ReID网络(一):MGN网络

news2025/1/20 13:20:40

Start MGN

1. 序言

现代基于感知的信息中,视觉信息占了80~85%。基于视觉信息的处理和分析被应用到诸如安防、电力、汽车等领域。

以安防市场为例,早在2017年,行业咨询公司IHS Market,我国在公共和私人领域安装有摄像头约1.76亿部,至2020年这一数值将激增至6.26亿部。虽然这一数字值得考量,但网络摄像头、家用安防摄像头以及各行业特定用途摄像头安装数量的逐年增长是无需置疑的,且现存摄像头安装数量应该是一个不小的量级。围绕各种摄像头,各公司、个人开发了各种各样的智能分析算法,这其中就包括人脸识别、车牌识别以及我们本序列要讲的ReID算法。

2. ReID概念

行人重识别(Person Re-identification也称行人再识别,简称为ReID,是利用计算机视觉技术,通过提取在匹配特征,依次判断图像或者视频序列中是否存在特定行人的技术。简单点讲,就是跨摄像头、跨区域实现行人的匹配。

ReID被广泛的认为是一个图像检索的子问题。给定一个图像输入点的视频所检索到的行人,在其他视频采集点所采集的视频中检索出现过的人。从另一个角度讲,ReID常被用来作为人脸检测识别的补充。在一些无法获得高质量人脸图像的场合,整体的人体外观信息就被用来作为检索的依据。

3. ReID应用

(1) 行人检测与搜索

以往的行人检测与搜索侧重于传统的方法,即首先提取行人视觉特征,然后再进行特征的匹配。近几年来,行人重识别领域引入了深度学习的方法,即通过深度学习的方法提取视觉特征,然后进行匹配。

近几年来,ReID技术在行人检测与搜索领域应用非常广泛。尤其在安防监控、其他智能视频监控(如无人超市)、刑侦(追捕嫌疑人)、交管(追踪车辆等)方面应用尤其突出。

(2) MOT(多目标跟踪)

MOT全程多目标跟踪,顾名思义,是对多个目标同时执行跟踪的一种技术。当前MOT领域一种研究方向比较多,但主要的研究方向无非是JDE(协同检测与Embedding特征提取)、SDE(分离式检测与Embedding特征提取)和JDT(协同检测与跟踪)。其中JDE与SDE合称TBD(Tracking by detection, 基于检测的跟踪技术)。无论是JDE还是SDE ,均需要析出所有目标特征,然后在不同帧之间进行匹配(关联)。析出特征并进行前后帧关联的技术,实际上就利用了ReID的理论。

(3) 其他目标检测与搜索

前面讲到,ReID一般译作行人重识别,同理,在其他类型目标上也同样适用ReID技术(特征析出+匹配/关联)。如车辆跟踪、无人机跟踪等。

4. ReID算法分类

前述内容大致带大家谅解了一些关于ReID的知识,接下来我们一同归纳一下ReID的几种方法。

(1) 表征方法

表征学习又称表示学习,是利用机器学习获取每个实体或关系的向量化表达,以便在构建分类器或其他预测变量时更易提取有用信息的方法。如图一为表征学习方法的一般图例。

图一 表征学习

概念有些绕,我们简单理解,表征学习包含以下几个部分。

a. 首先是通过一个分类网络,对目标进行分类(Softmax Loss)。由于ReID一般是对同一类目标进行重识别,因此这里的分类,更具体的,是一种类内再分类的行为。不同于传统的目标检测等网络,我们再此处实际上是学习一种学习类内特征、增大类内特征的网络。

b. 一般情况下,除了分类以外,还需要添加属性判别分支(Attribute Loss)。这里的属性包括性别、头发、衣着等,增强对目标的特征描述能力。

c. 孪生网络。表征学习一般情况下,会同时训练两个一模一样的网络,每个网络除了执行分类和属性判别任务以外,网络间还要执行对比,获得对比损失(Contrastive Loss)。

(2) 度量方法

度量学习不同于前述的表征学习,度量学习旨在学习两幅图像的相似度。度量学习的依据是同一行人的不同图片的相似度大于不通行人的不同图片,同理,前者的Loss需要小于后者的Loss。

图二 度量学习

在训练过程中,网络输入为两张图片(Anchor和Positive、Anchor和Negative)或三张图片(Anchor、Positive、Negative),前者计算析出特征向量的欧氏距离(或其他特征向量损失),后者一般使用Triplet损失。

(3) 局部方法

局部特征是相对于整体特征而言的。在一些训练网络中,会提取某一行人的全局特征,用来计算Loss。基于局部特征的学习方法大致分为三种思路,分别是基于局部调整的方法、基于特征点检测的方法和基于局部导入判别的方法(PCB)。如图三为基础的局部特征方法。

图三 局部特征ReID网络

a. 基于局部调整的方法

该方法是将行人划分为几个等分不分,同时输入到网络中进行训练。

b. 基于特征点检测的方法

基于特征点检测的方法又叫基于姿态估计的局部调整方法。即首先通过特征点估计方法检测出特征点,然后根据已知知识进行学习,如头部与头部比较,手部与手部比较。

c. 基于局部导入的方法(PCB)

该方法类似于基于局部调整的方法,不同的是,前者是同时输入网络,后者是以此导入网络进行学习。

(4) 多粒度

多粒度学习方法类似于局部方法,不同的是,多粒度是将全局特征以及不同粒度的局部信息同时学习,最后整合到一起,以此来学习一个能够提取丰富信息和细节的网络。

5. MGN

MGN网络(多粒度网络)在云从科技的论文“Learning Discriminative Features with Multiple Granularities”中被提出。其核心思想是,不仅提取整张图像的特征,同时还将图像划分为不同粒度进行特征的提取,最后将完整图像的特征与不同粒度图像特征进行融合。

MGN网络的Backbone采用了ResNet50,但从res_conv4_1之后产生不同粒度的的学习分支。

MGN网络的Loss采用了交叉熵损失(CE)和Triplet损失。

接下来我们将从Backbone、数据预处理、Loss计算等角度做详细解读。

参考:

(1) 行人重识别(Person re-identification)概述 - 知乎

(2) https://www.lmlphp.com/user/70900/article/item/2612478/&wd=&eqid=c976327300010b9000000005645894a3

(3) https://blog.csdn.net/qq_39388410/article/details/108173767

(4) https://blog.csdn.net/wq3095435422/article/details/123697940 各种损失

(5) https://blog.51cto.com/u_15316394/3217922

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/808762.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《TCP IP网络编程》第十三章

第 13 章 多种 I/O 函数 13.1 send & recv 函数 Linux 中的 send & recv&#xff1a; send 函数定义&#xff1a; #include <sys/socket.h> ssize_t send(int sockfd, const void *buf, size_t nbytes, int flags); /* 成功时返回发送的字节数&#xff0c;失败…

36.悬浮板

悬浮板 html部分 <div class"container"><div class"square"></div> </div>css部分 *{margin: 0;padding: 0; } body{background-color: #111;height: 100vh;overflow: hidden;display: flex;justify-content: center;align-it…

layui框架学习(33:流加载模块)

Layui中的流加载模块flow主要支持信息流加载和图片懒加载两部分内容&#xff0c;前者是指动态加载后续内容&#xff0c;示例的话可以参考csdn个人博客主页&#xff0c;鼠标移动到页面底部时自动加载更多内容&#xff0c;而后者是指页面显示图片时才会延迟加载图片信息。   fl…

苍穹外卖-day08

苍穹外卖-day08 本项目学自黑马程序员的《苍穹外卖》项目&#xff0c;是瑞吉外卖的Plus版本 功能更多&#xff0c;更加丰富。 结合资料&#xff0c;和自己对学习过程中的一些看法和问题解决情况上传课件笔记 视频&#xff1a;https://www.bilibili.com/video/BV1TP411v7v6/?sp…

第17节 R语言分析:生物统计数据集 R 编码分析和绘图

生物统计数据集 R 编码分析和绘图 生物统计学,用于对给定文件 data.csv 中的医疗数据应用 R 编码,该文件是患者人口统计数据集,包含有关来自各种祖先谱系的个体的标准信息。 数据集特征解释 脚本 output= file("Output.txt") # File name of output log sink(o…

[数据集][目标检测]城市道路井盖破损丢失目标检测1377张

数据集制作单位&#xff1a;未来自主研究中心(FIRC) 数据集格式&#xff1a;Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件&#xff0c;仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数)&#xff1a;1377 标注数量(xml文件个数)&#xff1a;1377 标注类别数&a…

Spring源码(五)— 解析XML配置文件(二) 定制化标签解析流程

上一篇以bean标签为例&#xff0c;介绍了属于defaultNamesapce标签的解析流程&#xff0c;但是defaultNamespace中默认的标签只有bean、beans、alias、import这四个&#xff0c;而我们平时在xml中配置的标签有很多。那其余的标签是如何解析&#xff1f; 在这篇文章会详细介绍定…

一个监控系统的典型架构

监控系统的典型架构图&#xff0c;从左往右看&#xff0c;采集器是负责采集监控数据的&#xff0c;采集到数据之后传输给服务端&#xff0c;通常是直接写入时序库。然后就是对时序库的数据进行分析和可视化&#xff0c;分析部分最典型的就是告警规则判断&#xff0c;即图上的告…

【李宏毅机器学习·学习笔记】Deep Learning General Guidance

本节课可视为机器学习系列课程的一个前期攻略&#xff0c;这节课主要对Machine Learning 的框架进行了简单的介绍&#xff1b;并以training data上的loss大小为切入点&#xff0c;介绍了几种常见的在模型训练的过程中容易出现的情况。 课程视频&#xff1a; Youtube&#xff1…

【Spring框架】SpringBoot配置文件

目录 配置文件作用application.properties中午乱码问题&#xff1a;配置文件里面的配置类型分类SpringBoot热部署properties基本语法properties配置文件的优缺点&#xff1a;yml配置文件说明yml基本语法配置对象properties VS yml 配置文件作用 整个项⽬中所有重要的数据都是在…

【MyBatis 学习二】增删改查 参数占位符 #{} 和 ${}的使用

目录 一、增删改查 &#x1f337;1、用户类 &#x1f337;2、UserMapper &#x1f337;3、UserMapper.xml &#x1f337;4、测试类Test &#x1f337;5、UserService类 &#x1f337;6、UserController类 &#x1f337;7、注意点总结 二、#{} 和${} 的使用区别 &…

一个 SpringBoot 项目能处理多少请求

首先&#xff0c;这个问题有坑&#xff0c;因为 spring boot 不处理请求&#xff0c;只是把现有的开源组件打包后进行了版本适配、预定义了一些开源组件的配置通过代码的方式进行自动装配进行简化开发。这是 spring boot 的价值。 如果我是面试官&#xff0c;我不会问这种问题。…

BLE基础理论/Android BLE开发示例

参考&#xff1a;https://blog.csdn.net/qq_36075612/article/details/127739150?spm1001.2014.3001.5502 参考&#xff1a; https://blog.csdn.net/qq_36075612/article/details/122772966?spm1001.2014.3001.5502 目录 蓝牙的分类传统蓝牙低功耗蓝牙 蓝牙专业词汇&#xff…

深度剖析C++ 异常机制

传统排错 我们早在 C 程序里面传统的错误处理手段有&#xff1a; 终止程序&#xff0c;如 assert&#xff1b;缺陷是用户难以接受&#xff0c;说白了就是一种及其粗暴的手法&#xff0c;比如发生内存错误&#xff0c;除0错误时就会终止程序。 返回错误码。缺陷是需要我们自己…

docker启动容器报错

报错信息 [rootDream soft]# docker run -it -d -p 8080:8080 tomcat eec9fab6b9ca06d2bbf1467aef05d8020ee60448978e10ac20c38888934f0a0b docker: Error response from daemon: driver failed programming external connectivity on endpoint hungry_euclid (163242f0079e72…

C语言之pthread_cond_t信号变化探究总结(八十)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

MySQL | 常用命令示例

MySQL | 常用命令示例 一、启停MySQL数据库服务二、连接MySQL数据库三、创建和管理数据库四、创建和管理数据表五、数据备份和恢复六、查询与优化 MySQL是一款常用的关系型数据库管理系统&#xff0c;广泛应用于各个领域。在使用MySQL时&#xff0c;我们经常需要编写一些常用脚…

M 芯片的 macos 系统安装虚拟机 centos7 网络配置

centos 安装之前把网络配置配好或者是把网线插好 第一步找到这个 第二步打开网络适配器 选择图中所指位置 设置好之后 开机启动 centos 第三步 开机以后 编写网卡文件保存 重启网卡就可以了&#xff0c;如果重启网卡不管用&#xff0c;则重启虚拟机即可 “ ifcfg-ens160 ” 这…

盖子的c++小课堂——第二十一讲:map

前言 时隔一周&#xff0c;我又来更新了^_^&#xff0c;今天都第二十一讲了&#xff0c;前三个板块马上就结束了&#xff0c;也就是小课堂&#xff08;1&#xff09;马上结束了&#xff0c;敬请期待“盖子的c小课堂&#xff08;2&#xff09;”&#xff0c;嘿嘿~~ map 数据容…

QT--day5(网络聊天室、学生信息管理系统)

服务器&#xff1a; #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);//给服务器指针实例化空间servernew QTcpServer(this); }Widget::~Widget() {delete ui; …