述
尾插代码:

//尾插
void SLTPusBack(SLTNode**  pphead, SLTDataType x)
{
	SLTNode* newnode = CreatNode(x);
	if (*pphead == NULL)
	{
		//改变的结构体的指针,所以要用二级指针 
		*pphead = newnode;
	}
	else
	{
		SLTNode* tail = *pphead;
		while (tail->next != NULL)
		{
		tail = tail->next;
		}
		//改变结构体,用结构体指针即可 
	tail->next = newnode;
	}
}

4.单链表的头删

思路:
一个节点和多个节点处理方式相同
在这里插入图片描述
代码:

//头删
void PopFront(SLTNode** pphead)
{
	assert(*pphead);
	SLTNode* cur = (*pphead)->next;
	free(*pphead);
	*pphead = cur;
}

1️⃣ 定义一个cur临时指针用来指向头节点的下一个节点.SLTNode* cur = (*pphead)->next;
2️⃣ 释放 *pphead即(删除第一个节点)free(*pphead);
3️⃣ 在将 *pphead指向第二节点*pphead = cur;

5.单链表尾删

思路:
1.如果没有节点,则直接释放头指针所指向的内容
2.
在这里插入图片描述
代码:

//尾插
void SLTPusBack(SLTNode**  pphead, SLTDataType x)
{
	SLTNode* newnode = CreatNode(x);
	if (*pphead == NULL)
	{
		//改变的结构体的指针,所以要用二级指针 
		*pphead = newnode;
	}
	else
	{
		SLTNode* tail = *pphead;
		while (tail->next != NULL)
		{
		tail = tail->next;
		}
		//改变结构体,用结构体指针即可 
	tail->next = newnode;
	}
}

6.在pos位置之前插入x

思路:
在这里插入图片描述
代码:

//在pos位置之前插入x
void SLTInsert(SLTNode** pphead, SLTNode* pos, SLTDataType x)
{
	assert(*pphead);
	assert(pos);

	if (*pphead == pos)
	{
		//头插;
		SLTPusFront(pphead, x);
	}
	else
	{
		//定义一个临时指针cur指向头指针,为了从头开始遍历各个节点找pos,而不会改变头指针pphead的指向位置。
		SLTNode* cur = *pphead;
		while (cur->next != pos)
		{
			cur = cur->next;
		}
		SLTNode* newNode = CreatNode(x);
		newNode->next = cur->next;
		cur->next = newNode;
		free(cur);
		cur = NULL;
	}
}

定义一个临时指针cur指向头指针,用来从头开始遍历各个节点找pos,
头指针pphead的指向位置不能变,不然就找不到头了。

7.在pos位置之后插入x

思路:

在这里插入图片描述
代码:

在pos位置之后插入x
void SLTInsertAfter(SLTNode** pphead, SLTNode* pos, SLTDataType x)
{
	assert(*pphead);
	SLTNode* newNode = CreatNode(x);
	newNode->next = pos->data;
	pos->next = newNode;
}

8.删除pos位置 节点

思路:
在这里插入图片描述
代码:

//删除POS位置 
void SLTErase(SLTNode** pphead, SLTNode* pos)
{
	assert(*pphead);
	assert(pos);

	if (*pphead == pos)
	{
		//头删
		SLTPopFront(pphead);
	}
	else
	{
		SLTNode* cur = *pphead;
		while (cur->next == pos)
		{
			cur = cur->next;

		}
		pos->next = cur->next;
		free(pos);
	}
}

9.删除pos位置之后的节点

思路:
在这里插入图片描述
代码:

//删除POS之后的位置 
void SLTEraseAfter(SLTNode** pphead, SLTNode* pos)
{

		assert(pphead);
		assert(pos);
		assert(pos->next);

		SLTNode* cur = pos->next->next;
		free(pos->next);
		pos->next = cur;

}

10.单链表的查找

代码:

//单链表的查找 

SLTNode*  SLTSrech(SLTNode** pphead, SLTDataType x)
{
	SLTNode* cur = *pphead;
	while (cur->next!= NULL)
	{
		if (cur->data == x)
			return cur;
		cur = cur->next;
	}
	return cur;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/813252.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

某行动态cookie反爬虫分析

某行动态cookie反爬虫分析 1. 预览 反爬网址(base64): aHR0cDovL3d3dy5wYmMuZ292LmNu 反爬截图: 需要先加载运行js代码,可能是对环境进行检测,反调试之类的 无限debugger 处理办法 网上大部分人说的都是添加cookie来解决。 那个noscrip…

哈工大计算机网络课程网络安全基本原理之:身份认证

哈工大计算机网络课程网络安全基本原理之:身份认证 在日常生活中,在很多场景下我们都需要对当前身份做认证,比如使用密码、人脸识别、指纹识别等,这些都是身份认证的常用方式。本节介绍的身份认证,是在计算机网络安全…

flask处理表单数据

flask处理表单数据 处理表单数据在任何 web 应用开发中都是一个常见的需求。在 Flask 中,你可以使用 request 对象来获取通过 HTTP 请求发送的数据。对于 POST 请求,可以通过 request.form 访问表单数据。例如: from flask import Flask, r…

设置Fiddler来抓取Android接口数据

1.下载安装fiddler,安装包可自行百度。安装完成打开fiddler 2.将Fiddler设置远程访问PC 选择Fiddler->Tools->Fiddler Option 3.选择Connection,在Fiddler listen on port后输入8888,表示允许远程PC连接。 4.在电脑运行窗口中&#xf…

Leetcode145. 二叉树的后序遍历

题目描述 题目链接&#xff1a;https://leetcode.cn/problems/binary-tree-postorder-traversal/description/ 代码实现 class Solution {List<Integer> tree new ArrayList<>();public List<Integer> postorderTraversal(TreeNode root) {postorder(ro…

深度学习实践——卷积神经网络实践:裂缝识别

深度学习实践——卷积神经网络实践&#xff1a;裂缝识别 系列实验 深度学习实践——卷积神经网络实践&#xff1a;裂缝识别 深度学习实践——循环神经网络实践 深度学习实践——模型部署优化实践 深度学习实践——模型推理优化练习 深度学习实践——卷积神经网络实践&#xff…

Android SDK 上手指南||第一章 环境需求||第二章 IDE:Eclipse速览

第一章 环境需求 这是我们系列教程的第一篇&#xff0c;让我们来安装Android的开发环境并且把Android SDK运行起来&#xff01; 介绍 欢迎来到Android SDK入门指南系列文章&#xff0c;如果你想开始开发Android App&#xff0c;这个系列将从头开始教你所须的技能。我们假定你…

NOSQL之Redis配置及优化

目录 一、关系型数据库 二、非关系型数据库 三、关系型数据库和非关系型数据库区别 1、数据存储方式不同 2、扩展方式不同 3、对事务性的支持不同 四、Redis简介 五、Redis优点 &#xff08;1&#xff09;具有极高的数据读写速度 &#xff08;2&#xff09;支持丰富的…

软件架构师——1、计算机组成与体系结构

计算机结构 &#xff08;★&#xff09; 运算器&#xff1a; 算术逻辑单元ALU&#xff1a;数据的算术运算和逻辑运算累加寄存器AC&#xff1a;通用寄存器&#xff0c;为ALU提供一个工作区&#xff0c;用于暂存数据数据缓冲寄存器DR&#xff1a;写内存时&#xff0c;暂存指令或…

Nginx 如何根据swagger关键字屏蔽页面

目录 一、知识回顾1.什么是 location2.location 语法3.location 的匹配规则4.优先级排序 二、如何根据关键字筛选请求1.实现方案2.测试结果 一、知识回顾 1.什么是 location Nginx 中通过根据 location 块的规则来将匹配到的 URL 请求进行一系列操作&#xff0c;最常见的就是…

【C++】STL——stack的介绍和使用、stack的push和pop函数介绍和使用、stack的其他成员函数

文章目录 1.stack的介绍2.stack的使用2.1stack构造函数2.1stack成员函数&#xff08;1&#xff09;empty() 检测stack是否为空&#xff08;2&#xff09;size() 返回stack中元素的个数&#xff08;3&#xff09;top() 返回栈顶元素的引用&#xff08;4&#xff09;push() 将元素…

QT数据库编程

ui界面 mainwindow.cpp #include "mainwindow.h" #include "ui_mainwindow.h" #include <QButtonGroup> #include <QFileDialog> #include <QMessageBox> MainWindow::MainWindow(QWidget* parent): QMainWindow(parent), ui(new Ui::M…

递归算法判断是否是“平衡二叉树”

题目&#xff1a; 给定一个二叉树&#xff0c;判断它是否是高度平衡的二叉树。 本题中&#xff0c;一棵高度平衡二叉树定义为&#xff1a; 一个二叉树每个节点的左右两个子树的高度差的绝对值不超过1 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;true 解…

【Unity2D】粒子特效

为什么要使用粒子特效 Unity 的粒子系统是一种非常强大的工具&#xff0c;可以用来创建各种各样的游戏特效&#xff0c;如火焰、烟雾、水流、爆炸等等。使用粒子特效可以使一些游戏动画更加真实或者使游戏效果更加丰富。 粒子特效的使用 在Hierarchy界面右键添加Effects->…

ICASSP 2023 | Cough Detection Using Millimeter-Wave FMCW Radar

原文链接&#xff1a;https://mp.weixin.qq.com/s?__bizMzg4MjgxMjgyMg&mid2247486540&idx1&sn6ebd9f58e9f08a369904f9c48e12d136&chksmcf51beb5f82637a3c65cf6fa53e8aa136021e35f63a58fdd7154fc486a285ecde8b8521fa499#rd ICASSP 2023 | Cough Detection Usi…

【Golang 接口自动化01】使用标准库net/http发送Get请求

目录 发送Get请求 响应信息 拓展 资料获取方法 发送Get请求 使用Golang发送get请求很容易&#xff0c;我们还是使用http://httpbin.org作为服务端来进行演示。 package mainimport ("bytes""fmt""log""net/http""net/url&qu…

vue基础-key的作用

vue基础-key的作用 1、无key2、有key&#xff0c;值为索引3、有key&#xff0c;值为id 1、无key 最大限度尝试就地修改/复用相同类型元素 2、有key&#xff0c;值为索引 有key属性&#xff0c;基于key来比较新旧虚拟DOM&#xff0c;移除key不存在的元素 3、有key&#xf…

学习笔记——压力测试案例,监控平台

测试案例 # 最简单的部署方式直接单机启动 nohup java -jar lesson-one-0.0.1-SNAPSHOT.jar > ./server.log 2>&1 &然后配置执行计划&#xff1a; 新建一个执行计划 配置请求路径 配置断言配置响应持续时间断言 然后配置一些查看结果的统计报表或者图形 然后我…

一篇文章彻底搞懂TCP协议!

文章目录 1. TCP协议的引入2. TCP协议的特点3. TCP协议格式3.1 序号与确认序号3.2 发送缓冲区与接收缓冲区3.3 窗口大小3.4 六个标志位 4. 确认应答机制5. 超时重传机制6. 连接管理机制6.1 三次握手6.2 四次挥手 7. 流量控制8. 滑动窗口9. 拥塞控制10. 延迟应答11. 捎带应答12.…