深度剖析C++ 异常机制

news2024/9/28 6:58:08

传统排错

我们早在 C 程序里面传统的错误处理手段有:

  1. 终止程序,如 assert;缺陷是用户难以接受,说白了就是一种及其粗暴的手法,比如发生内存错误,除0错误时就会终止程序。

  2. 返回错误码。缺陷是需要我们自己去查找错误,如系统的很多库的接口函数都是通过把错误码放到 errno 中,表示错误。

  3. C标准库中 setjmp 和 longjmp 组合(不常用)

实际中 C 语言基本都是使用返回错误码的方式处理错误,部分情况下使用终止程序处理非常严重紧急的错误,因此异常机制就时运而横空出世

概念

异常是面向对象语言常用的一种处理错误的方式,当一个函数发现自己无法处理的错误时就可以抛出异常,让函数直接或间接调用者自己来处理这个错误

  1. throw:当程序出现问题时,可以通过 throw 关键字抛出一个异常

  2. try:try 块中放置的是可能抛出异常的代码,该代码块在执行时将进行异常错误检测,try 块后面通常跟着一个或多个 catch 块。

  3. catch:如果try块中发生错误,则可以在 catch 块中定义对应要执行的代码块。

try-catch 语句的语法实例:

try
{
	//被保护的代码
}
catch (ExceptionName e1)
{
	//catch块
}
catch (ExceptionName e2)
{
	//catch块
}
catch (ExceptionName eN)
{
	//catch块
}

用法

异常是通过抛出对象而引发的,该对象的类型决定了应该激活哪个 catch 的处理代码,如果抛出的异常对象没有捕获,或是没有匹配类型的捕获,那么程序会终止报错

异常捕获和抛出

被选中的处理代码(catch块)是调用链中与该对象类型匹配且离抛出异常位置最近的那一个

抛出异常对象后,会生成一个异常对象的拷贝,因为抛出的异常对象可能是一个临时对象,所以会生成一个拷贝对象 \color{red} {因为抛出的异常对象可能是一个临时对象,所以会生成一个拷贝对象}因为抛出的异常对象可能是一个临时对象,所以会生成一个拷贝对象,这个拷贝的临时对象会在被 catch 以后销毁(类似于函数的传值返回)

catch(…) 可以捕获任意类型的异常,但捕获后无法知道异常错误是什么,实际异常抛出和捕获的匹配原则有个例外,捕获和抛出的异常类型并不一定要完全匹配,可以抛出派生类对象,使用基类进行捕获,这个在实际中非常有用

在函数调用链中异常栈展开的匹配原则:

当异常被抛出后,首先检查 throw 本身是否在 try 块内部,如果在则查找匹配的 catch 语句,如果有匹配的就跳到 catch 的地方进行处理

如果当前没有匹配的 catch 则退出当前函数栈,继续在上一个调用中进行查找 catch。找到匹配的 catch 子句并处理以后,会沿着 catch 子句后面继续执行,而不会跳回到原来抛异常的地方,如果到达 main 函数的栈,依旧没有找到匹配的 catch 则终止程序

比如下面的代码中调用了 func3,func3 中调用 func2,func2 中调用 func1,func1 中抛出了一个 string 的异常对象:

void func1()
{
	throw string("这是一个异常");
}
void func2()
{
	func1();
}
void func3()
{
	func2();
}
int main()
{
	try
	{
		func3();
	}
	catch (const string& s)
	{
		cout << "错误描述:" << s << endl;
	}
	catch (...)
	{
		cout << "未知异常" << endl;
	}
	return 0;
}

首先会检查 throw 本身是否在 try 块内部,这里就会因此退出 func1 所在的函数栈,继续在上一个调用栈中进行查找,即 func2 所在的函数栈,由于 func2 中也没有匹配的 catch,因此会继续复读套娃,最终在 main 函数栈中找到匹配的 catch

这时就会跳到 main 函数中对应的 catch 块中执行对应的代码块,执行完后继续执行该代码块后续的代码:

​当然为了防止还有漏网之鱼,一般此时我们还会搞一个 catch(…) 进行全捕获。

相关视频推荐

C++异常处理-4个问题开始聊try/catch实现

5种内存泄漏检测方式,让你重新理解C++内存管理

7道面试题打通C/C++后端开发的技术脉络

免费学习地址:c/c++ linux服务器开发/后台架构师

需要C/C++ Linux服务器架构师学习资料加qun579733396获取(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享

异常的重新抛出

要知道一个 catch 是无法完全搞定异常的,如果我们对异常进行修正后,希望交付给上层调用链进行异常的异常信息日志记录,此时就需要我们重新对上层函数抛异常:

void func1()
{
	throw string("这是一个异常");
}
void func2()
{
	int* array = new int[10];
	func1();

	//省略函数对应实现
    //……
	delete[] array;
}
int main()
{
	try
	{
		func2();
	}
	catch (const string& s)
	{
		cout << s << endl;
	}
	catch (...)
	{
		cout << "未知异常" << endl;
	}
	return 0;
}

这里 func2 最后应该 delete 进行空间释放,但由于 func2 中途调用 func1 ,func1 内部抛出了一个异常,这时会直接跳转到 main 函数中的 catch 块执行对应的异常处理程序,并且在处理完后继续沿着 catch 块往后执行,这时就导致 func2 中内存块没有得到释放,造成了内存泄露!

此时我们应该在 func2 中先对 func1 抛出的异常进行捕获,捕获后先将内存释放再重新抛出异常,就可以避免内存泄露:

void func2()
{
	int* array = new int[10];
	try
	{
		func1();
		//省略函数对应实现
        //……
	}
	catch (...)
	{
		delete[] array;
		throw; //将捕获到的异常再次重新抛出
	}
	delete[] array;
}

try-catch 中 new 和 delete 之间可能还会抛出其他类型的异常,因此在 fun2 中最好再进行 catch(…) ,将申请到的内存 delete 后再通过throw 重新抛出;重新抛出异常对象时,此时 throw 可以不用指明要抛出的异常对象,其实 catch(…) 也不知道自己到底捕了个什么异常对象

安全第一条

还是那句话,道路千万条,抛异常要谨慎:

  1. 构造函数完成对象的构造和初始化,最好不要在构造函数中抛出异常,否则可能导致对象不完整或没有完全初始化

  2. 析构函数完成对象资源的清理,最好不要在析构函数中抛出异常,否则可能导致内存泄露,句柄未关闭等

  3. C++ 中在 new 和 delete 中抛出异常经常是内存泄漏的罪魁祸首,在 lock 和 unlock 之间抛出异常导致死锁,C++ 经常使用 RAII 的方式来解决类似问题

规范使用

站在异常的严谨立场上, C++ 也在尽量提高咱的使用规范:

在函数的后面接throw(type1, type2, …),列出这个函数可能抛掷的所有异常类型 在函数的后面接throw()或noexcept(C++11),表示该函数不抛异常 若无异常接口声明,则此函数可以抛掷任何类型的异常(异常接口声明不是强制的)

//这里可能会抛出A/B/C/D类型的异常
void func() throw(A, B, C, D);
//这里只会抛出 bad_alloc 的异常
void* operator new(std::size_t size) throw(std::bad_alloc);
//这里不会抛出异常
void* operator new(std::size_t size, void* ptr) throw();

异常体系

因为异常属实需要严谨与规范的操作,所以在很多公司里面都会制定自己的一套异常的规范管理:

公司中的项目一般会进行模块划分,让不同的人或小组完成不同的模块,如果不对抛异常这件事进行规范,那么在最外层捕获异常的冤种就会问候亲妈了,因为他会来给各位擦屁股,捕获大家抛出的所以异常对象 \color{red} {那么在最外层捕获异常的冤种就会问候亲妈了,因为他会来给各位擦屁股,捕获大家抛出的所以异常对象}那么在最外层捕获异常的冤种就会问候亲妈了,因为他会来给各位擦屁股,捕获大家抛出的所以异常对象

我们之前说过异常语法可以用基类捕获抛出的派生类对象,因此实际中都会先定义一个最基础的异常类,所有人抛出的异常对象都必须是继承于该异常类的派生类对象,,因此最外层就只需捕获基类就行了

​最基础的异常类至少需要包含错误编号和错误描述两个成员变量,甚至还可以包含当前函数栈帧的调用链等信息,该异常类中一般还会提供两个成员函数,分别用来获取错误编号和错误描述

class Exception
{
public:
	Exception(int errid, const char* errmsg)
		:_errid(errid)
		, _errmsg(errmsg)
	{}
	int GetErrid() const
	{
		return _errid;
	}
	virtual string what() const
	{
		return _errmsg;
	}
protected:
	int _errid;  //错误编号
	string _errmsg; //错误描述
	//...
};

其他人如果要对这个异常类进行扩展,必须先继承基础异常类,然后按需添加某些成员变量,或是对虚函数what 进行重写,使其能告知更多的异常信息:

class CacheException : public Exception
{
public:
	CacheException(int errid, const char* errmsg)
		:Exception(errid, errmsg)
	{}
	virtual string what() const
	{
		string msg = "CacheException: ";
		msg += _errmsg;
		return msg;
	}
protected:
	//...
};
class SqlException : public Exception
{
public:
	SqlException(int errid, const char* errmsg, const char* sql)
		:Exception(errid, errmsg)
		, _sql(sql)
	{}
	virtual string what() const
	{
		string msg = "CacheException: ";
		msg += _errmsg;
		msg += "sql语句: ";
		msg += _sql;
		return msg;
	}
protected:
	string _sql; //异常的SQL语句
	//...
};

异常类的成员变量不能设置为私有,因为私有成员在子类中是不可见的。基类 Exception 中 what 成员函数最好定义为虚函数,方便子类对其进行重写,从而达到多态的效果

标准库体系

C++ 标准库当中的异常也是一个基础体系,其中 exception 就是基类,它与其他异常类的继承关系如下:

​其中具体信息如下:

​我们可以去继承这里的 exception 类来实现自己的异常类,但实际上很多公司都会自己定义一套异常继承体系!

优缺点

目前情况来看,异常是利大于弊的,还是鼓励使用异常的,而且前排的语言基本都会使用异常处理错误,这也可以看出这是大势所趋

异常的优点:

相比错误码,异常可以清晰准确的展示出错误的各种信息,甚至可以包含堆栈调用等信息,这样可以帮助更好的定位程序的bug

返回错误码的传统方式有个很大的问题就是,在函数调用链中,深层的函数返回了错误,那么我们得层层返回错误码,最终最外层才能拿到错误

很多的第三方库都会使用异常,比如 boost、gtest、gmock 等常用的库,如果我们不用异常就不能很好的发挥这些库的作用,很多测试框架也都使用异常,因此使用异常能更好的使用单元测试等进行白盒测试

部分函数使用异常更好处理,比如 T& operator 这样的函数,如果 pos 越界了只能使用异常或者终止程序处理,没办法通过返回值表示错误

异常的缺点:

异常会导致程序的执行流混乱,这会导致我们跟踪调试或分析程序时比较困难。异常还会有一些性能的开销,当然在现代硬件速度很快的情况下,这个影响基本忽略不计!

C++ 没有垃圾回收机制,资源需要自己管理,有了异常非常容易导致内存泄露、死锁等异常安全问题,这个需要使用 RAII 来处理资源的管理问题,学习成本比较高

C++ 标准库的异常体系定义得不够好,导致大家各自定义自己的异常体系,非常的混乱,异常尽量规范使用,否则后果不堪设想,随意抛异常,也会让外层捕获的用户苦不堪言。

异常接口声明不是强制的,对于没有声明异常类型的函数,无法预知该函数是否会抛出异常

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/808731.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

docker启动容器报错

报错信息 [rootDream soft]# docker run -it -d -p 8080:8080 tomcat eec9fab6b9ca06d2bbf1467aef05d8020ee60448978e10ac20c38888934f0a0b docker: Error response from daemon: driver failed programming external connectivity on endpoint hungry_euclid (163242f0079e72…

C语言之pthread_cond_t信号变化探究总结(八十)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

MySQL | 常用命令示例

MySQL | 常用命令示例 一、启停MySQL数据库服务二、连接MySQL数据库三、创建和管理数据库四、创建和管理数据表五、数据备份和恢复六、查询与优化 MySQL是一款常用的关系型数据库管理系统&#xff0c;广泛应用于各个领域。在使用MySQL时&#xff0c;我们经常需要编写一些常用脚…

M 芯片的 macos 系统安装虚拟机 centos7 网络配置

centos 安装之前把网络配置配好或者是把网线插好 第一步找到这个 第二步打开网络适配器 选择图中所指位置 设置好之后 开机启动 centos 第三步 开机以后 编写网卡文件保存 重启网卡就可以了&#xff0c;如果重启网卡不管用&#xff0c;则重启虚拟机即可 “ ifcfg-ens160 ” 这…

盖子的c++小课堂——第二十一讲:map

前言 时隔一周&#xff0c;我又来更新了^_^&#xff0c;今天都第二十一讲了&#xff0c;前三个板块马上就结束了&#xff0c;也就是小课堂&#xff08;1&#xff09;马上结束了&#xff0c;敬请期待“盖子的c小课堂&#xff08;2&#xff09;”&#xff0c;嘿嘿~~ map 数据容…

QT--day5(网络聊天室、学生信息管理系统)

服务器&#xff1a; #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);//给服务器指针实例化空间servernew QTcpServer(this); }Widget::~Widget() {delete ui; …

【C#】.Net Framework框架下的Authorize权限类

2023年&#xff0c;第31周&#xff0c;第3篇文章。给自己一个目标&#xff0c;然后坚持总会有收货&#xff0c;不信你试试&#xff01; 在C#的.NET Framework中&#xff0c;你可以使用Authorize类来处理权限认证。Authorize类位于System.Web.Mvc命名空间中&#xff0c;它提供了…

VS创建wsdl服务提供给java调用

文章目录 前言1.c#创建asp.net web服务1.1 创建ASP.NET Web应用程序1.2 添加服务类1.3 定义服务方法1.3 浏览服务1.4 发布服务1.5 IIS部署服务 2.Java中调用服务2.1 用动态客户端工厂类调用2.1.1 引入依赖2.1.2 调用测试代码2.1.3 测试结果 2.2 创建代理类进行调用2.2.1 使用ws…

微软:向量搜索和向量数据库

向量是未来的数据表示 向量搜索 方法 减少距离计算次数 哈希法空间划分树近邻图 SPTAG 混合了kd树和近邻图 Change 大规律向量搜索 内存可扩展 倒排索引 全局量化进行压缩 top1的召回率比较低 基于图的近邻图 SPANN 倒排索引中的问题&#xff1a; 不平衡的聚类方法低…

Python读取csv、Excel文件生成图表

简介 本文章介绍了通过读取 csv 或 Excel 文件内容&#xff0c;将其转换为折线图或柱状图的方法&#xff0c;并写入 html 文件中。 目录 1. 读取CSV文件 1.1. 生成折线图 1.1.1. 简单生成图表 1.1.2. 设置折线图格式 1.2. 生成柱状图 1.2.1. 简单生成图表 1.2.2. 设置柱…

Python-Python基础综合案例:数据可视化 - 折线图可视化

版本说明 当前版本号[20230729]。 版本修改说明20230729初版 目录 文章目录 版本说明目录知识总览图Python基础综合案例&#xff1a;数据可视化 - 折线图可视化json数据格式什么是jsonjson有什么用json格式数据转化Python数据和Json数据的相互转化 pyecharts模块介绍概况如何…

年薪百万的提示词工程师到底在做什么?

&#x1f3c6; 文章目标&#xff1a;了解热门开源项目 &#x1f340; 入门篇&#xff1a;程序员,必须要知道的热门开源项目! ✅ 创作者&#xff1a;熊猫Jay ✨ 个人公众号: 熊猫Jay字节之旅 (文末有链接) &#x1f341; 展望&#xff1a;若本篇讲解内容帮助到您&#xff0c;请帮…

高忆管理:股票投资策略是什么?有哪些?

在进行股票买卖过程中&#xff0c;出资者需求有自己的方案和出资战略&#xff0c;并且主张严格遵从出资战略买卖&#xff0c;不要跟风操作。那么股票出资战略是什么&#xff1f;有哪些&#xff1f;下面就由高忆管理为我们剖析&#xff1a; 股票出资战略简略来说便是能够协助出资…

左值引用与右值引用的区别?右值引用的意义?

左值引用与右值引用的区别&#xff1f;右值引用的意义&#xff1f; 1 区别1.1 功能差异1.2 左值引用1.3 右值引用1.3.1 实现移动语义1.3.2 实现完美转发 2 引用的作用3 区分左值和右值3.1 左值3.2 右值 1 区别 左值引用是对左值的引用&#xff1b;右值引用是对右值的引用。 &…

【Linux】进程通信 — 共享内存

文章目录 &#x1f4d6; 前言1. 共享内存2. 创建共享内存2.1 ftok()创建key值&#xff1a;2.2 shmget()创建共享内存&#xff1a;2.3 ipcs指令&#xff1a;2.4 shmctl()接口&#xff1a;2.5 shmat()/shmdt()接口:2.6 共享内存没有访问控制&#xff1a;2.7 通过管道对共享内存进…

实验六 调度器-实验部分

目录 一、知识点 1.进程调度器设计的目标 1.1.进程的生命周期 1.2.用户进程创建与内核进程创建 1.3.进程调度器的设计目标 2.ucore 调度器框架 2.1.调度初始化 2.2.调度过程 2.2.1.调度整体流程 2.2.2.设计考虑要点 2.2.3.数据结构 2.2.4.调度框架应与调度算法无关…

二十三章:抗对抗性操纵的弱监督和半监督语义分割的属性解释

0.摘要 弱监督语义分割从分类器中生成像素级定位&#xff0c;但往往会限制其关注目标对象的一个小的区域。AdvCAM是一种图像的属性图&#xff0c;通过增加分类分数来进行操作。这种操作以反对抗的方式实现&#xff0c;沿着像素梯度的相反方向扰动图像。它迫使最初被认为不具有区…

【已解决】电脑连上网线但无法上网

文章目录 案例情况解决方案必要的解决方法简要概括详细步骤1、打开控制面板2、打开更改适配器设置3、 找Internet协议版本44、修改配置 可能有用的解决方法 问题解决原理Internet 协议版本 4&#xff08;TCP/IPv4&#xff09;确保IP地址和DNS服务器设置为自动获取 案例情况 网…

Knowledge-QA-LLM: 基于本地知识库+LLM的开源问答系统

⚠️注意&#xff1a;后续更新&#xff0c;请移步README Knowledge QA LLM 基于本地知识库LLM的问答系统。该项目的思路是由langchain-ChatGLM启发而来。缘由&#xff1a; 之前使用过这个项目&#xff0c;感觉不是太灵活&#xff0c;部署不太友好。借鉴如何用大语言模型构建一…

CTF学习路线指南(附刷题练习网址)

前言&#xff1a; PWN,Reverse&#xff1a;偏重对汇编&#xff0c;逆向的理解&#xff1b; Gypto&#xff1a;偏重对数学&#xff0c;算法的深入学习&#xff1b; Web&#xff1a;偏重对技巧沉淀&#xff0c;快速搜索能力的挑战&#xff1b; Mic&#xff1a;则更为复杂&…