NoSQL之 Redis 部署,配置与优化

news2025/1/15 18:17:09

文章目录

  • NoSQL之 Redis配置与优化
  • 一.关系数据库与非关系型数据库
    • 1.关系型数据库
    • 2.非关系型数据库
    • 3.关系型数据库和非关系型数据库区别
    • 4.非关系型数据库产生背景
  • 二.Redis简介
    • 1.了解Redis
    • 2.Redis 具有以下几个优点
    • 3.Redis为何这么快
  • 三.Redis 安装及应用
    • 1.Redis 安装部署
    • 2.Redis 命令工具
      • 2.1 redis-cli 命令行工具
      • 2.2 redis-benchmark 测试工具
    • 3.Redis 数据库常用命令
      • 3.1 keys 命令可以取符合规*或?等选项来使用
      • 3.2 exists 命令可以判断键值是否存在
      • 3.3 del 命令可以删除当前数据库的指定 key
      • 3.4 type 命令可以获取 key 对应的 value 值类型
      • 3.5 rename 命令是对已有 key 进行重命名。(覆盖)
      • 3.6 renamenx 命令的作用是对已有 key 进行重命名,并检测新名是否存在,如果目标 key 存在则不进行重命名。(不覆盖)
      • 3.7 dbsize 命令的作用是查看当前数据库中 key 的数目。
      • 3.8 使用config set requirepass yourpassword命令给redis数据库设置密码
    • 4.Redis 多数据库常用命令
      • 4.1 多数据库间切换
      • 4.2 多数据库间移动数据
      • 4.3 清除数据库内数据

NoSQL之 Redis配置与优化

一.关系数据库与非关系型数据库

1.关系型数据库

(1)结构化的数据库,创建在关系模型(二维表格模型)基础上,一般面向于记录。
(2)SQL 语句(标准数据查询语言)就是一种基于关系型数据库的语言,用于执行对关系型数据库中数据的检索和操作。
(3) 主流的关系型数据库包括 Oracle、MySQL、SQL Server、Microsoft Access、DB2、PostgreSQL 等。

2.非关系型数据库

(1)除了主流的关系型数据库外的数据库,都认为是非关系型。
(2)不需要预先建库建表定义数据存储表结构,每条记录可以有不同的数据类型和字段个数(比如微信群聊里的文字、图片、视频、音乐等)。
(3)主流的 NoSQL 数据库有 Redis、MongBD、Hbase、Memcached 等。

3.关系型数据库和非关系型数据库区别

(1)数据存储方式不同

  • 关系型数据天然就是表格式的,存储在数据表的行和列中。数据表关联协作存储,容易提取数据。
  • 非关系型数据不适合存储在数据表的行和列中,大块组合在一起。非关系型数据通常存储在数据集中,就像文档、键值对或者图结构。数据及其特性是选择数据存储和提取方式的首要影响因素。

(2)扩展方式不同
因为要支持日益增长的需求当然要扩展。要支持更多并发量,

  • SQL数据库是纵向扩展,提高处理能力,使用速度更快速的计算机,处理相同的数据集更快。因为数据存储在关系表中,操作的性能瓶颈可能涉及很多克服。虽然SQL数据库有很大扩展空间,但最终肯定会达到纵向扩展的上限个表,这都需要通过提高计算机性能来。

  • NoSQL数据库是横向扩展的。非关系型数据存储天然就是分布式的,NoSQL数据库的扩展可以通过给资源池添加更多普通的数据库服务器(节点)来分担负载。

    总:

    关系:纵向 比如说硬件中添加内存
    非关:横向 天然分布式

(3)对事务性的支持不同
如果计数据操作需要高事务性或者复杂数据查询需要控制执行划,

  • SQL数据库从性能和稳定性方面考虑是你的最佳选择。SQL数据库支持对事务原子性细粒度控制,并且易于回滚事务。
  • NoSQL数据库也可以使用事务操作,稳定性方面比关系型数据库低,因在操作的扩展性和大数据量处理方面。

4.非关系型数据库产生背景

可用于应对 Web2.0 纯动态网站类型的三高问题。
(1)High performance——对数据库高并发读写需求
(2)Huge Storage——对海量数据高效存储与访问需求
(3)High Scalability && High Availability——对数据库高可扩展性与高可用性需求

关系型数据库和非关系型数据库都有各自的特点与应用场景,两者的紧密结合将会给Web2.0的数据库发展带来新的思路。

关系数据库关注在关系上,非关系型数据库关注在存储上。

例如,在读写分离的MySQL数据库环境中,可以把经常访问的数据存储在非关系型数据库中,提升访问速度。
Mysql 高热数据——redis
web——redis——mysql
CPU——内存/缓存—磁盘

二.Redis简介

1.了解Redis

(1)Redis是一个开源的、使用 C 语言编写的 NoSQL 数据库。
(2)基于内存运行并支持持久化,采用key-value(键值对)的存储形式。

(3)单进程模型,一台服务器上可以同时启动多个Redis进程,Redis的实际处理速度则是完全依靠于主进程的执行效率。若在服务器上只运行一个Redis进程,当多个客户端同时访问时,服务器的处理能力是会有一定程度的下降;若在同一台服务器上开启多个Redis进程,Redis在提高并发处理能力的同时会给服务器的CPU造成很大压力。

即:在实际生产环境中,需根据实际的需求来决定开启多少个Redis进程。若对高并发要求更高一些,可能会考虑在同一台服务器上开启多个进程。若CPU资源比较紧张,采用单进程。

2.Redis 具有以下几个优点

(1)具有极高的数据读写速度:数据读取的速度最高可达到 110000 次/s,数据写入速度最高可达到 81000 次/s。
(2)支持丰富的数据类型:支持 key-value(键值)、Strings(字符串)、Lists(列表)、Hashes(哈希散列值)、Sets(有序) 及 Sorted Sets(无序排序) 等数据类型操作。
(3)支持数据的持久化:可以将内存中的数据保存在磁盘中,重启的时候可以再次加载进行使用。
(4)原子性:Redis 所有操作都是原子性的。
(5)支持数据备份:即 master-salve 模式的数据备份。

Redis作为基于内存运行的数据库,缓存是其最常应用的场景之一。Redis常见应用场景还包括获取最新N个数据的操作、排行榜类应用、计数器应用、存储关系、实时分析系统、日志记录。

3.Redis为何这么快

(1)Redis是一款纯内存结构,避免了磁盘I/o等耗时操作。
(2)Redis命令处理的核心模块为单线程,减少了锁竞争,以及频繁创建线程和销毁线程的代价,减少了线程上下文切换的消耗。
(3)采用了 I/O 多路复用机制,大大提升了并发效率。

注:在 Redis 6.0 中新增加的多线程也只是针对处理网络请求过程采用了多线性,而数据的读写命令,仍然是单线程处理的。

三.Redis 安装及应用

1.Redis 安装部署

#关闭防火墙、安全机制
systemctl stop firewalld
setenforce 0
#安装编译 C 和 C++ 程序所需的工具和库
yum install -y gcc gcc-c++ make
#将redis移到/opt下,解压
tar zxvf redis-5.0.7.tar.gz -C /opt/
#编译安装
cd /opt/redis-5.0.7/
make -j2 && make install
make PREFIX=/usr/local/redis install
#由于Redis源码包中直接提供了 Makefile 文件,所以在解压完软件包后,不用先执行 ./configure 进行配置,可直接执行 make 与 make install 命令进行安装。
#执行软件包提供的 install_server.sh 脚本文件设置 Redis 服务所需要的相关配置文件
cd /opt/redis-5.0.7/utils
./install_server.sh
......					#一直回车
Please select the redis executable path [/usr/local/bin/redis-server] /usr/local/redis/bin/redis-server  	#需要手动修改为 /usr/local/redis/bin/redis-server ,注意要一次性正确输入

注:

Selected config:

#默认侦听端口为6379

Port : 6379

#配置文件路径

Config file : /etc/redis/6379.conf

#日志文件路径

Log file : /var/log/redis_6379.log

#数据文件路径

Data dir : /var/lib/redis/6379

#可执行文件路径

Executable : /usr/local/redis/bin/redis-server

#客户端命令工具

Cli Executable : /usr/local/bin/redis-cli

#把redis的可执行程序文件放入路径环境变量的目录中便于系统识别
ln -s /usr/local/redis/bin/* /usr/local/bin/
#当 install_server.sh 脚本运行完毕,Redis 服务就已经启动,默认监听端口为 6379
netstat -natp | grep redis

在这里插入图片描述

#Redis 服务控制
/etc/init.d/redis_6379 stop				#停止
/etc/init.d/redis_6379 start			#启动
/etc/init.d/redis_6379 restart			#重启
/etc/init.d/redis_6379 status			#状态
#修改配置 /etc/redis/6379.conf 参数
vim /etc/redis/6379.conf
bind 127.0.0.1 192.168.186.10				#70行,添加 监听的主机地址
port 6379									#93行,Redis默认的监听端口
daemonize yes								#137行,启用守护进程
pidfile /var/run/redis_6379.pid				#159行,指定 PID 文件
loglevel notice								#167行,日志级别
logfile /var/log/redis_6379.log				#172行,指定日志文件
/etc/init.d/redis_6379 restart

2.Redis 命令工具

命令工具注解
redis-server用于启动 Redis 的工具
redis-benchmark用于检测 Redis 在本机的运行效率
redis-check-aof修复 AOF 持久化文件
redis-check-rdb修复 RDB 持久化文件
redis-cliRedis 命令行工具

2.1 redis-cli 命令行工具

(1)语法

redis-cli -h host -p port -a password
命令注释
-h指定远程主机
-p指定 Redis 服务的端口号
-a指定密码,未设置数据库密码可以省略-a 选项

若不添加任何选项表示,则使用 127.0.0.1:6379 连接本机上的 Redis 数据库

(2)示例

redis-cli -h 192.168.186.10 -p 6379
#默认本虚拟机上的redis数据库
redis-cli -h 127.0.0.1 -p 6379

2.2 redis-benchmark 测试工具

redis-benchmark 是官方自带的 Redis 性能测试工具,可以有效的测试 Redis 服务的性能。
(1)基本的测试语法

redis-benchmark [选项] [选项值]。
命令注释
-h指定服务器主机名。
-p指定服务器端口。
-s指定服务器 socket
-c指定并发连接数。
-n指定请求数。
-d以字节的形式指定 SET/GET 值的数据大小。
-k1=keep alive 0=reconnect 。
-rSET/GET/INCR 使用随机 key, SADD 使用随机值。
-P通过管道传输请求。
-q强制退出 redis。仅显示 query/sec 值。
–csv以 CSV 格式输出。
-l生成循环,永久执行测试。
-t仅运行以逗号分隔的测试命令列表。
-IIdle 模式。仅打开 N 个 idle 连接并等待。

(2)示例

#向 IP 地址为 192.168.186.10、端口为 6379 的 Redis 服务器发送 100 个并发连接与 100000 个请求测试性能
[root@test3 bin]# redis-benchmark -h 192.168.186.10 -p 6379 -c 100 -n 100000

注释:
====== MSET (10 keys) ======
  100000 requests completed in 0.61 seconds
  100 parallel clients
  3 bytes payload
  keep alive: 1

97.77% <= 1 milliseconds
100.00% <= 1 milliseconds
163132.14 requests per second

        MSET(10个键)
0.61秒内完成100000次请求100个并行客户端
3字节负载保持活力:1
97.77%<=1毫秒
每秒100.00%<=1毫秒163132.14个请求
#测试存取大小为 100 字节的数据包的性能
redis-benchmark -h 192.168.186.10 -p 6379 -q -d 100

注释:
MSET (10 keys): 153139.36 requests per second

MSET(十个键):每秒15313936次请求
#测试本机上 Redis 服务在进行 set 与 lpush 操作时的性能
redis-benchmark -t set,lpush -n 100000 -q

注释:
SET: 184162.06 requests per second
LPUSH: 190114.06 requests per second

设置:每秒184162.06次请求
LPUSH:每秒190114.06次请求

3.Redis 数据库常用命令

(1)语法格式

set:存放数据,命令格式为 set key value
get:获取数据,命令格式为 get key

(2)示例

[root@test3 bin]# redis-cli -h 127.0.0.1 -p 6379
127.0.0.1:6379> set test zjf
OK
127.0.0.1:6379> get test
"zjf"

3.1 keys 命令可以取符合规*或?等选项来使用

#准备测试数据
127.0.0.1:6379> set h1 1
127.0.0.1:6379> set h2 2
127.0.0.1:6379> set h3 3
127.0.0.1:6379> set c1 4
127.0.0.1:6379> set c5 5
127.0.0.1:6379> set c66 5
127.0.0.1:6379> set c88 8
#查看当前数据库中所有键
127.0.0.1:6379> keys *

1) "myset:__rand_int__"
 2) "h3"
 3) "c5"
 4) "key:__rand_int__"
 5) "mylist"
 6) "h1"
 7) "c1"
 8) "c88"
 9) "c66"
10) "h2"
11) "counter:__rand_int__"
12) "test"
#查看当前数据库中以 c 开头的数据
127.0.0.1:6379> keys c*
1) "c5"
2) "c1"
3) "c88"
4) "c66"
5) "counter:__rand_int__"
#查看当前数据库中以 c 开头后面包含任意一位的数据
127.0.0.1:6379> keys c?
1) "c5"
2) "c1"
#查看当前数据库中以 c 开头后面包含任意两位的数据
127.0.0.1:6379> keys c??
1) "c88"
2) "c66"

3.2 exists 命令可以判断键值是否存在

#判断 test 键是否存在
127.0.0.1:6379> exists test
# 1 表示 teacher 键是存在
(integer) 1
127.0.0.1:6379> exists test1
# 0 表示 tea 键不存在
(integer) 0

3.3 del 命令可以删除当前数据库的指定 key

#查看库
127.0.0.1:6379> keys *
 1) "myset:__rand_int__"
 2) "h3"
 3) "c5"
 4) "key:__rand_int__"
 5) "mylist"
 6) "h1"
 7) "c1"
 8) "c88"
 9) "c66"
10) "h2"
11) "counter:__rand_int__"
12) "test"
#删除c1
127.0.0.1:6379> del c1
(integer) 1
127.0.0.1:6379> get c1
#空值,删除成功
(nil)

3.4 type 命令可以获取 key 对应的 value 值类型

127.0.0.1:6379> type h3
string

3.5 rename 命令是对已有 key 进行重命名。(覆盖)

(1)命令格式

rename 源key 目标key

使用rename命令进行重命名时,无论目标key是否存在都进行重命名,且源key的值会覆盖目标key的值。

在实际使用过程中,建议先用 exists 命令查看目标 key 是否存在,然后再决定是否执行 rename 命令,以避免覆盖重要数据。

127.0.0.1:6379> keys h*
1) "h3"
2) "h1"
3) "h2"

127.0.0.1:6379> rename h2 h22
OK
127.0.0.1:6379> keys h*
1) "h3"
2) "h1"
3) "h22"
127.0.0.1:6379> get c66
"5"
127.0.0.1:6379> get c88
"8"
127.0.0.1:6379> rename c66 c88
OK
127.0.0.1:6379> get c66
(nil)
127.0.0.1:6379> get c88
"5"

3.6 renamenx 命令的作用是对已有 key 进行重命名,并检测新名是否存在,如果目标 key 存在则不进行重命名。(不覆盖)

(1)格式

renamenx 源key 目标key

(2)示例

127.0.0.1:6379> get test
"hh"
127.0.0.1:6379> get c88
"5"
127.0.0.1:6379> rename c88 text
OK
127.0.0.1:6379> get text
"5"
127.0.0.1:6379> get c88
(nil)
127.0.0.1:6379> rename test text
OK
127.0.0.1:6379> get text
"hh"
127.0.0.1:6379> get test
(nil)

3.7 dbsize 命令的作用是查看当前数据库中 key 的数目。

127.0.0.1:6379> dbsize
(integer) 8
127.0.0.1:6379> keys *
1) "myset:__rand_int__"
2) "h3"
3) "key:__rand_int__"
4) "mylist"
5) "h1"
6) "h22"
7) "text"
8) "counter:__rand_int__"

3.8 使用config set requirepass yourpassword命令给redis数据库设置密码

127.0.0.1:6379> config set requirepass 123456
OK
#使用config get requirepass命令查看密码(一旦设置密码,必须先验证通过密码,否则所有操作不可用)
[root@test3 bin]# redis-cli -h 127.0.0.1 -p 6379
127.0.0.1:6379> keys *
(error) NOAUTH Authentication required.
127.0.0.1:6379> auth 123456
OK
127.0.0.1:6379> config get requirepass
1) "requirepass"
2) "123456"

4.Redis 多数据库常用命令

Redis 支持多数据库,Redis 默认情况下包含 16 个数据库,数据库名称是用数字 0-15 来依次命名的。
多数据库相互独立,互不干扰。

4.1 多数据库间切换

(1)命令格式

select 序号

使用 redis-cli 连接 Redis 数据库后,默认使用的是序号为 0 的数据库。

(2)示例

#切换至序号为 10 的数据库
127.0.0.1:6379> select 10
OK
#切换至序号为 15 的数据库
127.0.0.1:6379[10]> select 15
OK
#切换至序号为 0 的数据库
127.0.0.1:6379[15]> select 0
OK

4.2 多数据库间移动数据

(1)格式

move 键值 序号

(2)示例

127.0.0.1:6379> set k1 100
OK
127.0.0.1:6379> get k1
"100"
127.0.0.1:6379> select 1
OK
127.0.0.1:6379[1]> get k1
(nil)
#切换至目标数据库 0
127.0.0.1:6379[1]> select 0			
OK
#查看目标数据是否存在
127.0.0.1:6379> get k1				
"100"
#将数据库 0 中 k1 移动到数据库 1 中
127.0.0.1:6379> move k1 1			
(integer) 1
#切换至目标数据库 1
127.0.0.1:6379> select 1				
OK
#查看被移动数据
127.0.0.1:6379[1]> get k1			
"100"
127.0.0.1:6379[1]> select 0
OK
#在数据库 0 中无法查看到 k1 的值
127.0.0.1:6379> get k1				
(nil)

4.3 清除数据库内数据

FLUSHDB :清空当前数据库数据
FLUSHALL :清空所有数据库的数据,慎用!——需仔细确认

#FLUSHDB只会清除当前在的数据库
127.0.0.1:6379> flushdb
OK
127.0.0.1:6379> keys *
(empty list or set)

#其他的数据库中未被清楚
127.0.0.1:6379> select 1
OK
127.0.0.1:6379[1]> keys *
1) "k1"
127.0.0.1:6379[1]> get k1
"100"
#FLUSHALL清除所有
127.0.0.1:6379[4]> keys *
1) "4"
127.0.0.1:6379[4]> select 2
OK
127.0.0.1:6379[2]> keys *
1) "4"
2) "2"
127.0.0.1:6379[2]> flushall
OK
127.0.0.1:6379[2]> keys *
(empty list or set)
127.0.0.1:6379[2]> select 4
OK
127.0.0.1:6379[4]> keys *
(empty list or set)

总结
非关系数据库
1、数据保存在缓存中,利于读取速度/查询数据
2、架构位置灵活
3、分布式、扩展性高

关系数据库
1、安全性高(持久化)
2、事务处理能力强
3、任务控制能力强
4、可以做日志备份、恢复、容灾的能力更强一点

关系数据库
实例-----》 数据库-----》表(table)----》记录行(row)、数据字段(column)—》存储数据

非关系型数据库
实例—》数据库—》 集合(collection)—》键值对(key-value)
OK
127.0.0.1:6379[1]> keys *

  1. “k1”
    127.0.0.1:6379[1]> get k1
    “100”

#FLUSHALL清除所有
127.0.0.1:6379[4]> keys *

  1. “4”
    127.0.0.1:6379[4]> select 2
    OK
    127.0.0.1:6379[2]> keys *
  2. “4”
  3. “2”
    127.0.0.1:6379[2]> flushall
    OK
    127.0.0.1:6379[2]> keys *
    (empty list or set)
    127.0.0.1:6379[2]> select 4
    OK
    127.0.0.1:6379[4]> keys *
    (empty list or set)







# 总

总结
非关系数据库
1、数据保存在缓存中,利于读取速度/查询数据
2、架构位置灵活
3、分布式、扩展性高

关系数据库
1、安全性高(持久化)
2、事务处理能力强
3、任务控制能力强
4、可以做日志备份、恢复、容灾的能力更强一点


关系数据库
实例-----》 数据库-----》表(table)----》记录行(row)、数据字段(column)---》存储数据

非关系型数据库
实例---》数据库---》 集合(collection)---》键值对(key-value)
注:非关系型数据库不需要手动建数据库和集合

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/794360.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

linux网卡命名规则与修改方法

一.前言&#xff1a; 在早期的的操作系统中例如fedora13或者ubuntu15之前网卡命名的方式为eth0&#xff0c;eth1&#xff0c;eth2&#xff0c;属于biosdevname 命名规范。当然这是针对intel网卡的命名规则&#xff0c;对于realtek类型的网卡会命名为ens33。但是这个编号往往不一…

数据库运维——MySQL主从复制

1.理解MySQL主从复制原理。 2.完成MySQL主从复制。 一、MySQL主从复制原理 MySQL主从复制是指将一个MySQL数据库服务器&#xff08;称为主服务器&#xff09;上的数据复制到其他MySQL数据库服务器&#xff08;称为从服务器&#xff09;的过程。它的原理如下&#xff1a; 主服…

如何利用OpenAI的函数调用特性

如何利用OpenAI的函数调用特性 函数调用能实现哪些功能&#xff1f; 简单来说&#xff0c;函数调用功能可以助你在请求方法时构建结构化的数据。因为生成模型的特性&#xff0c;它产生的数据往往是无结构的&#xff0c;即使在提示(prompt)中指定了输出格式&#xff0c;但实际…

3-Linux实操

Linux实践操作 开关机、重启、用户登陆注销关机&重启用户登陆和注销 用户管理添加用户修改用户密码删除用户查询用户信息切换用户查看当前用户用户组的添加和删除用户和组相关文件 实用指令指定运行级别init 命令帮助指令文件目录类时间日期类搜索查找类&#x1f50d;压缩和…

新能源汽车直流充电桩和交流充电桩的区别

直流充电桩和交流充电桩的区别 你是否曾经想过&#xff0c;为什么有的电动汽车可以在半小时内充满电&#xff0c;而有的却需要几个小时?其实&#xff0c;这都取决于它们所使用的充电桩的不同。那么&#xff0c;直流充电桩和交流充电桩到底有哪些区别呢? 首先&#xff0c;工作…

网络变压器配套使用的网口连接器的选型注意事项及选购关注要点

Hqst盈盛&#xff08;华强盛&#xff09;电子导读&#xff1a;采购人员在网口连接器选型中如何选用到合适的产品&#xff0c;选用时要注意到哪些事项&#xff0c;这节将结合网口连接器实物和大家一起探讨&#xff0c;希望对大家有些帮助。 我们可以通过对下面五个方面的详细了解…

网工内推 | 售前、售后工程师,IE认证优先

01 广州佳杰科技有限公司 招聘岗位&#xff1a;IT售前工程师 职责描述&#xff1a; 1、负责所在区域 IT 产品的售前技术支持工作,包括客户交流、方案编写、配置报价、投标应标、测试、赋能等; 2、与厂商相关人员建立和保持良好的关系,相互配合,提高项目成功率和厂商满意度; 3、…

每日一题——链表中倒数最后k个结点

题目 输入一个长度为 n 的链表&#xff0c;设链表中的元素的值为 ai &#xff0c;返回该链表中倒数第k个节点。 如果该链表长度小于k&#xff0c;请返回一个长度为 0 的链表。 数据范围&#xff1a;0≤n≤$105&#xff0c;0≤ai≤109&#xff0c;0≤k≤109 要求&#xff1a;…

MongoDB索引结构,到底是B-Tree还是B+Tree,请看这里!!

起因 网上关于MongoDB的索引结构到底是b树&#xff0c;还是b树的争论有很多&#xff0c;无法统一结论。 由来 MongoDB从3.2版本开始默认采用了WiredTiger存储引擎&#xff0c;网上很多说法是此引擎是BTree的索引结构&#xff0c;甚至有图有真相。但是认为MongoDB一直是B-Tre…

Docker compose(容器编排)

Docker compose&#xff08;容器编排&#xff09; 一、安装Docker compose 1.安装Docker compose Docker Compose 环境安装 Docker Compose 是 Docker 的独立产品&#xff0c;因此需要安装 Docker 之后在单独安装 Docker Compose#下载 curl -L https://github.com/docker/co…

htmlCSS-----定位

目录 前言 定位 分类和取值 定位的取值 1.相对定位 2.绝对位置 元素居中操作 3.固定定位 前言 今天我们来学习html&CSS中的元素的定位&#xff0c;通过元素的定位我们可以去更好的将盒子放到我们想要的位置&#xff0c;下面就一起来看看吧&#xff01; 定位 定位posi…

HR SaaS厂商,进入决赛圈

在愈发需要降本增效的节点&#xff0c;数字化的价值也更在被越来越多的企业重新审视&#xff0c;这种重视不再是之前或有或无的可选项&#xff0c;而是基于真正人效比维度的必选项 作者|斗斗 编辑|皮爷 出品|产业家 SaaS行业&#xff0c;正在发生一些微妙的变化。 以HR …

如何提高小程序UV?实用策略助你增加用户规模和活跃度

摘要&#xff1a;小程序的UV&#xff08;Unique Visitors&#xff09;是衡量用户规模和活跃度的重要指标&#xff0c;对于开发者和运营者来说具有重要意义。本文将分享一些实用策略&#xff0c;帮助你提高小程序的UV&#xff0c;增加用户规模和活跃度。从优化推广渠道、提升用户…

css实现鼠标滑动左下角弹框带动画效果

代码 <div classNamekuang></div> css代码 .kuang {height: 500px;width: 400px;// background-color: #fff;position: absolute;z-index: 10;bottom: 0;transform: translateX(-390px)}.kuang:hover {animation: myanimation 3s linear 1;animation-fill-mode:f…

LT9211C 是一款MIPI/RGB/2PORT LVDS互转的芯片

LT9211C 1.描述&#xff1a; Lontium LT9211C是一个高性能转换器&#xff0c;可以在MIPI DSI/CSI-2/双端口LVDS和TTL之间相互转换&#xff0c;除了24位TTL到24位TTL&#xff0c;并且不推荐同步和DE的2端口10位LVDS和24位TTL之间的转换。LT9211C反序列化输入的MIPI/LVDS/TTL视…

认识雪花id

首先,个人理解,雪花id不是全球的,它只能保证一个分布式服务的范围内的ID是不重复的. 一.SnowFlake 雪花算法 SnowFlake 中文意思为雪花&#xff0c;故称为雪花算法。最早是 Twitter 公司在其内部用于分布式环境下生成唯一 ID。在2014年开源 scala 语言版本。 雪花算法的原理…

项目经理好,还是产品经理好?

我首先介绍一下产品经理和项目经理的区别&#xff0c;然后再说一下产品经理和项目经理的薪资差距&#xff0c;然后你自己决定做产品经理还是项目经理。 1、产品经理和项目经理的区别&#xff1a; 产品经理和项目经理的不同之处在于&#xff0c;产品经理注重思考&#xff0c;关…

操作系统18:磁盘I/O速度、磁盘可靠性、数据一致性

目录 1、提高磁盘I/O速度的途径 &#xff08;1&#xff09;磁盘高速缓存(Disk Cache) 1.1 - 数据交付(Data Delivery)方式 1.2 - 置换算法 1.3 - 周期性地写回磁盘 &#xff08;2&#xff09;提高磁盘I/O速度的其它方法 2.1 - 提前读 2.2 - 延迟写 2.3 - 优化物理块的…

存储简单了解

存储目前常用的有磁盘&#xff08;磁性存储器&#xff09;和固态硬盘&#xff08;半导体存储器&#xff09; 磁盘由盘片&#xff0c;磁头和移动磁头的机械装置组成。磁盘从空间结构上分为扇区和磁道&#xff0c;每个扇区存储大小一致。 固态硬盘由多个闪存芯片组成&#xff0c;…

性能测试怎么做?一文从5个方面带你做性能测试

大家好&#xff0c;今天小濠从5个方面来介绍性能测试 一、什么是性能测试 二、性能测试的目的 三、如何做性能测试 四、性能测试关注的指标 五、性能结果分析 一、什么是性能测试 是不断的通过不同场景的系统表现去探究系统设计与资源消耗之间的平衡。 我们可以认为性能测试是…