【多模态】18、ViLD | 通过对视觉和语言知识蒸馏来实现开集目标检测(ICLR2022)

news2024/11/15 8:51:42

在这里插入图片描述

文章目录

    • 一、背景
    • 二、方法
      • 2.1 对新类别的定位 Localization
      • 2.2 使用 cropped regions 进行开放词汇检测
      • 2.3 ViLD
    • 三、效果

论文:Open-vocabulary Object Detection via Vision and Language Knowledge Distillation

代码:https://github.com/tensorflow/tpu/tree/master/models/official/detection/projects/vild

效果:

  • 在 zero-shot 测试下,coco 达到了 36.6 AP,PASCAL VOC 达到了 72.2AP,Object365 达到了 11.8AP

本文提出了 Vision and Language knowledge Distillation(ViLD):

  • 通过将预训练的开集分类模型作为 teacher model,来蒸馏两阶段目标检测器 student model
  • 即使用 teacher model 来对 category texts 和 proposal region进行编码
  • 然后训练 student detector 来对齐 text 和 region embedding

一、背景

在这里插入图片描述

如图 1 所示,作者思考,目标检测器能否识别 base category 之外的类别?

所以,本文作者就构建了一个 open-vocabulary 目标检测器,用于检测从 text 输入的任意类别的目标

现有的目标检测方法都是只学习数据集中出现的类别,而扩充检测类别的方法就是收集更多的类别标注数据,如 LVIS 包括 1203 个类别,有较为丰富的词汇量,但也不够强大。

另外一方面,互联网上有丰富的 image-text pairs,CLIP 就尝试使用 4 亿图文对儿来联合训练模型,并且在 30 个数据集上展示了很好的效果

zero-shot 迁移的效果很大程度上来源于预训练的 text encoder 对任意类别文本的编码能力,尽管现在对 image-level 特征表达的编码能力已经被证明挺好的了,但还 object-level 的特征编码仍然很有挑战

所以,本文作者思考能否从开集分类模型中拿到一些能力来用于开集检测

作者首先从 R-CNN 类的方法入手,将开集目标检测也构建为两个子问题:

  • object proposal 的生成
  • open-vocabulary 图像分类

如何操作 R-CNN 类的模型:

  • 先基于基础类别训练一个 region proposal model
  • 然后使用预训练好的图像分类器来对 cropped object proposal 进行分类,可以包括新类和基础类
  • 作者使用 LVIS 当做 benchmark,把 rare 类别作为 novel categories,将其他类当做 base categories
  • 缺点:很慢,因为每个 object proposal 都是一个个的进入分类器来分类的

基于此,作者提出了 ViLD,来训练两阶段的开放词汇目标检测器,ViLD 包含两部分:从开集目标分类模型的输出中来学习 text embedding 和 image embedding

  • ViLD-text:只会从基础类中蒸馏
    • 首先,将类别名称输入预训练好的 text encoder 来得到 text embedding
    • 然后,使用推理的 text embedding 结果来对检测到的 region 进行分类
  • ViLD-image:会同时从基础类和新类中来蒸馏,因为 proposal 网络可能会检测到包含新类的区域
    • 首先,将 object proposal 输入预训练好的 image encoder 来得到 image embedding
    • 然后,训练一个 Mask R-CNN 来将 region embedding 和 image embedding 来对齐

二、方法

在这里插入图片描述

作者将检测数据集中的类别分类 base 和 novel:

  • base: C B C_B CB,参与训练
  • novel: C N C_N CN

编码器符号:

  • T ( . ) T(.) T(.):text encoder
  • V ( . ) V(.) V(.):image encoder

2.1 对新类别的定位 Localization

开放词汇目标检测的第一个挑战就是对新类别目标的定位

作者以 Mask RCNN 为例,作者使用 class-agnostic 模块替换了 class-specific 定位模块,对每个 RoI,模型只能对所有类别预测一个 bbox 和一个 mask,而不是每个类别都会预测一个,所以,使用 class-agnostic 的模块可以扩展到用于新类别的定位

2.2 使用 cropped regions 进行开放词汇检测

一旦对目标候选区域定位成功,就可以使用预训练好的分类器来对区域进行分类

Image embedding:

  • 作者基于基础类别 C B C_B CB 训练了一个 proposal 网络,来提取感兴趣区域
  • 首先 crop 并 resize proposal,然后输入 image encoder 中计算 image embedding
  • 作者使用了两种 crop 区域的 resize 方式:1x 和 1.5x,1.5x 的用于提供更多的上下文信息,整合后的 embedding 然后会被归一化

Text embedding:

  • 作者会使用 prompt 模版(如 “a photo of {} in the scene”)来送入 text encoder,并得到 text embedding

相似度:

  • 计算完两个 embedding 之后,作者使用 cosine similarities 来计算 image embedding 和 text embedding 的相似程度,然后使用 softmax 激活和类内的 NMS 来得到最终的检测结果

效率:

  • 由于每个 cropped region 都会被送入 image encoder 来提取 image embedding,所以效率很低

2.3 ViLD

在这里插入图片描述

作者提出了 ViLD 来缓解上面提到的效率低的问题

使用 text embedding 来代替分类器:

  • 首先,引入了 ViLD-text,目标是训练一个可以使用 text embedding 来分类的 region embedding
  • 如图 3b 展示了训练的目标函数,使用 text embedding 来代替了如图 3a 的分类器,只有 text embedding 用于训练
  • 对于没有匹配到任何 gt 的 proposal,被分配到背景类别,可以学习其自己的编码 e b g e_{bg} ebg
  • 对所有类别编码,都计算 region embedding 和 category embedding 的余弦相似性,包括前景和背景 e b g e_{bg} ebg
  • 然后,计算带温度参数的 softmax 激活后的分布并计算 cross-entropy loss
  • 为了训练第一个阶段,也就是 region proposal 网络,作者在线抽取 region proposal r,并且从头开始使用 ViLD-text 来训练

ViLD-text 的 loss 如下:

在这里插入图片描述

蒸馏 image embedding:

训练 ViLD-image 时,主要是从 teacher model 来蒸馏到 student model 上,也就是将 region embedding 和 image embedding 对齐

为了提升训练速度,对每个 training image 先离线抽取 M 个 proposal,并且计算其对应的 image embedding

这些 proposal 包含了基础类和新类,所以网络是可以扩展的

但 ViLD-text 只能从基础类学习

ViLD-image loss 是 region embedding 和 image embedding 的 L1 loss:

在这里插入图片描述

ViLD 的整个训练 loss 如下:w 是超参数

在这里插入图片描述

三、效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/805192.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Verilog语法学习——LV10_使用函数实现数据大小端转换

LV10_使用函数实现数据大小端转换 题目来源于牛客网 [牛客网在线编程_Verilog篇_Verilog快速入门 (nowcoder.com)](https://www.nowcoder.com/exam/oj?page1&tabVerilog篇&topicId301) 题目 描述 在数字芯片设计中,经常把实现特定功能的模块编写成函数&…

HBuilder 编辑器终端窗口无法输入,未响应的解决方案

HBuilder 编辑器终端窗口无法输入,未响应的解决方案 一、找到 HBuilder 安装目录 找到 main.js HBuilderX - plugins - builtincef3terminal - script - main.js 二、编辑 main.js 将 main.js 文件中的 powershell.exe 和 cmd.exe 路径都改为绝对路径 C:/Windows…

【渗透测试】漏洞扫描AWVS安装使用教程,三分钟手把手教会,非常简单

一、AWS简介 Acunetix Web Vulnerability Scanner(简称AWVS)是一个自动化的Web漏洞扫描工具,它可以扫描任何通过Web浏览器访问和遵循HITP/HTTPS规则的Web站点。 AWVS原理是基于漏洞匹配方法,通过网络爬虫测试你的网站安全,检测流行安全AWVS可…

Hadoop学习日记-YARN组件

YARN(Yet Another Resource Negotiator)作为一种新的Hadoop资源管理器,是另一种资源协调者。 YARN是一个通用的资源管理系统和调度平台,可为上层应用提供统一的资源管理和调度 YARN架构图 YARN3大组件: (物理层面&#xff09…

Spring学习笔记,包含Spring IOC、AOP基本原理、Bean管理、Spring 事务等等

😀😀😀创作不易,各位看官点赞收藏. 文章目录 Spring 基础笔记1、控制反转 (IOC)1.1、IOC 底层原理1.2、IOC 之Bean管理 ( XML )1.3、IOC 之Bean管理 (FactoryBean)1.4、Bean的作用域1.5、Bean的生命周期1.6、Bean的自动装配1.7、I…

SFP6002-ASEMI代理海矽美快恢复二极管参数、尺寸、规格

编辑:ll SFP6002-ASEMI代理海矽美快恢复二极管参数、尺寸、规格 型号:SFP6002 品牌:ASEMI 封装:TO-247AB 恢复时间:30ns 正向电流:60A 反向耐压:200V 芯片大小:102MIL*2 芯…

几个影响 cpu cache 性能因素及 cache 测试工具介绍

》内核新视界文章汇总《 文章目录 1 cache 性能及影响因素1.1 内存访问和性能比较1.2 cache line 对性能的影响1.3 L1 和 L2 缓存大小1.4 指令集并行性对 cache 性能的影响1.5 缓存关联性对 cache 的影响1.6 错误的 cacheline 共享 (缓存一致性)1.7 硬件设计 2 cpu cache benc…

【EI/SCOPUS会议征稿】第四届机器学习与计算机应用国际学术会议(ICMLCA 2023)

ICMLCA 2023 第四届机器学习与计算机应用国际学术会议 2023 4th International Conference on Machine Learning and Computer Application 第四届机器学习与计算机应用国际学术会议(ICMLCA 2023)定于2023年10月27-29日在中国杭州隆重举行。本届会议将主要关注机器学习和计算…

rk3568 Debian11 如何打开热点

思路:1. 下载必要工具(hostapt、dnsmasq)2. 配置网络(无线网卡配置静态IP)3. 配置hostapt配置文件4. 配置DHCP服务5. 启动服务(hostapd/dnsmasq/network)6. IP转发(这一步决定了是否…

【QT 网络云盘客户端】——登录界面功能的实现

目录 1.注册账号 2.服务器ip地址和端口号设置 3. 登录功能 4.读取配置文件 5.显示主界面 1.注册账号 1.点击注册页面,将数据 输入 到 用户名,昵称,密码,确认密码,手机,邮箱 的输入框中, 点…

Vue3 导出word

🙂博主:锅盖哒 🙂文章核心:导出word 目录 1.首先,你需要安装docxtemplater库。可以使用npm或yarn来安装: 2.在Vue组件中,你可以使用docxtemplater来生成Word文档并提供一个导出按钮供用户下载…

线性表之顺序表

在计算机科学中,数据结构是非常重要的基础知识之一。数据结构为我们提供了组织和管理数据的方法和技巧,使得我们可以高效地存储、检索和操作数据。而顺序表作为数据结构中最基本、最常用的一种存储结构,也是我们学习数据结构的第一步。 本文将…

idea 关于高亮显示与选中字符串相同的内容

dea 关于高亮显示与选中字符串相同的内容,本文作为个人备忘的同时也希望可以作为大家的参考。 依次修改File-settings-Editor-Color Scheme-General菜单下的Code-Identifier under caret和Identifier under caret(write)的Backgroud色值,可以参考下图。…

阿里云域名备案

最好的爱情,不是因为我们彼此需要在一起,而是因为我们彼此想要在一起。 阿里云的域名如何备案,域名备案和ICP备案一样吗?? 截至我所掌握的知识(2021年9月),阿里云的域名备案和ICP备案…

【GoLang】基础语法(上)

Go基础语法(上) 文章目录 Go基础语法(上)01注释02变量定义初始化打印内存地址变量交换匿名变量变量的作用域 03常量iota 04基本数据类型布尔类型数字类型整型浮点型 字符与字符串 05数据类型转换06运算符算术运算符关系运算符逻辑运算符位运算符赋值运算符 07获取键盘输入 01注…

Java 设计模式 - 简单工厂模式 - 创建对象的简便之道

简单工厂模式是一种创建型设计模式,它提供了一种简单的方式来创建对象,而无需暴露对象创建的逻辑。在本篇博客中,我们将深入了解简单工厂模式的概念、实现方式以及如何在Java中使用它来创建对象。 为什么使用简单工厂模式? 在软…

PC音频框架学习

1.整体链路 下行播放: App下发音源→CPU Audio Engine 信号处理→DSP数字信号处理→Codec DAC→PA→SPK 上行录音: MIC拾音→集成运放→Codec ADC→DSP数字信号处理→CPU Audio Engine 信号处理→App 2.硬件 CPU PCH DSP(可选) Codec PA SPKbox MIC…

Vue 3 中的插槽(Slots)用法

插槽&#xff08;Slots&#xff09;是 Vue 组件中一种非常有用的功能&#xff0c;用于在父组件中向子组件传递内容。Vue 3 引入了 <script setup> 语法&#xff0c;使得组件的写法更加简洁和易读。在本篇博客中&#xff0c;我们将探讨在 Vue 3 中使用插槽的不同方式&…

数据结构与算法基础-学习-27-图之最短路径之Dijkstra(迪杰斯特拉)算法

一、最短路径应用案例 例如从北京到上海旅游&#xff0c;有多条路可以到目的地&#xff0c;哪条路线最短&#xff0c;哪条路线最省钱&#xff0c;就是典型的最短路径问题。 二、最短路径问题分类 最短路径问题可以分为两类&#xff0c;第一类为&#xff1a;两点间最短路径。第…

函数栈帧的创建和毁销【C语言版】

大家好&#xff0c;我是深鱼~ 【前言】前期学习的时候&#xff0c;我们可能有很多的困惑 比如&#xff1a; 局部变量是怎么创建的呢&#xff1f; 为什么局部变量的值是随机值&#xff1f; 函数是怎么传参的&#xff1f;传参的顺序是怎么样的&#xff1f; 形参和实参是什么关系…