疲劳驾驶检测和识别2:Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)

news2024/11/25 18:54:23

疲劳驾驶检测和识别2:Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)

目录

疲劳驾驶检测和识别2:Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)

1.疲劳驾驶检测和识别方法

2.疲劳驾驶数据集

 (1)疲劳驾驶数据集说明

 (2)自定义数据集

3.人脸检测模型

4.疲劳驾驶分类模型训练

(1)项目安装

(2)准备数据

(3)疲劳驾驶识别分类模型训练(Pytorch)

(4) 可视化训练过程

(5) 疲劳驾驶识别效果

(6) 一些优化建议

(7) 一些运行错误处理方法

5.项目源码下载(Python版)

6. C++实现疲劳驾驶检测识别

7. Android实现疲劳驾驶检测识别


这是项目《疲劳驾驶检测和识别》系列之《Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)》;项目基于深度学习框架Pytorch开发一个高精度,可实时疲劳驾驶检测和识别算法;项目源码支持模型有resnet18,resnet34,resnet50, mobilenet_v2以及googlenet等常见的深度学习模型,用户也可以自定义自己的模型进行训练;项目源码配套了完整的训练代码和数据集,配置好开发环境,即可开始训练。

准确率还挺高的,采用轻量级mobilenet_v2模型的疲劳驾驶识别准确率也可以高达97.8682%左右,满足业务性能需求。

模型input sizeTest准确率
mobilenet_v2112×11297.8682
googlenet112×11298.4496
resnet18112×11298.2558

先展示一下,Python版本的疲劳驾驶检测和识别Demo效果

 

尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/131834946


更多项目《疲劳驾驶检测和识别》系列文章请参考:

  1. 疲劳驾驶检测和识别1: 疲劳驾驶检测和识别数据集(含下载链接)https://blog.csdn.net/guyuealian/article/details/131718648
  2. 疲劳驾驶检测和识别2:Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)https://blog.csdn.net/guyuealian/article/details/131834946
  3. 疲劳驾驶检测和识别3:Android实现疲劳驾驶检测和识别(含源码,可实时检测)https://blog.csdn.net/guyuealian/article/details/131834970

  4. 疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测)https://panjinquan.blog.csdn.net/article/details/131834980


1.疲劳驾驶检测和识别方法

疲劳驾驶检测和识别方法有多种实现方案,这里采用最常规的方法:基于人脸检测+疲劳驾驶分类识别方法,即先采用通用的人脸检测模型,进行人脸检测定位人体区域,然后按照一定规则裁剪人脸检测区域,再训练一个疲劳驾驶行为识别分类器,完成疲劳驾驶检测和识别任务;

这样做的好处,是可以利用现有的人脸检测模型进行人脸检测,而无需重新标注疲劳驾驶的人脸检测框,可减少人工标注成本低;而疲劳驾驶分类数据相对而言比较容易采集,分类模型可针对性进行优化。

当然,也可以直接基于目标检测的方法直接检测疲劳驾驶和非疲劳驾驶,项目也提供了疲劳驾驶目标检测的数据集


2.疲劳驾驶数据集

 (1)疲劳驾驶数据集说明

在疲劳驾驶检测和识别算法开发中,我们需要定义疲劳驾驶的行为状态,项目将疲劳驾驶状态分为两个状态,分别为:疲劳(drowsy),不疲劳(undrowsy),为了便于大家理解,这里给出这两个状态的图示说明

  • 疲劳(drowsy): 如果驾驶过程中出现闭眼,打哈欠等疲劳困倦等表情动作,则认为是疲劳驾驶(drowsy)
  • 不疲劳(undrowsy):正常情况下,没有出现闭眼,打哈欠的表情动作,则认为是清醒状态,即非疲劳状态(undrowsy)

关于疲劳驾驶数据集的使用说明请参考我的一篇博客: https://blog.csdn.net/guyuealian/article/details/131718648

项目提供了疲劳驾驶检测数据集和疲劳驾驶分类数据集,由于我们的实现方案采用基于人脸检测+疲劳驾驶分类识别方法,因此模型训练只使用了疲劳驾驶分类数据集:Drowsy-Driving-Cls1,Drowsy-Driving-Cls2;疲劳驾驶检测数据集并未使用。

 (2)自定义数据集

如果需要新增类别数据,或者需要自定数据集进行训练,可参考如下进行处理:

  • 建立Train和Test数据集,要求相同类别的图片,放在同一个文件夹下;且子目录文件夹命名为类别名称,如

  • 类别文件:一行一个列表:​class_name.txt​
     (最后一行,请多回车一行)
A
B
C
D

  • 修改配置文件的数据路径:configs/​config.yaml​
train_data: # 可添加多个数据集
  - 'data/dataset/train1' 
  - 'data/dataset/train2'
test_data: 'data/dataset/test'
class_name: 'data/dataset/class_name.txt'
...
...

3.人脸检测模型

本项目人脸检测训练代码请参考:https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB 

这是一个基于SSD改进且轻量化后人脸检测模型,很slim,整个模型仅仅1.7M左右,在普通Android手机都可以实时检测。人脸检测方法在网上有一大堆现成的方法可以使用,完全可以不局限我这个方法。

当然可以基于YOLOv5训练一个人脸检测模型:人脸检测和行人检测2:YOLOv5实现人脸检测和行人检测(含数据集和训练代码)


4.疲劳驾驶分类模型训练

准备好疲劳驾驶识别数据后,接下来就可以开始训练疲劳驾驶识别分类模型了;项目模型支持resnet18,resnet34,resnet50, mobilenet_v2以及googlenet等常见的深度学习模型,考虑到后续我们需要将疲劳驾驶识别模型部署到Android平台中,因此项目选择计算量比较小的轻量化模型mobilenet_v2;如果不用端上部署,完全可以使用参数量更大的模型,如resnet50等模型。

 整套工程项目基本结构如下:

.
├── classifier                 # 训练模型相关工具
├── configs                    # 训练配置文件
├── data                       # 训练数据
├── libs           
│   ├── convert                # 将模型转换为ONNX工具
│   ├── light_detector         # 人脸检测
│   ├── detector.py            # 人脸检测demo
│   └── README.md               
├── demo.py              # demo
├── README.md            # 项目工程说明文档
├── requirements.txt     # 项目相关依赖包
└── train.py             # 训练文件

(1)项目安装

 项目依赖python包请参考requirements.txt,使用pip安装即可:

numpy==1.16.3
matplotlib==3.1.0
Pillow==6.0.0
easydict==1.9
opencv-contrib-python==4.5.2.52
opencv-python==4.5.1.48
pandas==1.1.5
PyYAML==5.3.1
scikit-image==0.17.2
scikit-learn==0.24.0
scipy==1.5.4
seaborn==0.11.2
tensorboard==2.5.0
tensorboardX==2.1
torch==1.7.1+cu110
torchvision==0.8.2+cu110
tqdm==4.55.1
xmltodict==0.12.0
basetrainer
pybaseutils==0.6.5

项目安装教程请参考(初学者入门,麻烦先看完下面教程,配置好开发环境):

  • 项目开发使用教程和常见问题和解决方法
  • 视频教程:1 手把手教你安装CUDA和cuDNN(1)
  • 视频教程:2 手把手教你安装CUDA和cuDNN(2)
  • 视频教程:3 如何用Anaconda创建pycharm环境
  • 视频教程:4 如何在pycharm中使用Anaconda创建的python环境

(2)准备数据

下载疲劳驾驶分类数据集:Drowsy-Driving-Cls1,Drowsy-Driving-Cls2,然后解压

 关于疲劳驾驶数据集的使用说明请参考我的一篇博客: https://blog.csdn.net/guyuealian/article/details/131718648

(3)疲劳驾驶识别分类模型训练(Pytorch)

项目在《Pytorch基础训练库Pytorch-Base-Trainer(支持模型剪枝 分布式训练)》基础上实现了疲劳驾驶识别分类模型训练和测试,整套训练代码非常简单操作,用户只需要将相同类别的图片数据放在同一个目录下,并填写好对应的数据路径,即可开始训练了。

训练框架采用Pytorch,整套训练代码支持的内容主要有:

  • 目前支持的backbone有:googlenet,resnet[18,34,50], ,mobilenet_v2等, 其他backbone可以自定义添加
  • 训练参数可以通过(configs/config.yaml)配置文件进行设置

修改配置文件的数据路径:configs/​config.yaml​

  • train_data和test_data修改为自己的数据路径
  • 注意数据路径分隔符使用【/】,不是【\】
  • 项目不要出现含有中文字符的目录文件或路径,否则会出现很多异常!
# 训练数据集,可支持多个数据集(不要出现中文路径)
train_data:
  - 'path/to/Drowsy-Driving-Cls1/trainval'
  - 'path/to/Drowsy-Driving-Cls2/trainval'
# 测试数据集(不要出现中文路径)
test_data:
  - 'path/to/Drowsy-Driving-Cls1/test'

# 类别文件
class_name: 'data/class_name.txt'
train_transform: "train"       # 训练使用的数据增强方法
test_transform: "val"          # 测试使用的数据增强方法
work_dir: "work_space/"        # 保存输出模型的目录
net_type: "mobilenet_v2"       # 骨干网络,支持:resnet18/50,mobilenet_v2,googlenet,inception_v3
width_mult: 1.0                # 模型宽度因子
input_size: [ 112,112 ]        # 模型输入大小
rgb_mean: [ 0.5, 0.5, 0.5 ]    # for normalize inputs to [-1, 1],Sequence of means for each channel.
rgb_std: [ 0.5, 0.5, 0.5 ]     # for normalize,Sequence of standard deviations for each channel.
batch_size: 128                # batch_size
lr: 0.01                       # 初始学习率
optim_type: "SGD"              # 选择优化器,SGD,Adam
loss_type: "CrossEntropyLoss"  # 选择损失函数:支持CrossEntropyLoss,LabelSmooth
momentum: 0.9                  # SGD momentum
num_epochs: 120                # 训练循环次数
num_warn_up: 0                 # warn-up次数
num_workers: 8                 # 加载数据工作进程数
weight_decay: 0.0005           # weight_decay,默认5e-4
scheduler: "multi-step"        # 学习率调整策略
milestones: [ 30,60,100 ]       # 下调学习率方式
gpu_id: [ 2 ]                  # GPU ID
log_freq: 50                   # LOG打印频率
progress: True                 # 是否显示进度条
pretrained: True               # 是否使用pretrained模型
finetune: False                # 是否进行finetune

开始训练,在终端输入: 

python train.py -c configs/config.yaml 

训练完成后,训练集的Accuracy在98.0%以上,测试集的Accuracy在97.5%左右

(4) 可视化训练过程

训练过程可视化工具是使用Tensorboard,在终端(Terminal)输入命令:

使用教程,请参考:项目开发使用教程和常见问题和解决方法

# 需要安装tensorboard==2.5.0和tensorboardX==2.1
# 基本方法
tensorboard --logdir=path/to/log/
# 例如
tensorboard --logdir=tensorboard --logdir=data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/log

可视化效果 

​​​​

 ​​  

(5) 疲劳驾驶识别效果

训练完成后,训练集的Accuracy在99%以上,测试集的Accuracy在97.5%左右,下表给出已经训练好的三个模型,其中mobilenet_v2的测试集准确率可以达到97.8682%,googlenet的准确率可以达到98.4496%,resnet18的准确率可以达到98.2558%

模型input sizeTest准确率
mobilenet_v2112×11297.8682
googlenet112×11298.4496
resnet18112×11298.2558
  • 测试图片文件
# 测试图片(Linux系统)
image_dir='data/test_image' # 测试图片的目录
model_file="data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/model/best_model_095_97.8682.pth" # 模型文件
out_dir="output/" # 保存检测结果
python demo.py --image_dir $image_dir --model_file $model_file --out_dir $out_dir

Windows系统,请将$image_dir, $model_file ,$out_dir等变量代替为对应的变量值即可,如

# 测试图片(Windows系统)
python demo.py --image_dir data/test_image --model_file data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/model/best_model_095_97.8682.pth --out_dir output/

  • 测试视频文件
# 测试视频文件(Linux系统)
video_file="data/video-test.mp4" # 测试视频文件,如*.mp4,*.avi等
model_file="data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/model/best_model_095_97.8682.pth" # 模型文件
out_dir="output/" # 保存检测结果
python demo.py --video_file $video_file --model_file $model_file --out_dir $out_dir
# 测试视频文件(Windows系统)
python demo.py --video_file data/video-test.mp4 --model_file data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/model/best_model_095_97.8682.pth --out_dir output/

  • 测试摄像头
# 测试摄像头(Linux系统)
video_file=0 # 测试摄像头ID
model_file="data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/model/best_model_095_97.8682.pth" # 模型文件
out_dir="output/" # 保存检测结果
python demo.py --video_file $video_file --model_file $model_file --out_dir $out_dir
# 测试摄像头(Windows系统)
python demo.py --video_file 0 --model_file data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/model/best_model_095_97.8682.pth  --out_dir output/

下面是疲劳驾驶检测和识别的效果展示:

 

(6) 一些优化建议

 如果想进一步提高模型的性能,可以尝试:

  1. ​ 增加训练的样本数据: 建议根据自己的业务场景,采集相关数据,比如采集多个人的疲劳驾驶的数据,提高模型泛化能力;
  2. 使用参数量更大的模型: 本教程使用的是mobilenet_v2模型,属于比较轻量级的分类模型,采用更大的模型(如resnet50),理论上其精度更高,但推理速度也较慢。
  3. 尝试不同数据增强的组合进行训练
  4. 增加数据增强: 已经支持: 随机裁剪,随机翻转,随机旋转,颜色变换等数据增强方式,可以尝试诸如mixup,CutMix等更复杂的数据增强方式
  5. 样本均衡: 原始数据疲劳驾驶识别类别数据并不均衡,类别notsmoking的样本数据偏多,而smoking数据偏少,这会导致训练的模型会偏向于样本数较多的类别。建议进行样本均衡处理。
  6. 清洗数据集:原始数据已经进行人工清洗了,但依然存在一些模糊的,低质的,模棱两可的样本;建议你,在训练前,再次清洗数据集,不然会影响模型的识别的准确率。
  7. 调超参: 比如学习率调整策略,优化器(SGD,Adam等)
  8. 损失函数: 目前训练代码已经支持:交叉熵,LabelSmoothing,可以尝试FocalLoss等损失函数

(7) 一些运行错误处理方法

  • 项目不要出现含有中文字符的目录文件或路径,否则会出现很多异常!!!!!!!!

  • cannot import name 'load_state_dict_from_url' 

由于一些版本升级,会导致部分接口函数不能使用,请确保版本对应

torch==1.7.1

torchvision==0.8.2

或者将对应python文件将

from torchvision.models.resnet import model_urls, load_state_dict_from_url

修改为:

from torch.hub import load_state_dict_from_url
model_urls = {
    'mobilenet_v2': 'https://download.pytorch.org/models/mobilenet_v2-b0353104.pth',
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
    'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
    'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
    'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
    'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
}

5.项目源码下载(Python版)

项目源码下载地址:疲劳驾驶检测和识别2:Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)

整套项目源码内容包含:

  1. 提供疲劳驾驶检测数据集:包含Drowsy-Driving-Det1和Drowsy-Driving-Det1,总共13000+张图片;标注格式统一转换为VOC数据格式,其中人脸框标注了的两个状态:drowsy(疲劳),undrowsy(非疲劳),可用于深度学习疲劳驾驶目标检测模型算法开发。(本项目并未使用这个两个数据集)

  2. 提供疲劳驾驶分类数据集:包含Drowsy-Driving-Cls1,Drowsy-Driving-Cls2和Drowsy-Driving-Cls3,总共50000+张图片;所有人脸图片,都已经按照其所属类别存放于各自的文件夹下,可用于深度学习疲劳驾驶分类识别模型算法开发。(本项目主要使用Drowsy-Driving-Cls1,Drowsy-Driving-Cls2两个数据集)

  3. 提供疲劳驾驶分类模型训练代码:train.py
  4. 提供疲劳驾驶分类模型测试代码:demo.py
  5. Demo支持图片,视频和摄像头测试
  6. 支持自定义数据集进行训练
  7. 项目支持模型:resnet18,resnet34,resnet50, mobilenet_v2以及googlenet等常见的深度学习模型
  8. 项目源码自带训练好的模型文件,无需重新训练,可直接运行测试: python demo.py
  9. 在普通电脑CPU/GPU上可以实时检测和识别


6. C++实现疲劳驾驶检测识别

参考文章:疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测)https://panjinquan.blog.csdn.net/article/details/131834980


7. Android实现疲劳驾驶检测识别

参考文章:疲劳驾驶检测和识别3:Android实现疲劳驾驶检测和识别(含源码,可实时检测)https://blog.csdn.net/guyuealian/article/details/131834970

   

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/785130.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

whistle代理

安装whistle npm install whistle -g --registryhttps://registry.npm.taobao.org启动w2代理 w2 startchrome浏览器安装插件whistle,并启用代理状态 web端代理到本地 浏览器访问http://127.0.0.1:8899/ 配置代理url [参考] https://blog.csdn.net/u010106375/ar…

C语言:程序环境和预处理

编译一个C程序设计很多步骤,大致为预处理,编译,汇编和链接. 在讲解预处理阶段之前,先简单总述一下程序的编译和链接. 1. 程序的编译和链接 链接是将各种代码和数据片段收集并组合成为一个单一文件的过程,这个文件可被加载(复制)到内存并执行. 这里有两个源文件构成了一个程序…

计算机内存中的缓存Cache Memories

这篇写一下计算机系统中的缓存Cache应用场景和实现方式介绍。 Memory hierarchy 在讲缓存之前,首先要了解计算机中的内存结构层次Memory hierarchy。也就是下图金字塔形状的结构。 从上到下,内存层次结构如下: 寄存器:这是计算机…

自动化测试与手工测试比较

既然现在有了自动化测试,甚至现在许多团队在使用人工智能的方法,逐渐让机器来取代人的测试。那么作为测试工程师的人未来会不会消失?这是一个摆在许多人面前的一个严肃的问题。去年刚刚过世的著名的天体物理学家斯蒂芬威廉霍金(Stephen William Hawking…

Qt - macOS 安装配置

文章目录 一、关于 QT1.2 Qt的发展史1.3支持的平台1.4 Qt版本1.5 Qt 的优点1.6 成功案例 二、软件安装1、保证已 Xcode 和 Command Line Tools2、下载 QT3、下载 [qtcreator](http://download.qt.io/official_releases/qtcreator/)查看qt版本 三、创建工程Qt 常见用法 四、基础…

智能安全配电装置应用场景有哪些?

安科瑞 华楠 一、应用背景 电力作为一种清洁能源,给人们带来了舒适、便捷的电气化生活。与此同时,由于使用不当,维护不及时等原因引发的漏电触电和电气火灾事故,也给人们的生命和财产带来了巨大的威胁和损失。 为了防止低压配电…

音频转换工具怎么使用你了解吗?让我来跟你分享背后原理

相信小伙伴们平时都会听听喜欢的音乐放松心情吧,不过你是否遇到过,想在一个播放设备上放一首歌的时候,却发现不支持该格式?音频转换格式软件在我们的生活中扮演着越来越重要的角色。这些软件可以帮助我们将音频文件转换成不同的格…

炒股最好用的5个指标?_通达信公式

摘要: 炒股市场是一个充满挑战的领域,而找到可靠的指标来辅助投资决策是成功的关键之一。在众多的指标中,神奇指标网提供了五个被广泛认为是炒股最好用的指标。本文将详细介绍这五个指标,包括其原理和如何应用它们来辅助投资决策。 导言: …

蓝桥杯专题-真题版含答案-【图形排版】【包子凑数】【位反序数】【自守数】

点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例点击跳转>软考全系列点击跳转>蓝桥系列 👉关于作者 专注于Android/Unity和各种游…

Java进阶 —— 多进程并发

前言 在系统学完Java的面向对象编程之后,我们需要认真地来学习Java并发编程,我们在学习计算机操作系统的时候也都了解过进程、线程和协程的概念。在这篇文章中荔枝主要会梳理有关线程创建、线程生命周期、同步锁和死锁、线程通信和线程池的知识&#xff…

android app控制ros机器人一

android开发app,进而通过控制ros机器人,记录开发过程 查阅资料: rosjava使用较多,已经开发好的app也有开源的案例 rosjava GitHub https://github.com/ros-autom/RobotCA https://github.com/ROS-Mobile/ROS-Mobile-Android…

因果推断(一)合成控制法(SCM)

因果推断(一)合成控制法(SCM) 在互联网时代,产品迭代速度越来越快,营销活动也越来越多。分析师因此需要快速的量化每次迭代或每次营销的效果,探索改变与结果之间的因果关系,并将优秀…

idea如何解决导入的项目不是Maven工程(文件下面没有蓝色的方格)二

简介: Maven项目导入,idea不识别项目 解决方法: 选中pom.xml -- 右键 -- Add as Maven Project

使用Python搭建代理服务器- 爬虫代理服务器详细指南

搭建一个Python爬虫代理服务器可以让你更方便地管理和使用代理IP。下面是一个详细的教程来帮助你搭建一个简单的Python爬虫代理服务器: 1. 首先,确保你已经安装了Python。你可以在官方网站(https://www.python.org/)下载并安装最新版本的Python。 2. 安…

Spring 中简单存取 Bean 的相关注解

目录 前言存储 Bean 对象五大类注解方法注解(Bean) 获取 Bean 对象 (Autowired)属性注入多个同类型 Bean 注入怎么办? Setter 注入构造方法注入(官方推荐) 前言 之前我们存储获取 Bean 的操作很繁琐,需要将…

在职硕士|2023级中国社科院-美国杜兰大学合办双证能源管理硕士(MME)

金融硕士 在职硕士|2023级中国社科院-美国杜兰大学合办双证能源管理硕士(MME) 中国社会科学院大学与美国杜兰大学合作举办的能源管理专业硕士学位教育项目(UCASS-Tulane Master of Management in Energy,简称MME)于2…

《人工智能安全》课程总体结构

1 课程内容 人工智能安全观:人工智能安全问题、安全属性、技术体系等基本问题进行了归纳整理。人工智能安全的主要数据处理方法,即非平衡数据分类、噪声数据处理和小样本学习。人工智能技术赋能网络空间安全攻击与防御:三个典型实例及攻击图…

mybatis_配置之属性优化

概念 别名优化: 类型别名可为 Java 类型设置一个缩写名字。 它仅用于 XML 配置,意在降低冗余的全限定类名书写。例如: 在xml文件里为SQL映射文件中定义返回值类型的属性起个别名 之后直接使用User进行使用 核心配置文件: MyBa…

常见面试题分享1

一、对JVM的了解 1.1 什么是JVM? JVM(Java Virtual Machine),俗称Java虚拟机。它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java语言的一个非常重要的特点就是与平台的无关性。…

商城体系之产商品系统

本文主要讲解商城体系下产商品系统的设计。商城系统可以拆分成多个业务中台和多个应用服务。 1、产商品系统业务架构 产商品系统作为商城重要的基础信息组成部分,主要划分为产品信息和商品信息,产品信息保持最原始的产品基础属性和内容,商品…