MQ - 闲聊MQ一二事儿 (Kafka、RocketMQ 、Pulsar )

news2024/11/24 2:20:29

文章目录

  • MQ的发展史
    • 阶段一:追求解耦
    • 阶段二:追求吞吐量与一致性
    • 阶段三:追求平台化
  • MQ的通用架构
    • 主题topic、生产者producer、消费者consumer
    • 分区partition
  • MQ 存储
    • Kafka
      • Good Design ---> 磁盘顺序写盘
      • Poor Impact---> topic 数量不能过大
    • RocketMQ
      • zookeeper vs namesrv
      • 局部顺序写(kafka) 与 完全顺序写(rocketmq)
      • Rocketmq 存储结构
    • Pulsar
      • 架构图(分层+分片)
      • 服务层设计
      • 存储层设计
      • 扩容
      • 容灾
  • 小结

在这里插入图片描述


MQ的发展史

在这里插入图片描述
如上图我们可以把消息队列的发展切分成了三个大的阶段

阶段一:追求解耦

  1. 2003-2010年,计算机软件行业兴起。
  2. 系统间强耦合是程序设计的难题。
  3. ActiveMQ和RabbitMQ等消息队列出现。
  4. 消息队列致力于解决系统间耦合和异步化操作问题。
  5. 系统间解耦和异步化是消息队列最主要的功能和使用场景。

阶段二:追求吞吐量与一致性

  1. 10 -12 年期间,大数据时代实时计算需求增长,数据规模扩大,Kafka应运而生满足消息队列高吞吐量和并发需求。
  2. 随着阿里电商业务发展,Kafka在可靠性、一致性、顺序消息等方面无法满足需求。
  3. RocketMQ诞生,吸收Kafka设计理念之余,解决其痛点。
  4. RocketMQ不依赖Zookeeper,增强可靠性、一致性、顺序消息能力。
  5. 阿里将RocketMQ开源,最终成为Apache项目,满足大数据 messaging 需求。

阶段三:追求平台化

  1. 平台化的产品会取代非平台化的产品,这是行业发展趋势。
  2. 2012年后,云计算、容器化兴起,公司开始把基础技术能力平台化。
  3. 阿里云、腾讯云等云服务的出现证明了这一趋势。
  4. Pulsar诞生于此背景下,目的是解决雅虎内部重复建设、消息队列隔离不好、数据迁移难等问题。
  5. Pulsar通过提供平台化的消息队列服务来解决这些问题。
  6. 平台化是Pulsar产生的核心原因,也是解决上述问题的关键所在。

MQ的通用架构

主题topic、生产者producer、消费者consumer

用吃饭的场景生动地诠释了消息队列的几个关键概念:

  1. 饭堂的不同档口(米饭、面、麻辣香锅)对应消息队列的主题(topic)概念。
  2. 用户选择某个档口排队取餐,这个过程相当于生产者生产了一条消息到该主题的消息队列中。
  3. 档口将餐食提供给用户,则相当于消费者从消息队列中消费了一条消息。
  4. 用户排队等待相当于消息在队列中的存储等待被消费的过程。
  5. 取餐按排队顺序进行,消费也是按顺序进行的。

通过日常生活的吃饭场景,形象地解释了消息队列的工作原理,包括消息主题、生产者、消费者、消息存储和消费等核心概念。这些概念抽象起来可能较难理解,但结合具象的例子就很容易理解了


分区partition

  1. 分区是消息队列的一种架构方式,类似于食堂的多个档口。
  2. 当消息数量增长时,可以通过增加分区数进行扩容,如食堂增加档口数。
  3. 增加分区可以扩大消息队列的并行处理能力,提高吞吐量,就像增加档口可以减少等待时间。
  4. 生产者可以根据分区规则,将消息发到不同分区,就像食客可以选择人少的档口。
  5. 消费者可以从多个分区并行消费消息,提高效率。
  6. Kafka之所以能达到高吞吐量,是因为它是通过分区实现消息队列并行化和横向扩展的。

总结为:分区实现了消息队列的并行化,是提升吞吐量和实现横向扩展的关键手段。


MQ 存储

特性和性能是存储结构的外在表现,其实质是存储设计。我们需要了解每种消息传递协议的特性,以便更好地理解它们的架构设计。

我们将首先介绍 Kafka、RocketMQ 和 Pulsar 的架构特点,然后比较它们在架构上的不同之处,以及这些不同之处如何影响它们的功能特性。

Kafka

  1. Kafka 架构中,服务节点没有主从之分,主从概念是针对某个 topic 下的分区。
  2. 存储单位为分区,通过不同方式分散在各个节点,形成各种架构图。
  3. 生产者数量为 1,消费者数量为 1,分区数为 2,副本数为 3,服务节点数为 3。
  4. 图中有两块绿色图案,分别为 topic1-partition1 分区和 topic1-partition2 分区,浅绿色方块为它们的副本。
  5. 对于服务节点 1,topic1-partition1 是主节点;对于服务节点 2,topic1-partition2 是主节点。

在这里插入图片描述
消息队列的大致工作流程如下:

  1. 生产者、消费者与元数据中心建立连接,并保持心跳,获取服务的实况和路由信息。
  2. 生产者将消息发送到 topic 下的任一分区中,通过算法保证每个 topic 下的分区尽可能均匀。
  3. 信息需要落盘才可以给上游返回 ack,以保证宕机后的信息的完整性。
  4. 在信息写成功主分区后,系统会根据策略选择同步复制还是异步复制,以保证单节点故障时的信息完整性。
  5. 消费者开始工作,拉取响应的信息,并返回 ack。
  6. 消费者在获取消息时,会根据偏移量 (offset) 进行拉取,每次拉取后偏移量加 1。

Good Design —> 磁盘顺序写盘

Kafka 在底层设计上强依赖于文件系统(一个分区对应一个文件系统),本质上是基于磁盘存储的消息队列,在我们固有印象中磁盘的读写速度是非常慢的,慢的原因是因为在读写的过程中所有的进程都在抢占“磁头”这把锁,磁头在读写之前需要将其移动到合适的位置,这个“移动”极其耗费时间,这也就是磁盘慢的原因,但是如何不用移动磁头呢,顺序写盘就诞生了。

Kafka 消息存储在分区中,每个分区对应一组连续的物理空间。新消息追加到磁盘文件末尾。消费者按顺序拉取分区数据消费。Kafka 的读写是顺序的,可以高效地利用 PageCache,解决磁盘读写的性能问题。

在这里插入图片描述
这一特性非常重要,很多组件的底层存储设计都会用到这点,理解好这点对理解消息队列尤为重要。

The Pathologies of Big Data


Poor Impact—> topic 数量不能过大

kafka 的整体性能收到了 topic 数量的限制,这和底层的存储有密不可分的关系,我们上面讲过,当消息来的时候,底层数据使用追加写入的方式,顺序写盘,使得整体的写性能大大提高,但这并不能代表所有情况,当我们 topic 数量从几个变成上千个的时候,情况就有所不同了

在这里插入图片描述

  • 左图代表了,队列中从头到尾的信息为:topic1、topic1、topic1、topic2,在这种情况下,很好地运用了顺序写盘的特性,磁头不用去移动
  • 右边图的情况,队列中从头到尾的信息为:topic1、topic2、topic3、topic4,当队列中的信息变的很分散的时候,这个时候我们会发现,似乎没有办法利用磁盘的顺序写盘的特性,因为每次写完一种信息,磁头都需要进行移动

就很好理解,为什么当 topic 数量很大时,kafka 的性能会急剧下降了。

当然没有其他办法了吗,当然有。我们可以把存储换成速度更快 ssd 或者针对每一个分区都搞一块磁盘当然这都是钱! 这也是架构设计中的一种 trade off

在这里插入图片描述


RocketMQ

对比 kafka,rocketmq 有两点很大的不同:

  • 元数据管理系统,从 zookeeper 变成了轻量级的独立服务集群
  • 服务节点变为 多主多从架构

在这里插入图片描述

zookeeper vs namesrv

ookeeper 是 cp 强一致架构的一种,其内部使用 zab 算法,进行信息同步和容灾,在信息量较小的情况下,性能较好,当信息交互变多,因为同步带来的性能损耗加大,性能和吞吐量降低。如果 zookeeper 宕机,会导致整个集群的不可用,对于一些交易场景,这是不可接受的

  • 相比 Zookeeper,RocketMQ 选择了轻量级的独立服务器 NameSRV。
  • NameSRV 使用简单的 K/V 结构保存信息。
  • NameSRV 支持集群模式,每个 NameSRV 相互独立,不进行任何通信。
  • Data 都保存在内存当中,Broker 的注册过程通过循环遍历所有 NameSRV 进行注册。

在这里插入图片描述

局部顺序写(kafka) 与 完全顺序写(rocketmq)

  • Kafka 将不同分区写入对应的文件系统中,保证了优秀的水平扩容能力。
  • RocketMQ 追求极致的消息写,将所有 topic 消息存储在同一个文件中,确保消息发送时按顺序写文件,提高可用性和吞吐量。
  • RocketMQ 的设计使得其不支持删除指定 topic 功能,因为 topic 信息在磁盘上是一段非连续的区域,不像 Kafka 一个 topic 是一段连续的区域。

在这里插入图片描述

Rocketmq 存储结构

RocketMQ 的存储结构设计是为了追求极致的消息写性能,它采用了混合存储的方式,将多个 Topic 的消息实体内容都存储于一个 CommitLog 中。在 RocketMQ 的存储架构中,有三个重要的存储文件,分别是 CommitLog、ConsumeQueue 和 IndexFile。

  1. CommitLog
    CommitLog 是存储消息的主体。Producer 发送的消息都会顺序写入 commitLog 文件,所以随着写入的消息增多,文件也会随之变大。单个文件大小默认 1G,文件名长度为 20 位,左边补零,剩余为起始偏移量。例如,00000000000000000000 代表了第一个文件,起始偏移量为 0,文件大小为 1G。当第一个文件写满了,第二个文件为 00000000001073741824,起始偏移量为 1073741824,以此类推。存储路径为 HOME/store/commitLog

  2. ConsumeQueue
    ConsumeQueue(逻辑消费队列) 可以看成基于 topic 的 commitLog 的索引文件。因为 CommitLog 是按照顺序写入的,不同的 topic 消息都会混淆在一起,而 Consumer 又是按照 topic 来消费消息的,这样的话势必会去遍历 commitLog 文件来过滤 topic,这样性能肯定会非常差,所以 rocketMq 采用 ConsumeQueue 来提高消费性能。即每个 Topic 下的每个 queueId 对应一个 Consumequeue,其中存储了单条消息对应在 commitLog 文件中的物理偏移量 offset,消息大小 size,消息 Tag 的 hash 值。存储路径为 HOME/store/consumequeue/topic/queueId/fileName

  3. IndexFile
    IndexFile 提供了一种可以通过 key(topicmsgId) 或时间区间来查询消息的方法。他的存在主要是针对在客户端 (生产者和消费者) 和控制台接口提供了根据 key 查询消息的实现。为了方便用户查询具体某条消息。IndexFile 的存储结构可以认为是一个 hashmap。存储路径为 HOME/store/index/. HOME/store/index/fileName 文件名 fileName 是以创建时的时间戳命名的。

在这里插入图片描述
我们在想想 kafka 是怎么做的,对的,kafka 并没有类似的烦恼,因为所有信息都是连续的

总结起来,RocketMQ 的存储结构设计非常复杂,但它通过合理的设计实现了高效的消息写入和读取性能。同时,RocketMQ 也支持多种存储方式,如本地存储、分布式存储和云存储等,可以满足不同场景下的需求。

在这里插入图片描述


Pulsar

架构图(分层+分片)

在这里插入图片描述

pulsar 相比与 kafka 与 rocketmq 最大的特点则是使用了分层和分片的架构,回想一下 kafka 与 rocketmq,一个服务节点即是计算节点也是服务节点,节点有状态使得平台化、容器化困难、数据迁移、数据扩缩容等运维工作都变的复杂且困难。

  • 分层:Pulsar 分离出了 Broker(服务层)和 Bookie(存储层)架构,Broker 为无状态服务,用于发布和消费消息,而 BookKeeper 专注于存储。

  • 分片 : 这种将存储从消息服务中抽离出来,使用更细粒度的分片(Segment)替代粗粒度的分区(Partition),为 Pulsar 提供了更高的可用性,更灵活的扩展能力


服务层设计

Broker 集群在 Pulsar 中形成无状态服务层。服务层是“无状态的”,所有的数据信息都存储在了 BookKeeper 上,所有的元信息都存储在了 zookeeper 上,这样使得一个 broker 节点没有任何的负担,这里的负担有几层含义:

  • 容器化没负担,broker 节点不用考虑任何数据状态带来的麻烦。
  • 扩容、缩容没负担,当请求量级突增或者降低的同时,可以随时的添加节点或者减少节点以动态的调整资源,使得整体在一种“合适”的状态。
  • 故障转移没负担,当一个节点宕机、服务不可用时,可以通快速地转移所负责的 topic 信息到别的基节点上,可以很好做到故障对外无感知。
    在这里插入图片描述

存储层设计

pulsar 使用了类似于 raft 的存储方案,数据会并发的写入多个存储节点上,下图为四存储节点、三副本架构。
在这里插入图片描述

broker2 节点当前需要写入 segment1 到 segment4 数据,流程为: segment1 并发写入 b1、b2、b3 数据节点、segment2 并发写入 b2、b3、b4 数据节点、segment3 并发写入 b3、b4、b1 数据节点、segment4 并发写入 b1、b2、b4 数据节点。这种写入方式称为条带化的写入方式

这种方式潜在的决定了数据的分布方式、通过路由算法,可以很快的找到对应数据的位置信息,在数据迁移与恢复中起到重要的作用。


扩容

当存储节点资源不足的时候,常规的运维操作就是动态扩容,相比 kafka 与 rocketmq、pulsar 不用考虑原数据的"人为"搬移工作,而是动态新增一个或者多个节点,broker 在写入数据时通过路有算法优先写入资源充足的节点,使得整体的资源利用力达到一个平衡的状态,如图所示。
在这里插入图片描述

以下是一张 kafka 分区和 pulsar 分片的一张对比图,左图是 kafka 的数据存储特点,因为数据和分区的强绑定,导致了第三艘小船没有任何的数据,而相比 pulsar,数据不和任何存储节点绑定,而是实时的动态写入,从数据分布和资源利用来说,要做的更好。

在这里插入图片描述


容灾

当 bookie4 存储节点宕机不可用时,如何恢复节点数据?这里只需要增加新的存储节点,并且拷贝 bookie2 与 bookie3 上的数据即可,这个过程对外是无感知的,实现了平滑切换,如图所示

在这里插入图片描述


小结

每种设计都有其特定的优势和局限,适应不同场景和需求。因此,在选用产品时,需要根据实际业务场景和需求,权衡各种设计的优缺点,作出最合适的选择。这种选择过程正是体现了设计与需求之间的平衡。所以,针对不同场景选择合适的产品是非常关键的。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/786698.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java Spring和Spring集成Mybatis

0目录 1.Spring 2.Spring集成Mybatis 1.Spring 特性 IOC:控制反转 AOP:面向切面 Spring组成部分 在SMM中起到的作用(粘合剂) Spring理念 OOP核心思想【万物皆对象】 Spring核心思想【万物皆Bean组件】 Spring优势 低侵入式 …

解决Jmeter响应内容显示乱码

一、问题描述 jmeter在执行接口请求后,返回的响应体里面出现乱码现象,尽管在调了对应请求的响应编码也无用,现找到解决办法。 二、解决办法 进入到jmeter的bin目录下,找到jmeter.properties,通过按ctrlF快速定位查找到…

手机图片转pdf?两种方法介绍

手机图片转pdf?如今,随着生活的数字化,我们的手机中储存了大量的照片。但是,如果需要将这些照片转换成PDF格式,该怎么办呢?下面,小编就给大家介绍三种方法来实现这一目标。 第一种方法&#xff…

SpringBoot 统一功能处理:用户登录权限校验-拦截器、异常处理、数据格式返回

本篇将要学习 Spring Boot 统一功能处理模块,这也是 AOP 的实战环节 用户登录权限的校验实现接口 HandlerInterceptor WebMvcConfigurer异常处理使用注解 RestControllerAdvice ExceptionHandler数据格式返回使用注解 ControllerAdvice 并且实现接口 ResponseBody…

基于STM32CubeMX和keil采用STM32F407的基本定时器中断实现LED闪烁

文章目录 前言1. 电路原理图理解2. 基本定时器2.1 STM32定时器中断的流程:2.2 部分参数详解2.2.1 时钟源2.2.2 预分频系数2.2.3 自动重装载值 3. STM32CubeMX参数配置3.1GPIO配置3.2 时钟配置3.2 配置定时器相关参数3.3 Debug配置3.4 中断配置3.5 代码生成 4. keil代…

【每日一题】—— B. Ternary String (Educational Codeforces Round 87 (Rated for Div. 2))

🌏博客主页:PH_modest的博客主页 🚩当前专栏:每日一题 💌其他专栏: 🔴 每日反刍 🟡 C跬步积累 🟢 C语言跬步积累 🌈座右铭:广积粮,缓称…

ftp传文件越来越慢的原因,以及解决方案

FTP 是一种常用的文件传输协议,它基于客户端-服务端模型工作,允许用户通过网络传输文件。但是,有时候在使用 FTP 的过程中,文件传输速度会逐渐变慢,这给用户带来了很多困扰。本文将分析 FTP 传文件变慢的原因&#xff…

Jwt(Json web token)——从Http协议到session+cookie到Token Jwt介绍 Jwt的应用:登陆验证的流程

目录 引出从Http协议到session&cookie到TokenHTTP协议session & cookiesessioncookie为什么需要session & cookie? JavaEE传统解决长连接方案问题:分布式不适用解决方案:令牌Token Jwt,Json web tokenjwt的结构Header加密算法Ba…

MySQL Workbench的使用

MySQL Workbench 是一款专门为 MySQL 设计的可视化数据库管理软件,我们可以在自己的计算机上,使用图形化界面远程管理 MySQL 数据库。 MySQL Workbench 的初始界面如下图所示。 点击方框后会进入这个界面,这样就与数据库连接完毕了 使用 Wo…

Docker 全栈体系(四)

Docker 体系(高级篇) 一、Docker复杂安装 1. 安装mysql主从复制 主从搭建步骤 新建主服务器容器实例3307 docker run -p 3307:3306 --name mysql-master \ -v /mydata/mysql-master/log:/var/log/mysql \ -v /mydata/mysql-master/data:/var/lib/mysq…

SpringBoot-4

Spring Boot 使用 slf4j 日志 在开发中经常使用 System.out.println()来打印一些信息,但是这样不好,因为大量的使用 System.out 会增加资源的消耗。实际项目中使用的是 slf4j 的 logback 来输出日志,效率挺高的,Spring Boot 提供…

【go语言学习笔记】02 Go语言高效并发

文章目录 一、并发基础1. 协程(Goroutine)2. Channel2.1 声明2.2 无缓冲 channel2.3 有缓冲 channel2.4 关闭 channel2.5 单向 channel2.6 selectchannel 示例 二、同步原语1. 资源竞争2. 同步原语2.1 sync.Mutex2.2 sync.RWMutex2.3 sync.WaitGroup2.4 …

2023 NVIDIA 创乐博 CUDA 线上训练营笔记

一、学习ubuntu 2.1修改权限 linux指令学习 cd course //进入course目录 ls //列出文件夹 clean //清屏幕//---修改权限 chmod gow text //给text文件夹添加可写权限 chmod gw make.ip chmod 755 text 可读可写可执行(user goup o…

MySQL MHA高可用配置及故障切换

1.什么是 MHA MHA(Master High Availability)是一套优秀的MySQL高可用环境下故障切换和主从复制的软件。 MHA 的出现就是解决MySQL 单点的问题。 MySQL故障切换过程中,MHA能做到0-30秒内自动完成故障切换操作。 MHA能在故障切换的…

uni-app中uni-table的uni-tr无点击事件

uni-app中uni-table的uni-tr无点击事件 问题描述解决方法一解决方法二解决方法三 问题描述 本文记录用于记录使用uni-app开发过程遇到的bug。 在使用uni-table时,想给uni-table的行添加行点击事件;但发现官方并未给uni-tr增加点击行点击事件(…

gitee 配置ssh 公钥(私钥)

步骤1:添加/生成SSH公钥,码云提供了基于SSH协议的Git服务,在使用SSH协议访问项目仓库之前,需要先配置好账户/项目的SSH公钥。 绑定账户邮箱: git config --global user.name "Your Name" git config --glob…

Linux静态库+demo

1.什么是Linux静态库呢? Linux静态库(Static Library)是一种包含已编译的目标代码的文件集合,用于在链接时与其他目标代码一起组成可执行文件。与动态库(Dynamic Library)不同,静态库的代码在编…

集成学习Boosting - AdaBoost

目录 1. Boosting方法的基本思想 1.1 Bagging VS Boosting 1.2 Boosting算法的基本元素与基本流程 1.3 sklearn中的Boosting算法 2. AdaBoost 3 AdaBoost的基本参数与损失函数 3.1 参数 base_estimator,属性base_estimator_与estimators_ 3.1. 参数 learnin…

构建高效供应商管理体系,提升企业采购能力

随着企业采购规模的不断扩大和全球化竞争的加剧,供应商管理变得越来越重要。构建一个高效的供应商管理体系是企业提升采购能力、降低采购成本的关键一环。本文将重点探讨供应商管理体系的意义和作用,并介绍如何构建一个高效的供应商管理体系。 一、供应商…