Netty学习(四)

news2025/1/11 2:39:37

文章目录

  • 四. 优化与源码
    • 1. 优化
      • 1.1 扩展序列化算法
        • jdk序列化与反序列化
        • Serializer & Algorithm
          • Config
            • application.properties
          • MessageCodecSharable
          • Message(抽象类)
        • 测试
          • 序列化测试
          • 反序列化测试
      • 1.2 参数调优
        • 1)CONNECT_TIMEOUT_MILLIS
        • 2)SO_BACKLOG
        • 3)ulimit -n
        • 4)TCP_NODELAY
        • 5)SO_SNDBUF & SO_RCVBUF
        • 6)ALLOCATOR
        • 7)RCVBUF_ALLOCATOR
      • 1.3 RPC 框架
        • 1)准备工作
        • 2)服务器 handler
        • 3)客户端代码第一版
        • 4)客户端 handler 第一版
        • 5)客户端代码 第二版
        • 6)客户端 handler 第二版
    • 2. 源码分析
      • 2.1 启动剖析
      • 2.2 NioEventLoop 剖析
        • 注意
      • 2.3 accept 剖析
      • 2.4 read 剖析

四. 优化与源码

1. 优化

1.1 扩展序列化算法

序列化,反序列化主要用在消息正文的转换上

  • 序列化时,需要将 Java 对象变为要传输的数据(可以是 byte[],或 json 等,最终都需要变成 byte[])
  • 反序列化时,需要将传入的正文数据还原成 Java 对象,便于处理

jdk序列化与反序列化

目前的代码仅支持 Java 自带的序列化,反序列化机制,核心代码如下

// 反序列化(将 字节数组 转换为 java对象, jdk反序列化不需要提供类型信息)
byte[] body = new byte[bodyLength];
byteBuf.readBytes(body);
ObjectInputStream in = new ObjectInputStream(new ByteArrayInputStream(body));
Message message = (Message) in.readObject();
message.setSequenceId(sequenceId);

// 序列化(将 java对象 转换为 字节数组)
ByteArrayOutputStream out = new ByteArrayOutputStream();
new ObjectOutputStream(out).writeObject(message);
byte[] bytes = out.toByteArray();

Serializer & Algorithm

  • 为了支持更多序列化算法,抽象一个 Serializer 接口
  • 提供 Serializer 接口 两个实现,我这里直接将实现加入了枚举类 Serializer.Algorithm 中(此Algorithm枚举类写在Serializer接口中,作为Serializer接口类中的成员内部类)
public interface Serializer {

    // 反序列化方法
    <T> T deserialize(Class<T> clazz, byte[] bytes);

    // 序列化方法
    <T> byte[] serialize(T object);
    
    enum Algorithm implements Serializer {
    
        // 枚举类特点
        //  1. 如下枚举类对象因为实现了Serializer接口, 因此, 须实现serialize方法 & deserialize方法
        //  2. 枚举类中定义的枚举对象有特定的顺序, 枚举类对象调用ordinal()方法可获取到枚举类对象的顺序值
        //                                          (顺序值从0开始)
        //  3. 调用 枚举类.valueOf(枚举类对象字符串形式), 可获取到对应的枚举类对象
        //                                          (如Serializer.Algorithm.valueOf(Java))
        //  4. 调用 枚举类.values(), 可获取到所有的枚举类对象的数组

        // Java 实现
        Java {

            @Override
            public <T> T deserialize(Class<T> clazz, byte[] bytes) {

                try {

                    ObjectInputStream in = new ObjectInputStream(new ByteArrayInputStream(bytes));

                    Object object = in.readObject();

                    return (T) object;

                } catch (IOException | ClassNotFoundException e) {
                    throw new RuntimeException("SerializerAlgorithm.Java 反序列化错误", e);
                }
            }

            @Override
            public <T> byte[] serialize(T object) {

                try {

                    ByteArrayOutputStream out = new ByteArrayOutputStream();

                    new ObjectOutputStream(out).writeObject(object);

                    return out.toByteArray();

                } catch (IOException e) {
                    throw new RuntimeException("SerializerAlgorithm.Java 序列化错误", e);
                }
            }
        }, 

        // Json 实现(引入了 Gson 依赖)
        Json {

            @Override
            public <T> T deserialize(Class<T> clazz, byte[] bytes) {

                // Gson反序列化, 需要提供具体的反序列化类
                return new Gson().fromJson(new String(bytes, StandardCharsets.UTF_8), clazz);
            }

            @Override
            public <T> byte[] serialize(T object) {

                // 指定json字符串转为字节数组时(使用Gson), 所使用的编码集
                return new Gson().toJson(object).getBytes(StandardCharsets.UTF_8);
            }
        };

    }

}
Config

增加配置类和配置文件,将序列化算法配置到类路径下的application.properties文件中

public abstract class Config {
    
    static Properties properties;
    
    static {
        
        /* 加载类路径下的application.properties文件 */
        try (InputStream in = Config.class.getResourceAsStream("/application.properties")) {
            
            properties = new Properties();
            
            properties.load(in);
            
        } catch (IOException e) {
            throw new ExceptionInInitializerError(e);
        }
        
    }
    
    // 读取配置文件中 server.port
    public static int getServerPort() {
        
        String value = properties.getProperty("server.port");
        
        if(value == null) {
            
            return 8080;
            
        } else {
            
            return Integer.parseInt(value);
        }
    }
    
    // 读取配置文件中 serializer.algorithm
    public static Serializer.Algorithm getSerializerAlgorithm() {
        
        String value = properties.getProperty("serializer.algorithm");
        
        if(value == null) {
            
            // 默认使用jdk序列化
            return Serializer.Algorithm.Java;
            
        } else {
            
            // 传入枚举类字面形式字符串作为参数, 以返回对应的枚举类对象, 可配置为 Java 或 Gson
            return Serializer.Algorithm.valueOf(value);
        }
    }
}
application.properties

配置文件

# 配置序列化算法, 配置的值就是枚举类对象的字面形式字符串
serializer.algorithm=Json
MessageCodecSharable

修改编解码器

/**
 * 必须和 LengthFieldBasedFrameDecoder 一起使用,确保接到的 ByteBuf 消息是完整的
 */
public class MessageCodecSharable extends MessageToMessageCodec<ByteBuf, Message> {
    
    @Override
    public void encode(ChannelHandlerContext ctx, 
                       Message msg, 
                       List<Object> outList) throws Exception {
        
        ByteBuf out = ctx.alloc().buffer();
        
        // 1. 4 字节的魔数
        out.writeBytes(new byte[]{1, 2, 3, 4});
        
        // 2. 1 字节的版本,
        out.writeByte(1);
        
        // 3. 1 字节的序列化方式 jdk 0 , json 1
        //(获取配置文件中的序列化对象 的 索引)
        out.writeByte(Config.getSerializerAlgorithm().ordinal());
        
        // 4. 1 字节的指令类型
        out.writeByte(msg.getMessageType());
        
        // 5. 4 个字节
        out.writeInt(msg.getSequenceId());
        
        // 无意义,对齐填充
        out.writeByte(0xff);
        
        // 6. 获取内容的字节数组
        //(使用配置文件指定的算法 将 java对象 转换为 字节数组)
        byte[] bytes = Config.getSerializerAlgorithm().serialize(msg);
        
        // 7. 长度
        out.writeInt(bytes.length);
        
        // 8. 写入内容
        out.writeBytes(bytes);
        
        outList.add(out);
    }

    @Override
    protected void decode(ChannelHandlerContext ctx,
                          ByteBuf in, 
                          List<Object> out) throws Exception {
        
        int magicNum = in.readInt();
        
        byte version = in.readByte();
        
        // 获取待解码的数据中 指定的序列化算法 标识
        byte serializerAlgorithm = in.readByte(); // 0 或 1
        
        byte messageType = in.readByte(); // 0,1,2...
        
        int sequenceId = in.readInt();
        
        in.readByte();
        
        int length = in.readInt();
        
        // 这个长度是通过解析ByteBuf字节数据消息来的
        byte[] bytes = new byte[length];
        
        in.readBytes(bytes, 0, length);
        
        // 确定具体消息类型
        Class<? extends Message> messageClass = Message.getMessageClass(messageType);
        
        // 获取待解码的数据反序列化算法(枚举类的顺序, 从0开始)
        Serializer.Algorithm algorithm = Serializer.Algorithm.values()[serializerAlgorithm];
        
        // 使用指定的反序列化算法
        Message message = algorithm.deserialize(messageClass, bytes);

        out.add(message);
    }
}
Message(抽象类)

其中确定具体消息类型,可以根据 消息类型字节 获取到对应的 消息 class

(下面就是为了让Gson能够根据消息类型 获取到 具体的Message实现类,

​ 从而 让Gson能够把Json字符串编码得到的字节数组转为 具体的Message对象,

​ 而不能简单的指定Message这个抽象类作为Gson的反序列化目标类)

@Data
public abstract class Message implements Serializable {

    /**
     * 根据消息类型字节,获得对应的消息 class
     * @param messageType 消息类型字节
     * @return 消息 class
     */
    public static Class<? extends Message> getMessageClass(int messageType) {
        return messageClasses.get(messageType);
    }

    private int sequenceId;

    private int messageType;

    public abstract int getMessageType();

    public static final int LoginRequestMessage = 0;
    public static final int LoginResponseMessage = 1;
    public static final int ChatRequestMessage = 2;
    public static final int ChatResponseMessage = 3;
    public static final int GroupCreateRequestMessage = 4;
    public static final int GroupCreateResponseMessage = 5;
    public static final int GroupJoinRequestMessage = 6;
    public static final int GroupJoinResponseMessage = 7;
    public static final int GroupQuitRequestMessage = 8;
    public static final int GroupQuitResponseMessage = 9;
    public static final int GroupChatRequestMessage = 10;
    public static final int GroupChatResponseMessage = 11;
    public static final int GroupMembersRequestMessage = 12;
    public static final int GroupMembersResponseMessage = 13;
    public static final int PingMessage = 14;
    public static final int PongMessage = 15;
    
    private static final Map<Integer, Class<? extends Message>> messageClasses = new HashMap<>();

    static {
        messageClasses.put(LoginRequestMessage, LoginRequestMessage.class);
        messageClasses.put(LoginResponseMessage, LoginResponseMessage.class);
        messageClasses.put(ChatRequestMessage, ChatRequestMessage.class);
        messageClasses.put(ChatResponseMessage, ChatResponseMessage.class);
        messageClasses.put(GroupCreateRequestMessage, GroupCreateRequestMessage.class);
        messageClasses.put(GroupCreateResponseMessage, GroupCreateResponseMessage.class);
        messageClasses.put(GroupJoinRequestMessage, GroupJoinRequestMessage.class);
        messageClasses.put(GroupJoinResponseMessage, GroupJoinResponseMessage.class);
        messageClasses.put(GroupQuitRequestMessage, GroupQuitRequestMessage.class);
        messageClasses.put(GroupQuitResponseMessage, GroupQuitResponseMessage.class);
        messageClasses.put(GroupChatRequestMessage, GroupChatRequestMessage.class);
        messageClasses.put(GroupChatResponseMessage, GroupChatResponseMessage.class);
        messageClasses.put(GroupMembersRequestMessage, GroupMembersRequestMessage.class);
        messageClasses.put(GroupMembersResponseMessage, GroupMembersResponseMessage.class);
    }
}

测试

序列化测试

将application.properties的序列化算法分别配置为Java、Json

public class TestSerializer {

    public static void main(String[] args)  {

        MessageCodecSharable CODEC = new MessageCodecSharable();

        LoggingHandler LOGGING = new LoggingHandler();

		/* 在自定义编解码器的前后, 各配置1个日志处理器 */
        EmbeddedChannel channel = new EmbeddedChannel(LOGGING, CODEC, LOGGING);

        LoginRequestMessage message = new LoginRequestMessage("zhangsan", "123");
        
        /* 写 1个 出站消息, 将会经过 编码处理 */
        channel.writeOutbound(message);
    }

}

使用java序列化日志输出

18:10:29 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] REGISTERED
18:10:29 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] REGISTERED
18:10:29 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] ACTIVE
18:10:29 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] ACTIVE
18:10:29 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] WRITE: LoginRequestMessage(super=Message(sequenceId=0, messageType=0), username=zhangsan, password=123)
18:10:29 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] WRITE: 224B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 01 00 00 00 00 00 00 ff 00 00 00 d0 |................|
|00000010| ac ed 00 05 73 72 00 2a 63 6f 6d 2e 7a 7a 68 75 |....sr.*com.zzhu|
|00000020| 61 2e 63 68 61 74 2e 6d 65 73 73 61 67 65 2e 4c |a.chat.message.L|
|00000030| 6f 67 69 6e 52 65 71 75 65 73 74 4d 65 73 73 61 |oginRequestMessa|
|00000040| 67 65 62 ad c8 8d f0 30 e5 ae 02 00 02 4c 00 08 |geb....0.....L..|
|00000050| 70 61 73 73 77 6f 72 64 74 00 12 4c 6a 61 76 61 |passwordt..Ljava|
|00000060| 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 4c 00 08 |/lang/String;L..|
|00000070| 75 73 65 72 6e 61 6d 65 71 00 7e 00 01 78 72 00 |usernameq.~..xr.|
|00000080| 1e 63 6f 6d 2e 7a 7a 68 75 61 2e 63 68 61 74 2e |.com.zzhua.chat.|
|00000090| 6d 65 73 73 61 67 65 2e 4d 65 73 73 61 67 65 c3 |message.Message.|
|000000a0| fd 8f 9c bb 24 c3 cd 02 00 02 49 00 0b 6d 65 73 |....$.....I..mes|
|000000b0| 73 61 67 65 54 79 70 65 49 00 0a 73 65 71 75 65 |sageTypeI..seque|
|000000c0| 6e 63 65 49 64 78 70 00 00 00 00 00 00 00 00 74 |nceIdxp........t|
|000000d0| 00 03 31 32 33 74 00 08 7a 68 61 6e 67 73 61 6e |..123t..zhangsan|
+--------+-------------------------------------------------+----------------+
18:10:29 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] FLUSH
18:10:29 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] FLUSH

使用Json序列化日志输出

18:10:47 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] REGISTERED
18:10:47 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] REGISTERED
18:10:47 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] ACTIVE
18:10:47 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] ACTIVE
18:10:47 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] WRITE: LoginRequestMessage(super=Message(sequenceId=0, messageType=0), username=zhangsan, password=123)
18:10:47 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] WRITE: 87B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 01 01 00 00 00 00 00 ff 00 00 00 47 |...............G|
|00000010| 7b 22 75 73 65 72 6e 61 6d 65 22 3a 22 7a 68 61 |{"username":"zha|
|00000020| 6e 67 73 61 6e 22 2c 22 70 61 73 73 77 6f 72 64 |ngsan","password|
|00000030| 22 3a 22 31 32 33 22 2c 22 73 65 71 75 65 6e 63 |":"123","sequenc|
|00000040| 65 49 64 22 3a 30 2c 22 6d 65 73 73 61 67 65 54 |eId":0,"messageT|
|00000050| 79 70 65 22 3a 30 7d                            |ype":0}         |
+--------+-------------------------------------------------+----------------+
18:10:47 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] FLUSH
18:10:47 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] FLUSH
反序列化测试
public class TestSerializer {

    public static void main(String[] args)  {

        MessageCodecSharable CODEC = new MessageCodecSharable();

        LoggingHandler LOGGING = new LoggingHandler();

        /* 在自定义编解码器的前后, 各配置1个日志处理器 */
        EmbeddedChannel channel = new EmbeddedChannel(LOGGING, CODEC, LOGGING);

        LoginRequestMessage message = new LoginRequestMessage("zhangsan", "123");

        /* 先使用自定义的方法, 把消息写到ByteBuf中 */
        ByteBuf buf = messageToByteBuf(message);
        
        /* 写入1个入站消息, 将会经过解码处理 */
        channel.writeInbound(buf);
    }

    public static ByteBuf messageToByteBuf(Message msg) {
        int algorithm = Config.getSerializerAlgorithm().ordinal();
        ByteBuf out = ByteBufAllocator.DEFAULT.buffer();
        out.writeBytes(new byte[]{1, 2, 3, 4});
        out.writeByte(1);
        out.writeByte(algorithm);
        out.writeByte(msg.getMessageType());
        out.writeInt(msg.getSequenceId());
        out.writeByte(0xff);
        byte[] bytes = Serializer.Algorithm.values()[algorithm].serialize(msg);
        out.writeInt(bytes.length);
        out.writeBytes(bytes);
        return out;
    }
}

java反序列化日志输出

18:13:24 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] REGISTERED
18:13:24 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] REGISTERED
18:13:24 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] ACTIVE
18:13:24 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] ACTIVE
18:13:24 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] READ: 224B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 01 00 00 00 00 00 00 ff 00 00 00 d0 |................|
|00000010| ac ed 00 05 73 72 00 2a 63 6f 6d 2e 7a 7a 68 75 |....sr.*com.zzhu|
|00000020| 61 2e 63 68 61 74 2e 6d 65 73 73 61 67 65 2e 4c |a.chat.message.L|
|00000030| 6f 67 69 6e 52 65 71 75 65 73 74 4d 65 73 73 61 |oginRequestMessa|
|00000040| 67 65 62 ad c8 8d f0 30 e5 ae 02 00 02 4c 00 08 |geb....0.....L..|
|00000050| 70 61 73 73 77 6f 72 64 74 00 12 4c 6a 61 76 61 |passwordt..Ljava|
|00000060| 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 4c 00 08 |/lang/String;L..|
|00000070| 75 73 65 72 6e 61 6d 65 71 00 7e 00 01 78 72 00 |usernameq.~..xr.|
|00000080| 1e 63 6f 6d 2e 7a 7a 68 75 61 2e 63 68 61 74 2e |.com.zzhua.chat.|
|00000090| 6d 65 73 73 61 67 65 2e 4d 65 73 73 61 67 65 c3 |message.Message.|
|000000a0| fd 8f 9c bb 24 c3 cd 02 00 02 49 00 0b 6d 65 73 |....$.....I..mes|
|000000b0| 73 61 67 65 54 79 70 65 49 00 0a 73 65 71 75 65 |sageTypeI..seque|
|000000c0| 6e 63 65 49 64 78 70 00 00 00 00 00 00 00 00 74 |nceIdxp........t|
|000000d0| 00 03 31 32 33 74 00 08 7a 68 61 6e 67 73 61 6e |..123t..zhangsan|
+--------+-------------------------------------------------+----------------+
18:13:24 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] READ: LoginRequestMessage(super=Message(sequenceId=0, messageType=0), username=zhangsan, password=123)
18:13:24 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] READ COMPLETE
18:13:24 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] READ COMPLETE

json反序列化日志输出

18:12:58 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] REGISTERED
18:12:58 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] REGISTERED
18:12:58 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] ACTIVE
18:12:58 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] ACTIVE
18:12:58 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] READ: 87B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 01 01 00 00 00 00 00 ff 00 00 00 47 |...............G|
|00000010| 7b 22 75 73 65 72 6e 61 6d 65 22 3a 22 7a 68 61 |{"username":"zha|
|00000020| 6e 67 73 61 6e 22 2c 22 70 61 73 73 77 6f 72 64 |ngsan","password|
|00000030| 22 3a 22 31 32 33 22 2c 22 73 65 71 75 65 6e 63 |":"123","sequenc|
|00000040| 65 49 64 22 3a 30 2c 22 6d 65 73 73 61 67 65 54 |eId":0,"messageT|
|00000050| 79 70 65 22 3a 30 7d                            |ype":0}         |
+--------+-------------------------------------------------+----------------+
18:12:58 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] READ: LoginRequestMessage(super=Message(sequenceId=0, messageType=0), username=zhangsan, password=123)
18:12:58 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] READ COMPLETE
18:12:58 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] READ COMPLETE

1.2 参数调优

1)CONNECT_TIMEOUT_MILLIS

  • 属于 SocketChannal 参数

  • 用在客户端建立连接时,如果在指定毫秒内无法连接,会抛出 timeout 异常

  • SO_TIMEOUT 主要用在阻塞 IO,阻塞 IO 中 accept,read 等都是无限等待的,如果不希望永远阻塞,使用它调整超时时间

@Slf4j
public class TestConnectionTimeout {
    public static void main(String[] args) {
        NioEventLoopGroup group = new NioEventLoopGroup();
        try {
            Bootstrap bootstrap = new Bootstrap()
                    .group(group)
                    .option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 300)
                    .channel(NioSocketChannel.class)
                    .handler(new LoggingHandler());
            ChannelFuture future = bootstrap.connect("127.0.0.1", 8080);
            future.sync().channel().closeFuture().sync(); // 断点1
        } catch (Exception e) {
            e.printStackTrace();
            log.debug("timeout");
        } finally {
            group.shutdownGracefully();
        }
    }
}

另外源码部分 io.netty.channel.nio.AbstractNioChannel.AbstractNioUnsafe#connect

@Override
public final void connect(
        final SocketAddress remoteAddress, final SocketAddress localAddress, final ChannelPromise promise) {
    // ...
    // Schedule connect timeout.
    int connectTimeoutMillis = config().getConnectTimeoutMillis();
    if (connectTimeoutMillis > 0) {
        connectTimeoutFuture = eventLoop().schedule(new Runnable() {
            @Override
            public void run() {                
                ChannelPromise connectPromise = AbstractNioChannel.this.connectPromise;
                ConnectTimeoutException cause =
                    new ConnectTimeoutException("connection timed out: " + remoteAddress); // 断点2
                if (connectPromise != null && connectPromise.tryFailure(cause)) {
                    close(voidPromise());
                }
            }
        }, connectTimeoutMillis, TimeUnit.MILLISECONDS);
    }
	// ...
}

2)SO_BACKLOG

  • 属于 ServerSocketChannal 参数
client server syns queue accept queue bind() listen() connect() 1. SYN SYN_SEND put SYN_RCVD 2. SYN + ACK ESTABLISHED 3. ACK put ESTABLISHED accept() client server syns queue accept queue
  1. 第一次握手,client 发送 SYN 到 server,状态修改为 SYN_SEND,server 收到,状态改变为 SYN_REVD,并将该请求放入 sync queue 队列
  2. 第二次握手,server 回复 SYN + ACK 给 client,client 收到,状态改变为 ESTABLISHED,并发送 ACK 给 server
  3. 第三次握手,server 收到 ACK,状态改变为 ESTABLISHED,将该请求从 sync queue 放入 accept queue

其中

  • 在 linux 2.2 之前,backlog 大小包括了两个队列的大小,在 2.2 之后,分别用下面两个参数来控制

  • sync queue - 半连接队列

    • 大小通过 /proc/sys/net/ipv4/tcp_max_syn_backlog 指定,在 syncookies 启用的情况下,逻辑上没有最大值限制,这个设置便被忽略
  • accept queue - 全连接队列

    • 其大小通过 /proc/sys/net/core/somaxconn 指定,在使用 listen 函数时,内核会根据传入的 backlog 参数与系统参数,取二者的较小值
    • 如果 accpet queue 队列满了,server 将发送一个拒绝连接的错误信息到 client

netty 中

可以通过 option(ChannelOption.SO_BACKLOG, 值) 来设置大小

可以通过下面源码查看默认大小

public class DefaultServerSocketChannelConfig extends DefaultChannelConfig
                                              implements ServerSocketChannelConfig {

    private volatile int backlog = NetUtil.SOMAXCONN;
    // ...
}

课堂调试关键断点为:io.netty.channel.nio.NioEventLoop#processSelectedKey

oio 中更容易说明,不用 debug 模式

public class Server {
    public static void main(String[] args) throws IOException {
        ServerSocket ss = new ServerSocket(8888, 2);
        Socket accept = ss.accept();
        System.out.println(accept);
        System.in.read();
    }
}

客户端启动 4 个

public class Client {
    public static void main(String[] args) throws IOException {
        try {
            Socket s = new Socket();
            System.out.println(new Date()+" connecting...");
            s.connect(new InetSocketAddress("localhost", 8888),1000);
            System.out.println(new Date()+" connected...");
            s.getOutputStream().write(1);
            System.in.read();
        } catch (IOException e) {
            System.out.println(new Date()+" connecting timeout...");
            e.printStackTrace();
        }
    }
}

第 1,2,3 个客户端都打印,但除了第一个处于 accpet 外,其它两个都处于 accept queue 中

Tue Apr 21 20:30:28 CST 2020 connecting...
Tue Apr 21 20:30:28 CST 2020 connected...

第 4 个客户端连接时

Tue Apr 21 20:53:58 CST 2020 connecting...
Tue Apr 21 20:53:59 CST 2020 connecting timeout...
java.net.SocketTimeoutException: connect timed out

3)ulimit -n

  • 属于操作系统参数

4)TCP_NODELAY

  • 属于 SocketChannal 参数

5)SO_SNDBUF & SO_RCVBUF

  • SO_SNDBUF 属于 SocketChannal 参数
  • SO_RCVBUF 既可用于 SocketChannal 参数,也可以用于 ServerSocketChannal 参数(建议设置到 ServerSocketChannal 上)

6)ALLOCATOR

  • 属于 SocketChannal 参数
  • 用来分配 ByteBuf, ctx.alloc()

7)RCVBUF_ALLOCATOR

  • 属于 SocketChannal 参数
  • 控制 netty 接收缓冲区大小
  • 负责入站数据的分配,决定入站缓冲区的大小(并可动态调整),统一采用 direct 直接内存,具体池化还是非池化由 allocator 决定

1.3 RPC 框架

1)准备工作

这些代码可以认为是现成的,无需从头编写练习

为了简化起见,在原来聊天项目的基础上新增 Rpc 请求和响应消息

@Data
public abstract class Message implements Serializable {

    // 省略旧的代码

    public static final int RPC_MESSAGE_TYPE_REQUEST = 101;
    public static final int  RPC_MESSAGE_TYPE_RESPONSE = 102;

    static {
        // ...
        messageClasses.put(RPC_MESSAGE_TYPE_REQUEST, RpcRequestMessage.class);
        messageClasses.put(RPC_MESSAGE_TYPE_RESPONSE, RpcResponseMessage.class);
    }

}

请求消息

@Getter
@ToString(callSuper = true)
public class RpcRequestMessage extends Message {

    /**
     * 调用的接口全限定名,服务端根据它找到实现
     */
    private String interfaceName;
    /**
     * 调用接口中的方法名
     */
    private String methodName;
    /**
     * 方法返回类型
     */
    private Class<?> returnType;
    /**
     * 方法参数类型数组
     */
    private Class[] parameterTypes;
    /**
     * 方法参数值数组
     */
    private Object[] parameterValue;

    public RpcRequestMessage(int sequenceId, String interfaceName, String methodName, Class<?> returnType, Class[] parameterTypes, Object[] parameterValue) {
        super.setSequenceId(sequenceId);
        this.interfaceName = interfaceName;
        this.methodName = methodName;
        this.returnType = returnType;
        this.parameterTypes = parameterTypes;
        this.parameterValue = parameterValue;
    }

    @Override
    public int getMessageType() {
        return RPC_MESSAGE_TYPE_REQUEST;
    }
}

响应消息

@Data
@ToString(callSuper = true)
public class RpcResponseMessage extends Message {
    /**
     * 返回值
     */
    private Object returnValue;
    /**
     * 异常值
     */
    private Exception exceptionValue;

    @Override
    public int getMessageType() {
        return RPC_MESSAGE_TYPE_RESPONSE;
    }
}

服务器架子

@Slf4j
public class RpcServer {
    public static void main(String[] args) {
        NioEventLoopGroup boss = new NioEventLoopGroup();
        NioEventLoopGroup worker = new NioEventLoopGroup();
        LoggingHandler LOGGING_HANDLER = new LoggingHandler(LogLevel.DEBUG);
        MessageCodecSharable MESSAGE_CODEC = new MessageCodecSharable();
        
        // rpc 请求消息处理器,待实现
        RpcRequestMessageHandler RPC_HANDLER = new RpcRequestMessageHandler();
        try {
            ServerBootstrap serverBootstrap = new ServerBootstrap();
            serverBootstrap.channel(NioServerSocketChannel.class);
            serverBootstrap.group(boss, worker);
            serverBootstrap.childHandler(new ChannelInitializer<SocketChannel>() {
                @Override
                protected void initChannel(SocketChannel ch) throws Exception {
                    ch.pipeline().addLast(new ProcotolFrameDecoder());
                    ch.pipeline().addLast(LOGGING_HANDLER);
                    ch.pipeline().addLast(MESSAGE_CODEC);
                    ch.pipeline().addLast(RPC_HANDLER);
                }
            });
            Channel channel = serverBootstrap.bind(8080).sync().channel();
            channel.closeFuture().sync();
        } catch (InterruptedException e) {
            log.error("server error", e);
        } finally {
            boss.shutdownGracefully();
            worker.shutdownGracefully();
        }
    }
}

客户端架子

public class RpcClient {
    public static void main(String[] args) {
        NioEventLoopGroup group = new NioEventLoopGroup();
        LoggingHandler LOGGING_HANDLER = new LoggingHandler(LogLevel.DEBUG);
        MessageCodecSharable MESSAGE_CODEC = new MessageCodecSharable();
        
        // rpc 响应消息处理器,待实现
        RpcResponseMessageHandler RPC_HANDLER = new RpcResponseMessageHandler();
        try {
            Bootstrap bootstrap = new Bootstrap();
            bootstrap.channel(NioSocketChannel.class);
            bootstrap.group(group);
            bootstrap.handler(new ChannelInitializer<SocketChannel>() {
                @Override
                protected void initChannel(SocketChannel ch) throws Exception {
                    ch.pipeline().addLast(new ProcotolFrameDecoder());
                    ch.pipeline().addLast(LOGGING_HANDLER);
                    ch.pipeline().addLast(MESSAGE_CODEC);
                    ch.pipeline().addLast(RPC_HANDLER);
                }
            });
            Channel channel = bootstrap.connect("localhost", 8080).sync().channel();
            channel.closeFuture().sync();
        } catch (Exception e) {
            log.error("client error", e);
        } finally {
            group.shutdownGracefully();
        }
    }
}

服务器端的 service 获取

public class ServicesFactory {

    static Properties properties;
    static Map<Class<?>, Object> map = new ConcurrentHashMap<>();

    static {
        try (InputStream in = Config.class.getResourceAsStream("/application.properties")) {
            properties = new Properties();
            properties.load(in);
            Set<String> names = properties.stringPropertyNames();
            for (String name : names) {
                if (name.endsWith("Service")) {
                    Class<?> interfaceClass = Class.forName(name);
                    Class<?> instanceClass = Class.forName(properties.getProperty(name));
                    map.put(interfaceClass, instanceClass.newInstance());
                }
            }
        } catch (IOException | ClassNotFoundException | InstantiationException | IllegalAccessException e) {
            throw new ExceptionInInitializerError(e);
        }
    }

    public static <T> T getService(Class<T> interfaceClass) {
        return (T) map.get(interfaceClass);
    }
}

相关配置 application.properties

serializer.algorithm=Json
cn.itcast.server.service.HelloService=cn.itcast.server.service.HelloServiceImpl

2)服务器 handler

@Slf4j
@ChannelHandler.Sharable
public class RpcRequestMessageHandler extends SimpleChannelInboundHandler<RpcRequestMessage> {

    @Override
    protected void channelRead0(ChannelHandlerContext ctx, RpcRequestMessage message) {
        RpcResponseMessage response = new RpcResponseMessage();
        response.setSequenceId(message.getSequenceId());
        try {
            // 获取真正的实现对象
            HelloService service = (HelloService)
                    ServicesFactory.getService(Class.forName(message.getInterfaceName()));
            
            // 获取要调用的方法
            Method method = service.getClass().getMethod(message.getMethodName(), message.getParameterTypes());
            
            // 调用方法
            Object invoke = method.invoke(service, message.getParameterValue());
            // 调用成功
            response.setReturnValue(invoke);
        } catch (Exception e) {
            e.printStackTrace();
            // 调用异常
            response.setExceptionValue(e);
        }
        // 返回结果
        ctx.writeAndFlush(response);
    }
}

3)客户端代码第一版

只发消息

@Slf4j
public class RpcClient {
    public static void main(String[] args) {
        NioEventLoopGroup group = new NioEventLoopGroup();
        LoggingHandler LOGGING_HANDLER = new LoggingHandler(LogLevel.DEBUG);
        MessageCodecSharable MESSAGE_CODEC = new MessageCodecSharable();
        RpcResponseMessageHandler RPC_HANDLER = new RpcResponseMessageHandler();
        try {
            Bootstrap bootstrap = new Bootstrap();
            bootstrap.channel(NioSocketChannel.class);
            bootstrap.group(group);
            bootstrap.handler(new ChannelInitializer<SocketChannel>() {
                @Override
                protected void initChannel(SocketChannel ch) throws Exception {
                    ch.pipeline().addLast(new ProcotolFrameDecoder());
                    ch.pipeline().addLast(LOGGING_HANDLER);
                    ch.pipeline().addLast(MESSAGE_CODEC);
                    ch.pipeline().addLast(RPC_HANDLER);
                }
            });
            Channel channel = bootstrap.connect("localhost", 8080).sync().channel();

            ChannelFuture future = channel.writeAndFlush(new RpcRequestMessage(
                    1,
                    "cn.itcast.server.service.HelloService",
                    "sayHello",
                    String.class,
                    new Class[]{String.class},
                    new Object[]{"张三"}
            )).addListener(promise -> {
                if (!promise.isSuccess()) {
                    Throwable cause = promise.cause();
                    log.error("error", cause);
                }
            });

            channel.closeFuture().sync();
        } catch (Exception e) {
            log.error("client error", e);
        } finally {
            group.shutdownGracefully();
        }
    }
}

4)客户端 handler 第一版

@Slf4j
@ChannelHandler.Sharable
public class RpcResponseMessageHandler extends SimpleChannelInboundHandler<RpcResponseMessage> {
    @Override
    protected void channelRead0(ChannelHandlerContext ctx, RpcResponseMessage msg) throws Exception {
        log.debug("{}", msg);
    }
}

5)客户端代码 第二版

包括 channel 管理,代理,接收结果

@Slf4j
public class RpcClientManager {


    public static void main(String[] args) {
        HelloService service = getProxyService(HelloService.class);
        System.out.println(service.sayHello("zhangsan"));
//        System.out.println(service.sayHello("lisi"));
//        System.out.println(service.sayHello("wangwu"));
    }

    // 创建代理类
    public static <T> T getProxyService(Class<T> serviceClass) {
        ClassLoader loader = serviceClass.getClassLoader();
        Class<?>[] interfaces = new Class[]{serviceClass};
        //                                                            sayHello  "张三"
        Object o = Proxy.newProxyInstance(loader, interfaces, (proxy, method, args) -> {
            // 1. 将方法调用转换为 消息对象
            int sequenceId = SequenceIdGenerator.nextId();
            RpcRequestMessage msg = new RpcRequestMessage(
                    sequenceId,
                    serviceClass.getName(),
                    method.getName(),
                    method.getReturnType(),
                    method.getParameterTypes(),
                    args
            );
            // 2. 将消息对象发送出去
            getChannel().writeAndFlush(msg);

            // 3. 准备一个空 Promise 对象,来接收结果             指定 promise 对象异步接收结果线程
            DefaultPromise<Object> promise = new DefaultPromise<>(getChannel().eventLoop());
            RpcResponseMessageHandler.PROMISES.put(sequenceId, promise);

//            promise.addListener(future -> {
//                // 线程
//            });

            // 4. 等待 promise 结果
            promise.await();
            if(promise.isSuccess()) {
                // 调用正常
                return promise.getNow();
            } else {
                // 调用失败
                throw new RuntimeException(promise.cause());
            }
        });
        return (T) o;
    }

    private static Channel channel = null;
    private static final Object LOCK = new Object();

    // 获取唯一的 channel 对象
    public static Channel getChannel() {
        if (channel != null) {
            return channel;
        }
        synchronized (LOCK) { //  t2
            if (channel != null) { // t1
                return channel;
            }
            initChannel();
            return channel;
        }
    }

    // 初始化 channel 方法
    private static void initChannel() {
        NioEventLoopGroup group = new NioEventLoopGroup();
        LoggingHandler LOGGING_HANDLER = new LoggingHandler(LogLevel.DEBUG);
        MessageCodecSharable MESSAGE_CODEC = new MessageCodecSharable();
        RpcResponseMessageHandler RPC_HANDLER = new RpcResponseMessageHandler();
        Bootstrap bootstrap = new Bootstrap();
        bootstrap.channel(NioSocketChannel.class);
        bootstrap.group(group);
        bootstrap.handler(new ChannelInitializer<SocketChannel>() {
            @Override
            protected void initChannel(SocketChannel ch) throws Exception {
                ch.pipeline().addLast(new ProcotolFrameDecoder());
                ch.pipeline().addLast(LOGGING_HANDLER);
                ch.pipeline().addLast(MESSAGE_CODEC);
                ch.pipeline().addLast(RPC_HANDLER);
            }
        });
        try {
            channel = bootstrap.connect("localhost", 8080).sync().channel();
            channel.closeFuture().addListener(future -> {
                group.shutdownGracefully();
            });
        } catch (Exception e) {
            log.error("client error", e);
        }
    }
}

6)客户端 handler 第二版

@Slf4j
@ChannelHandler.Sharable
public class RpcResponseMessageHandler extends SimpleChannelInboundHandler<RpcResponseMessage> {

    //                       序号      用来接收结果的 promise 对象
    public static final Map<Integer, Promise<Object>> PROMISES = new ConcurrentHashMap<>();

    @Override

    protected void channelRead0(ChannelHandlerContext ctx, RpcResponseMessage msg) throws Exception {
        log.debug("{}", msg);
        // 拿到空的 promise
        Promise<Object> promise = PROMISES.remove(msg.getSequenceId());
        if (promise != null) {
            Object returnValue = msg.getReturnValue();
            Exception exceptionValue = msg.getExceptionValue();
            if(exceptionValue != null) {
                promise.setFailure(exceptionValue);
            } else {
                promise.setSuccess(returnValue);
            }
        }
    }
}

2. 源码分析

2.1 启动剖析

我们就来看看 netty 中对下面的代码是怎样进行处理的

//1 netty 中使用 NioEventLoopGroup (简称 nio boss 线程)来封装线程和 selector
Selector selector = Selector.open(); 

//2 创建 NioServerSocketChannel,同时会初始化它关联的 handler,以及为原生 ssc 存储 config
NioServerSocketChannel attachment = new NioServerSocketChannel();

//3 创建 NioServerSocketChannel 时,创建了 java 原生的 ServerSocketChannel
ServerSocketChannel serverSocketChannel = ServerSocketChannel.open(); 
serverSocketChannel.configureBlocking(false);

//4 启动 nio boss 线程执行接下来的操作

//5 注册(仅关联 selector 和 NioServerSocketChannel),未关注事件
SelectionKey selectionKey = serverSocketChannel.register(selector, 0, attachment);

//6 head -> 初始化器 -> ServerBootstrapAcceptor -> tail,初始化器是一次性的,只为添加 acceptor

//7 绑定端口
serverSocketChannel.bind(new InetSocketAddress(8080));

//8 触发 channel active 事件,在 head 中关注 op_accept 事件
selectionKey.interestOps(SelectionKey.OP_ACCEPT);

入口 io.netty.bootstrap.ServerBootstrap#bind

关键代码 io.netty.bootstrap.AbstractBootstrap#doBind

private ChannelFuture doBind(final SocketAddress localAddress) {
	// 1. 执行初始化和注册 regFuture 会由 initAndRegister 设置其是否完成,从而回调 3.2 处代码
    final ChannelFuture regFuture = initAndRegister();
    final Channel channel = regFuture.channel();
    if (regFuture.cause() != null) {
        return regFuture;
    }

    // 2. 因为是 initAndRegister 异步执行,需要分两种情况来看,调试时也需要通过 suspend 断点类型加以区分
    // 2.1 如果已经完成
    if (regFuture.isDone()) {
        ChannelPromise promise = channel.newPromise();
        // 3.1 立刻调用 doBind0
        doBind0(regFuture, channel, localAddress, promise);
        return promise;
    } 
    // 2.2 还没有完成
    else {
        final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);
        // 3.2 回调 doBind0
        regFuture.addListener(new ChannelFutureListener() {
            @Override
            public void operationComplete(ChannelFuture future) throws Exception {
                Throwable cause = future.cause();
                if (cause != null) {
                    // 处理异常...
                    promise.setFailure(cause);
                } else {
                    promise.registered();
					// 3. 由注册线程去执行 doBind0
                    doBind0(regFuture, channel, localAddress, promise);
                }
            }
        });
        return promise;
    }
}

关键代码 io.netty.bootstrap.AbstractBootstrap#initAndRegister

final ChannelFuture initAndRegister() {
    Channel channel = null;
    try {
        channel = channelFactory.newChannel();
        // 1.1 初始化 - 做的事就是添加一个初始化器 ChannelInitializer
        init(channel);
    } catch (Throwable t) {
        // 处理异常...
        return new DefaultChannelPromise(new FailedChannel(), GlobalEventExecutor.INSTANCE).setFailure(t);
    }

    // 1.2 注册 - 做的事就是将原生 channel 注册到 selector 上
    ChannelFuture regFuture = config().group().register(channel);
    if (regFuture.cause() != null) {
        // 处理异常...
    }
    return regFuture;
}

关键代码 io.netty.bootstrap.ServerBootstrap#init

// 这里 channel 实际上是 NioServerSocketChannel
void init(Channel channel) throws Exception {
    final Map<ChannelOption<?>, Object> options = options0();
    synchronized (options) {
        setChannelOptions(channel, options, logger);
    }

    final Map<AttributeKey<?>, Object> attrs = attrs0();
    synchronized (attrs) {
        for (Entry<AttributeKey<?>, Object> e: attrs.entrySet()) {
            @SuppressWarnings("unchecked")
            AttributeKey<Object> key = (AttributeKey<Object>) e.getKey();
            channel.attr(key).set(e.getValue());
        }
    }

    ChannelPipeline p = channel.pipeline();

    final EventLoopGroup currentChildGroup = childGroup;
    final ChannelHandler currentChildHandler = childHandler;
    final Entry<ChannelOption<?>, Object>[] currentChildOptions;
    final Entry<AttributeKey<?>, Object>[] currentChildAttrs;
    synchronized (childOptions) {
        currentChildOptions = childOptions.entrySet().toArray(newOptionArray(0));
    }
    synchronized (childAttrs) {
        currentChildAttrs = childAttrs.entrySet().toArray(newAttrArray(0));
    }
	
    // 为 NioServerSocketChannel 添加初始化器
    p.addLast(new ChannelInitializer<Channel>() {
        @Override
        public void initChannel(final Channel ch) throws Exception {
            final ChannelPipeline pipeline = ch.pipeline();
            ChannelHandler handler = config.handler();
            if (handler != null) {
                pipeline.addLast(handler);
            }

            // 初始化器的职责是将 ServerBootstrapAcceptor 加入至 NioServerSocketChannel
            ch.eventLoop().execute(new Runnable() {
                @Override
                public void run() {
                    pipeline.addLast(new ServerBootstrapAcceptor(
                            ch, currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs));
                }
            });
        }
    });
}

关键代码 io.netty.channel.AbstractChannel.AbstractUnsafe#register

public final void register(EventLoop eventLoop, final ChannelPromise promise) {
    // 一些检查,略...

    AbstractChannel.this.eventLoop = eventLoop;

    if (eventLoop.inEventLoop()) {
        register0(promise);
    } else {
        try {
            // 首次执行 execute 方法时,会启动 nio 线程,之后注册等操作在 nio 线程上执行
            // 因为只有一个 NioServerSocketChannel 因此,也只会有一个 boss nio 线程
            // 这行代码完成的事实是 main -> nio boss 线程的切换
            eventLoop.execute(new Runnable() {
                @Override
                public void run() {
                    register0(promise);
                }
            });
        } catch (Throwable t) {
            // 日志记录...
            closeForcibly();
            closeFuture.setClosed();
            safeSetFailure(promise, t);
        }
    }
}

io.netty.channel.AbstractChannel.AbstractUnsafe#register0

private void register0(ChannelPromise promise) {
    try {
        if (!promise.setUncancellable() || !ensureOpen(promise)) {
            return;
        }
        boolean firstRegistration = neverRegistered;
        // 1.2.1 原生的 nio channel 绑定到 selector 上,注意此时没有注册 selector 关注事件,附件为 NioServerSocketChannel
        doRegister();
        neverRegistered = false;
        registered = true;

        // 1.2.2 执行 NioServerSocketChannel 初始化器的 initChannel
        pipeline.invokeHandlerAddedIfNeeded();

        // 回调 3.2 io.netty.bootstrap.AbstractBootstrap#doBind0
        safeSetSuccess(promise);
        pipeline.fireChannelRegistered();
        
        // 对应 server socket channel 还未绑定,isActive 为 false
        if (isActive()) {
            if (firstRegistration) {
                pipeline.fireChannelActive();
            } else if (config().isAutoRead()) {
                beginRead();
            }
        }
    } catch (Throwable t) {
        // Close the channel directly to avoid FD leak.
        closeForcibly();
        closeFuture.setClosed();
        safeSetFailure(promise, t);
    }
}

关键代码 io.netty.channel.ChannelInitializer#initChannel

private boolean initChannel(ChannelHandlerContext ctx) throws Exception {
    if (initMap.add(ctx)) { // Guard against re-entrance.
        try {
            // 1.2.2.1 执行初始化
            initChannel((C) ctx.channel());
        } catch (Throwable cause) {
            exceptionCaught(ctx, cause);
        } finally {
            // 1.2.2.2 移除初始化器
            ChannelPipeline pipeline = ctx.pipeline();
            if (pipeline.context(this) != null) {
                pipeline.remove(this);
            }
        }
        return true;
    }
    return false;
}

关键代码 io.netty.bootstrap.AbstractBootstrap#doBind0

// 3.1 或 3.2 执行 doBind0
private static void doBind0(
        final ChannelFuture regFuture, final Channel channel,
        final SocketAddress localAddress, final ChannelPromise promise) {

    channel.eventLoop().execute(new Runnable() {
        @Override
        public void run() {
            if (regFuture.isSuccess()) {
                channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
            } else {
                promise.setFailure(regFuture.cause());
            }
        }
    });
}

关键代码 io.netty.channel.AbstractChannel.AbstractUnsafe#bind

public final void bind(final SocketAddress localAddress, final ChannelPromise promise) {
    assertEventLoop();

    if (!promise.setUncancellable() || !ensureOpen(promise)) {
        return;
    }

    if (Boolean.TRUE.equals(config().getOption(ChannelOption.SO_BROADCAST)) &&
        localAddress instanceof InetSocketAddress &&
        !((InetSocketAddress) localAddress).getAddress().isAnyLocalAddress() &&
        !PlatformDependent.isWindows() && !PlatformDependent.maybeSuperUser()) {
        // 记录日志...
    }

    boolean wasActive = isActive();
    try {
        // 3.3 执行端口绑定
        doBind(localAddress);
    } catch (Throwable t) {
        safeSetFailure(promise, t);
        closeIfClosed();
        return;
    }

    if (!wasActive && isActive()) {
        invokeLater(new Runnable() {
            @Override
            public void run() {
                // 3.4 触发 active 事件
                pipeline.fireChannelActive();
            }
        });
    }

    safeSetSuccess(promise);
}

3.3 关键代码 io.netty.channel.socket.nio.NioServerSocketChannel#doBind

protected void doBind(SocketAddress localAddress) throws Exception {
    if (PlatformDependent.javaVersion() >= 7) {
        javaChannel().bind(localAddress, config.getBacklog());
    } else {
        javaChannel().socket().bind(localAddress, config.getBacklog());
    }
}

3.4 关键代码 io.netty.channel.DefaultChannelPipeline.HeadContext#channelActive

public void channelActive(ChannelHandlerContext ctx) {
    ctx.fireChannelActive();
	// 触发 read (NioServerSocketChannel 上的 read 不是读取数据,只是为了触发 channel 的事件注册)
    readIfIsAutoRead();
}

关键代码 io.netty.channel.nio.AbstractNioChannel#doBeginRead

protected void doBeginRead() throws Exception {
    // Channel.read() or ChannelHandlerContext.read() was called
    final SelectionKey selectionKey = this.selectionKey;
    if (!selectionKey.isValid()) {
        return;
    }

    readPending = true;

    final int interestOps = selectionKey.interestOps();
    // readInterestOp 取值是 16,在 NioServerSocketChannel 创建时初始化好,代表关注 accept 事件
    if ((interestOps & readInterestOp) == 0) {
        selectionKey.interestOps(interestOps | readInterestOp);
    }
}

2.2 NioEventLoop 剖析

NioEventLoop 线程不仅要处理 IO 事件,还要处理 Task(包括普通任务和定时任务),

提交任务代码 io.netty.util.concurrent.SingleThreadEventExecutor#execute

public void execute(Runnable task) {
    if (task == null) {
        throw new NullPointerException("task");
    }

    boolean inEventLoop = inEventLoop();
    // 添加任务,其中队列使用了 jctools 提供的 mpsc 无锁队列
    addTask(task);
    if (!inEventLoop) {
        // inEventLoop 如果为 false 表示由其它线程来调用 execute,即首次调用,这时需要向 eventLoop 提交首个任务,启动死循环,会执行到下面的 doStartThread
        startThread();
        if (isShutdown()) {
            // 如果已经 shutdown,做拒绝逻辑,代码略...
        }
    }

    if (!addTaskWakesUp && wakesUpForTask(task)) {
        // 如果线程由于 IO select 阻塞了,添加的任务的线程需要负责唤醒 NioEventLoop 线程
        wakeup(inEventLoop);
    }
}

唤醒 select 阻塞线程io.netty.channel.nio.NioEventLoop#wakeup

@Override
protected void wakeup(boolean inEventLoop) {
    if (!inEventLoop && wakenUp.compareAndSet(false, true)) {
        selector.wakeup();
    }
}

启动 EventLoop 主循环 io.netty.util.concurrent.SingleThreadEventExecutor#doStartThread

private void doStartThread() {
    assert thread == null;
    executor.execute(new Runnable() {
        @Override
        public void run() {
            // 将线程池的当前线程保存在成员变量中,以便后续使用
            thread = Thread.currentThread();
            if (interrupted) {
                thread.interrupt();
            }

            boolean success = false;
            updateLastExecutionTime();
            try {
                // 调用外部类 SingleThreadEventExecutor 的 run 方法,进入死循环,run 方法见下
                SingleThreadEventExecutor.this.run();
                success = true;
            } catch (Throwable t) {
                logger.warn("Unexpected exception from an event executor: ", t);
            } finally {
				// 清理工作,代码略...
            }
        }
    });
}

io.netty.channel.nio.NioEventLoop#run 主要任务是执行死循环,不断看有没有新任务,有没有 IO 事件

protected void run() {
    for (;;) {
        try {
            try {
                // calculateStrategy 的逻辑如下:
                // 有任务,会执行一次 selectNow,清除上一次的 wakeup 结果,无论有没有 IO 事件,都会跳过 switch
                // 没有任务,会匹配 SelectStrategy.SELECT,看是否应当阻塞
                switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) {
                    case SelectStrategy.CONTINUE:
                        continue;

                    case SelectStrategy.BUSY_WAIT:

                    case SelectStrategy.SELECT:
                        // 因为 IO 线程和提交任务线程都有可能执行 wakeup,而 wakeup 属于比较昂贵的操作,因此使用了一个原子布尔对象 wakenUp,它取值为 true 时,表示该由当前线程唤醒
                        // 进行 select 阻塞,并设置唤醒状态为 false
                        boolean oldWakenUp = wakenUp.getAndSet(false);
                        
                        // 如果在这个位置,非 EventLoop 线程抢先将 wakenUp 置为 true,并 wakeup
                        // 下面的 select 方法不会阻塞
                        // 等 runAllTasks 处理完成后,到再循环进来这个阶段新增的任务会不会及时执行呢?
                        // 因为 oldWakenUp 为 true,因此下面的 select 方法就会阻塞,直到超时
                        // 才能执行,让 select 方法无谓阻塞
                        select(oldWakenUp);

                        if (wakenUp.get()) {
                            selector.wakeup();
                        }
                    default:
                }
            } catch (IOException e) {
                rebuildSelector0();
                handleLoopException(e);
                continue;
            }

            cancelledKeys = 0;
            needsToSelectAgain = false;
            // ioRatio 默认是 50
            final int ioRatio = this.ioRatio;
            if (ioRatio == 100) {
                try {
                    processSelectedKeys();
                } finally {
                    // ioRatio 为 100 时,总是运行完所有非 IO 任务
                    runAllTasks();
                }
            } else {                
                final long ioStartTime = System.nanoTime();
                try {
                    processSelectedKeys();
                } finally {
                    // 记录 io 事件处理耗时
                    final long ioTime = System.nanoTime() - ioStartTime;
                    // 运行非 IO 任务,一旦超时会退出 runAllTasks
                    runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
                }
            }
        } catch (Throwable t) {
            handleLoopException(t);
        }
        try {
            if (isShuttingDown()) {
                closeAll();
                if (confirmShutdown()) {
                    return;
                }
            }
        } catch (Throwable t) {
            handleLoopException(t);
        }
    }
}

注意

这里有个费解的地方就是 wakeup,它既可以由提交任务的线程来调用(比较好理解),也可以由 EventLoop 线程来调用(比较费解),这里要知道 wakeup 方法的效果:

  • 由非 EventLoop 线程调用,会唤醒当前在执行 select 阻塞的 EventLoop 线程
  • 由 EventLoop 自己调用,会本次的 wakeup 会取消下一次的 select 操作

参考下图

io.netty.channel.nio.NioEventLoop#select

private void select(boolean oldWakenUp) throws IOException {
    Selector selector = this.selector;
    try {
        int selectCnt = 0;
        long currentTimeNanos = System.nanoTime();
        // 计算等待时间
        // * 没有 scheduledTask,超时时间为 1s
        // * 有 scheduledTask,超时时间为 `下一个定时任务执行时间 - 当前时间`
        long selectDeadLineNanos = currentTimeNanos + delayNanos(currentTimeNanos);

        for (;;) {
            long timeoutMillis = (selectDeadLineNanos - currentTimeNanos + 500000L) / 1000000L;
            // 如果超时,退出循环
            if (timeoutMillis <= 0) {
                if (selectCnt == 0) {
                    selector.selectNow();
                    selectCnt = 1;
                }
                break;
            }

            // 如果期间又有 task 退出循环,如果没这个判断,那么任务就会等到下次 select 超时时才能被执行
            // wakenUp.compareAndSet(false, true) 是让非 NioEventLoop 不必再执行 wakeup
            if (hasTasks() && wakenUp.compareAndSet(false, true)) {
                selector.selectNow();
                selectCnt = 1;
                break;
            }

            // select 有限时阻塞
            // 注意 nio 有 bug,当 bug 出现时,select 方法即使没有时间发生,也不会阻塞住,导致不断空轮询,cpu 占用 100%
            int selectedKeys = selector.select(timeoutMillis);
            // 计数加 1
            selectCnt ++;

            // 醒来后,如果有 IO 事件、或是由非 EventLoop 线程唤醒,或者有任务,退出循环
            if (selectedKeys != 0 || oldWakenUp || wakenUp.get() || hasTasks() || hasScheduledTasks()) {
                break;
            }
            if (Thread.interrupted()) {
               	// 线程被打断,退出循环
                // 记录日志
                selectCnt = 1;
                break;
            }

            long time = System.nanoTime();
            if (time - TimeUnit.MILLISECONDS.toNanos(timeoutMillis) >= currentTimeNanos) {
                // 如果超时,计数重置为 1,下次循环就会 break
                selectCnt = 1;
            } 
            // 计数超过阈值,由 io.netty.selectorAutoRebuildThreshold 指定,默认 512
            // 这是为了解决 nio 空轮询 bug
            else if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 &&
                    selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) {
                // 重建 selector
                selector = selectRebuildSelector(selectCnt);
                selectCnt = 1;
                break;
            }

            currentTimeNanos = time;
        }

        if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS) {
            // 记录日志
        }
    } catch (CancelledKeyException e) {
        // 记录日志
    }
}

处理 keys io.netty.channel.nio.NioEventLoop#processSelectedKeys

private void processSelectedKeys() {
    if (selectedKeys != null) {
        // 通过反射将 Selector 实现类中的就绪事件集合替换为 SelectedSelectionKeySet 
        // SelectedSelectionKeySet 底层为数组实现,可以提高遍历性能(原本为 HashSet)
        processSelectedKeysOptimized();
    } else {
        processSelectedKeysPlain(selector.selectedKeys());
    }
}

io.netty.channel.nio.NioEventLoop#processSelectedKey

private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
    final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
    // 当 key 取消或关闭时会导致这个 key 无效
    if (!k.isValid()) {
        // 无效时处理...
        return;
    }

    try {
        int readyOps = k.readyOps();
        // 连接事件
        if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
            int ops = k.interestOps();
            ops &= ~SelectionKey.OP_CONNECT;
            k.interestOps(ops);

            unsafe.finishConnect();
        }

        // 可写事件
        if ((readyOps & SelectionKey.OP_WRITE) != 0) {
            ch.unsafe().forceFlush();
        }

        // 可读或可接入事件
        if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
            // 如果是可接入 io.netty.channel.nio.AbstractNioMessageChannel.NioMessageUnsafe#read
            // 如果是可读 io.netty.channel.nio.AbstractNioByteChannel.NioByteUnsafe#read
            unsafe.read();
        }
    } catch (CancelledKeyException ignored) {
        unsafe.close(unsafe.voidPromise());
    }
}

2.3 accept 剖析

nio 中如下代码,在 netty 中的流程

//1 阻塞直到事件发生
selector.select();

Iterator<SelectionKey> iter = selector.selectedKeys().iterator();
while (iter.hasNext()) {    
    //2 拿到一个事件
    SelectionKey key = iter.next();
    
    //3 如果是 accept 事件
    if (key.isAcceptable()) {
        
        //4 执行 accept
        SocketChannel channel = serverSocketChannel.accept();
        channel.configureBlocking(false);
        
        //5 关注 read 事件
        channel.register(selector, SelectionKey.OP_READ);
    }
    // ...
}

先来看可接入事件处理(accept)

io.netty.channel.nio.AbstractNioMessageChannel.NioMessageUnsafe#read

public void read() {
    assert eventLoop().inEventLoop();
    final ChannelConfig config = config();
    final ChannelPipeline pipeline = pipeline();    
    final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
    allocHandle.reset(config);

    boolean closed = false;
    Throwable exception = null;
    try {
        try {
            do {
				// doReadMessages 中执行了 accept 并创建 NioSocketChannel 作为消息放入 readBuf
                // readBuf 是一个 ArrayList 用来缓存消息
                int localRead = doReadMessages(readBuf);
                if (localRead == 0) {
                    break;
                }
                if (localRead < 0) {
                    closed = true;
                    break;
                }
				// localRead 为 1,就一条消息,即接收一个客户端连接
                allocHandle.incMessagesRead(localRead);
            } while (allocHandle.continueReading());
        } catch (Throwable t) {
            exception = t;
        }

        int size = readBuf.size();
        for (int i = 0; i < size; i ++) {
            readPending = false;
            // 触发 read 事件,让 pipeline 上的 handler 处理,这时是处理
            // io.netty.bootstrap.ServerBootstrap.ServerBootstrapAcceptor#channelRead
            pipeline.fireChannelRead(readBuf.get(i));
        }
        readBuf.clear();
        allocHandle.readComplete();
        pipeline.fireChannelReadComplete();

        if (exception != null) {
            closed = closeOnReadError(exception);

            pipeline.fireExceptionCaught(exception);
        }

        if (closed) {
            inputShutdown = true;
            if (isOpen()) {
                close(voidPromise());
            }
        }
    } finally {
        if (!readPending && !config.isAutoRead()) {
            removeReadOp();
        }
    }
}

关键代码 io.netty.bootstrap.ServerBootstrap.ServerBootstrapAcceptor#channelRead

public void channelRead(ChannelHandlerContext ctx, Object msg) {
    // 这时的 msg 是 NioSocketChannel
    final Channel child = (Channel) msg;

    // NioSocketChannel 添加  childHandler 即初始化器
    child.pipeline().addLast(childHandler);

    // 设置选项
    setChannelOptions(child, childOptions, logger);

    for (Entry<AttributeKey<?>, Object> e: childAttrs) {
        child.attr((AttributeKey<Object>) e.getKey()).set(e.getValue());
    }

    try {
        // 注册 NioSocketChannel 到 nio worker 线程,接下来的处理也移交至 nio worker 线程
        childGroup.register(child).addListener(new ChannelFutureListener() {
            @Override
            public void operationComplete(ChannelFuture future) throws Exception {
                if (!future.isSuccess()) {
                    forceClose(child, future.cause());
                }
            }
        });
    } catch (Throwable t) {
        forceClose(child, t);
    }
}

又回到了熟悉的 io.netty.channel.AbstractChannel.AbstractUnsafe#register 方法

public final void register(EventLoop eventLoop, final ChannelPromise promise) {
    // 一些检查,略...

    AbstractChannel.this.eventLoop = eventLoop;

    if (eventLoop.inEventLoop()) {
        register0(promise);
    } else {
        try {
            // 这行代码完成的事实是 nio boss -> nio worker 线程的切换
            eventLoop.execute(new Runnable() {
                @Override
                public void run() {
                    register0(promise);
                }
            });
        } catch (Throwable t) {
            // 日志记录...
            closeForcibly();
            closeFuture.setClosed();
            safeSetFailure(promise, t);
        }
    }
}

io.netty.channel.AbstractChannel.AbstractUnsafe#register0

private void register0(ChannelPromise promise) {
    try {
        if (!promise.setUncancellable() || !ensureOpen(promise)) {
            return;
        }
        boolean firstRegistration = neverRegistered;
        doRegister();
        neverRegistered = false;
        registered = true;
		
        // 执行初始化器,执行前 pipeline 中只有 head -> 初始化器 -> tail
        pipeline.invokeHandlerAddedIfNeeded();
        // 执行后就是 head -> logging handler -> my handler -> tail

        safeSetSuccess(promise);
        pipeline.fireChannelRegistered();
        
        if (isActive()) {
            if (firstRegistration) {
                // 触发 pipeline 上 active 事件
                pipeline.fireChannelActive();
            } else if (config().isAutoRead()) {
                beginRead();
            }
        }
    } catch (Throwable t) {
        closeForcibly();
        closeFuture.setClosed();
        safeSetFailure(promise, t);
    }
}

回到了熟悉的代码 io.netty.channel.DefaultChannelPipeline.HeadContext#channelActive

public void channelActive(ChannelHandlerContext ctx) {
    ctx.fireChannelActive();
	// 触发 read (NioSocketChannel 这里 read,只是为了触发 channel 的事件注册,还未涉及数据读取)
    readIfIsAutoRead();
}

io.netty.channel.nio.AbstractNioChannel#doBeginRead

protected void doBeginRead() throws Exception {
    // Channel.read() or ChannelHandlerContext.read() was called
    final SelectionKey selectionKey = this.selectionKey;
    if (!selectionKey.isValid()) {
        return;
    }

    readPending = true;
	// 这时候 interestOps 是 0
    final int interestOps = selectionKey.interestOps();
    if ((interestOps & readInterestOp) == 0) {
        // 关注 read 事件
        selectionKey.interestOps(interestOps | readInterestOp);
    }
}

2.4 read 剖析

再来看可读事件 io.netty.channel.nio.AbstractNioByteChannel.NioByteUnsafe#read,注意发送的数据未必能够一次读完,因此会触发多次 nio read 事件,一次事件内会触发多次 pipeline read,一次事件会触发一次 pipeline read complete

public final void read() {
    final ChannelConfig config = config();
    if (shouldBreakReadReady(config)) {
        clearReadPending();
        return;
    }
    final ChannelPipeline pipeline = pipeline();
    // io.netty.allocator.type 决定 allocator 的实现
    final ByteBufAllocator allocator = config.getAllocator();
    // 用来分配 byteBuf,确定单次读取大小
    final RecvByteBufAllocator.Handle allocHandle = recvBufAllocHandle();
    allocHandle.reset(config);

    ByteBuf byteBuf = null;
    boolean close = false;
    try {
        do {
            byteBuf = allocHandle.allocate(allocator);
            // 读取
            allocHandle.lastBytesRead(doReadBytes(byteBuf));
            if (allocHandle.lastBytesRead() <= 0) {
                byteBuf.release();
                byteBuf = null;
                close = allocHandle.lastBytesRead() < 0;
                if (close) {
                    readPending = false;
                }
                break;
            }

            allocHandle.incMessagesRead(1);
            readPending = false;
            // 触发 read 事件,让 pipeline 上的 handler 处理,这时是处理 NioSocketChannel 上的 handler
            pipeline.fireChannelRead(byteBuf);
            byteBuf = null;
        } 
        // 是否要继续循环
        while (allocHandle.continueReading());

        allocHandle.readComplete();
        // 触发 read complete 事件
        pipeline.fireChannelReadComplete();

        if (close) {
            closeOnRead(pipeline);
        }
    } catch (Throwable t) {
        handleReadException(pipeline, byteBuf, t, close, allocHandle);
    } finally {
        if (!readPending && !config.isAutoRead()) {
            removeReadOp();
        }
    }
}

io.netty.channel.DefaultMaxMessagesRecvByteBufAllocator.MaxMessageHandle#continueReading(io.netty.util.UncheckedBooleanSupplier)

public boolean continueReading(UncheckedBooleanSupplier maybeMoreDataSupplier) {
    return 
           // 一般为 true
           config.isAutoRead() &&
           // respectMaybeMoreData 默认为 true
           // maybeMoreDataSupplier 的逻辑是如果预期读取字节与实际读取字节相等,返回 true
           (!respectMaybeMoreData || maybeMoreDataSupplier.get()) &&
           // 小于最大次数,maxMessagePerRead 默认 16
           totalMessages < maxMessagePerRead &&
           // 实际读到了数据
           totalBytesRead > 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/811835.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

最强,自动化测试-自定义日志类及日志封装(实战)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 在自定义日志之前…

【机器学习】习题3.3Python编程实现对数几率回归

参考代码 结合自己的理解&#xff0c;添加注释。 代码 导入相关的库 import numpy as np import pandas as pd import matplotlib from matplotlib import pyplot as plt from sklearn import linear_model导入数据&#xff0c;进行数据处理和特征工程 # 1.数据处理&#x…

Windows系统如何修改文件日期属性

winr键&#xff0c;输入powershell,在弹出的命令窗口输入命令&#xff0c;案例如下&#xff1a; file_address E:\_OrderingProject\\PIC1101\ldv1s_0830_ec_result.tiftime_change "07/12/2022 20:42:23" 修改文件创建时间&#xff1a;creationtime $(Get-Item fi…

COMSOL三维Voronoi图泰森多边形3D模型轴压模拟及建模教程

多晶体模型采用三维Voronoi算法生成&#xff0c;试件尺寸为150150300mm棱柱模型&#xff0c;对晶格指定五种不同材料&#xff0c;实现晶格间的差异性。 对试件进行力学模拟&#xff0c;下侧为固定边界&#xff0c;限制z方向的位移&#xff0c;上表面通过给定位移的方式实现轴…

P2P网络NAT穿透原理(打洞方案)

1.关于NAT NAT技术&#xff08;Network Address Translation&#xff0c;网络地址转换&#xff09;是一种把内部网络&#xff08;简称为内网&#xff09;私有IP地址转换为外部网络&#xff08;简称为外网&#xff09;公共IP地址的技术&#xff0c;它使得一定范围内的多台主机只…

某拍房数据采集

某拍房数据采集 某拍房数据采集声明1.逆向目标2.寻找加密位置3.分析加密参数4.python代码书写 某拍房数据采集 声明 本文章中所有内容仅供学习交流&#xff0c;抓包内容、敏感网址、数据接口均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的…

yo!这里是Linux常见命令总结

目录 前言 常见命令 ls指令 pwd指令 cd指令 touch指令 tree指令 mkdir指令&&rmdir指令 rm指令 man指令 cp指令 mv指令 echo指令 cat指令&&tac指令 more指令 less指令 head指令&&tail指令 find指令 grep指令 alias指令&&u…

NAT原理(网络地址转换)

NAT原理 网络地址转换&#xff08;Network Address Translation&#xff0c;简称NAT&#xff09; 是一种网络通信协议&#xff0c;它是在网络层上对IP地址进行转换的技术。 NAT技术可以将内部网络中的私有IP地址转换为公共IP地址&#xff0c;以便内部网络中的设备能够访问互…

2023-07-30力扣每日一题

链接&#xff1a; 142. 环形链表 II 题意&#xff1a; 求链表是否有环&#xff0c;并给出入环的点 解&#xff1a; 哈希关联标记或者快慢指针 快慢指针逻辑&#xff1a;设入环前长度a&#xff0c;快慢相遇时指针在b&#xff0c;环长度为c&#xff0c;fast2*slow&#xff…

前端学习--vue2--1-基础配置

写在前面&#xff1a; 好久没写了&#xff0c;做实习每天上班都没啥时间写&#xff0c;1个半月前开始系统学习前端&#xff0c;然后做了半个月主要的前端实习了wk。也行&#xff0c;当复习了&#xff0c;后端也还是搞了点。 本文介绍vue2的一些基础和配置&#xff0c;配置只写…

【C++】——类和对象

目录 面向过程和面向对象的初步认识类的引入类的定义类的访问限定符及封装类的作用域类的实例化this指针类的6个默认成员函数构造函数析构函数 面向过程和面向对象的初步认识 C语言是面向过程的&#xff0c;关注的是过程&#xff0c;分析求解问题的步骤&#xff0c;通过函数调用…

你还不会反射吧,快来吧!!!

首先&#xff1a; 1.加载类&#xff1a; //练习获取字节码对象的3种方式 //Class<Student> studentClass Student.class; //Class<? extends Student> aClass new Student().getClass(); Class<?> clazz Class.forName("TestT.Student"); 2.获…

[C++] 类与对象(上)

目录 1、前言 2、类的引入 3、类的定义 3.1 类的两种定义方式 4、类的访问限定符 5、类的作用域 6、类的实例化 7、类对象模型 7.1 内存对齐规则 7.1 类对象的存储方式 8、this指针 8.1 this指针的特性 8.2 this指针是否可以为空 1、前言 C语言是面向过程的&#…

网络运维基础问题及解答

前言 本篇文章是对于网络运维基础技能的一些常见问题的解答&#xff0c;希望能够为进行期末复习或者对网络运维感兴趣的同学或专业人员提供一定的帮助。 问题及解答 1. 列举 3 种常用字符编码&#xff0c;简述怎样在 str 和 bytes 之间进行编码和解码。 答&#xff1a;常用的…

Python读取多个栅格文件并提取像元的各波段时间序列数据与变化值

本文介绍基于Python语言&#xff0c;读取文件夹下大量栅格遥感影像文件&#xff0c;并基于给定的一个像元&#xff0c;提取该像元对应的全部遥感影像文件中&#xff0c;指定多个波段的数值&#xff1b;修改其中不在给定范围内的异常值&#xff0c;并计算像元数值在每一景遥感影…

【C++】-动态内存管理

作者&#xff1a;小树苗渴望变成参天大树 作者宣言&#xff1a;认真写好每一篇博客 作者gitee:gitee 如 果 你 喜 欢 作 者 的 文 章 &#xff0c;就 给 作 者 点 点 关 注 吧&#xff01; 文章目录 前言一、C内存管理方式1.1 new/delete操作内置类型 总结 前言 今天再讲一个…

【禁用外键】为什么互联网大厂禁用外键约束?详谈外键的优缺点和使用场景

导航&#xff1a; 【Java笔记踩坑汇总】Java基础进阶JavaWebSSMSpringBoot瑞吉外卖SpringCloud黑马旅游谷粒商城学成在线MySQL高级篇设计模式常见面试题源码 目录 一、外键介绍 1.1 概述 1.2 练习 1.2.1 数据准备 1.2.2 验证有外键时&#xff0c;删除记录要维护外键 1.2…

Python批量下载主播照片,实现人脸识别, 进行颜值评分,制作颜值排行榜

昨晚一回家&#xff0c;表弟就神神秘秘的跟我说&#xff0c;发现一个高颜值网站&#xff0c;非要拉着我研究一下她们的颜值高低。 我心想&#xff0c;这还得要我一个个慢慢看&#xff0c;太麻烦了~ 于是反手用Python给他写了一个人脸识别代码&#xff0c;把她们的照片全部爬下…

06-行向量列向量_向量的运算 加法,数乘,减法,转置

行向量和列向量 行向量是按行把向量排开&#xff08;横着来写&#xff09;&#xff0c; 列向量是按列把向量排开&#xff08;竖着来写&#xff09; 在数学中我们更多的把数据写成列向量&#xff0c;在编程语言中更多的把数据存成行向量! 如果想在编程语言中把行向量转化成列…

人力资源管理系统servlet jsp人资企业办公java源代码mysql

本项目为前几天收费帮学妹做的一个项目&#xff0c;Java EE JSP项目&#xff0c;在工作环境中基本使用不到&#xff0c;但是很多学校把这个当作编程入门的项目来做&#xff0c;故分享出本项目供初学者参考。 一、项目描述 人力资源管理系统ervlet jsp 系统有1权限&#xff1a…