🏆今日学习目标:
🍀例题讲解P3375 【模板】KMP 字符串匹配
✅创作者:贤鱼
⏰预计时间:25分钟
🎉个人主页:贤鱼的个人主页
🔥专栏系列:c++
🍁贤鱼的个人社区,欢迎你的加入 贤鱼摆烂团

 
2406:Card Stacking
- 题目
- 【模板】KMP 字符串匹配
- 题目描述
- 输入格式
- 输出格式
- 样例 #1
- 样例输入 #1
- 样例输出 #1
 
- 提示
- 样例 1 解释
- 数据规模与约定
 
 
- 思路
- AC代码
题目
【模板】KMP 字符串匹配
题目描述
给出两个字符串  
     
      
       
        
        
          s 
         
        
          1 
         
        
       
      
        s_1 
       
      
    s1 和  
     
      
       
        
        
          s 
         
        
          2 
         
        
       
      
        s_2 
       
      
    s2,若  
     
      
       
        
        
          s 
         
        
          1 
         
        
       
      
        s_1 
       
      
    s1 的区间  
     
      
       
       
         [ 
        
       
         l 
        
       
         , 
        
       
         r 
        
       
         ] 
        
       
      
        [l, r] 
       
      
    [l,r] 子串与  
     
      
       
        
        
          s 
         
        
          2 
         
        
       
      
        s_2 
       
      
    s2 完全相同,则称  
     
      
       
        
        
          s 
         
        
          2 
         
        
       
      
        s_2 
       
      
    s2 在  
     
      
       
        
        
          s 
         
        
          1 
         
        
       
      
        s_1 
       
      
    s1 中出现了,其出现位置为  
     
      
       
       
         l 
        
       
      
        l 
       
      
    l。
 现在请你求出  
     
      
       
        
        
          s 
         
        
          2 
         
        
       
      
        s_2 
       
      
    s2 在  
     
      
       
        
        
          s 
         
        
          1 
         
        
       
      
        s_1 
       
      
    s1 中所有出现的位置。
定义一个字符串  
     
      
       
       
         s 
        
       
      
        s 
       
      
    s 的 border 为  
     
      
       
       
         s 
        
       
      
        s 
       
      
    s 的一个非  
      
       
        
        
          s 
         
        
       
         s 
        
       
     s 本身的子串  
     
      
       
       
         t 
        
       
      
        t 
       
      
    t,满足  
     
      
       
       
         t 
        
       
      
        t 
       
      
    t 既是  
     
      
       
       
         s 
        
       
      
        s 
       
      
    s 的前缀,又是  
     
      
       
       
         s 
        
       
      
        s 
       
      
    s 的后缀。
 对于  
     
      
       
        
        
          s 
         
        
          2 
         
        
       
      
        s_2 
       
      
    s2,你还需要求出对于其每个前缀  
     
      
       
        
        
          s 
         
        
          ′ 
         
        
       
      
        s' 
       
      
    s′ 的最长 border  
     
      
       
        
        
          t 
         
        
          ′ 
         
        
       
      
        t' 
       
      
    t′ 的长度。
输入格式
第一行为一个字符串,即为  
     
      
       
        
        
          s 
         
        
          1 
         
        
       
      
        s_1 
       
      
    s1。
 第二行为一个字符串,即为  
     
      
       
        
        
          s 
         
        
          2 
         
        
       
      
        s_2 
       
      
    s2。
输出格式
首先输出若干行,每行一个整数,按从小到大的顺序输出  
     
      
       
        
        
          s 
         
        
          2 
         
        
       
      
        s_2 
       
      
    s2 在  
     
      
       
        
        
          s 
         
        
          1 
         
        
       
      
        s_1 
       
      
    s1 中出现的位置。
 最后一行输出  
     
      
       
       
         ∣ 
        
        
        
          s 
         
        
          2 
         
        
       
         ∣ 
        
       
      
        |s_2| 
       
      
    ∣s2∣ 个整数,第  
     
      
       
       
         i 
        
       
      
        i 
       
      
    i 个整数表示  
     
      
       
        
        
          s 
         
        
          2 
         
        
       
      
        s_2 
       
      
    s2 的长度为  
     
      
       
       
         i 
        
       
      
        i 
       
      
    i 的前缀的最长 border 长度。
样例 #1
样例输入 #1
ABABABC
ABA
样例输出 #1
1
3
0 0 1
提示
样例 1 解释
 。
。
对于  
     
      
       
        
        
          s 
         
        
          2 
         
        
       
      
        s_2 
       
      
    s2 长度为  
     
      
       
       
         3 
        
       
      
        3 
       
      
    3 的前缀 ABA,字符串 A 既是其后缀也是其前缀,且是最长的,因此最长 border 长度为  
     
      
       
       
         1 
        
       
      
        1 
       
      
    1。
数据规模与约定
本题采用多测试点捆绑测试,共有 3 个子任务。
- Subtask 1(30 points): ∣ s 1 ∣ ≤ 15 |s_1| \leq 15 ∣s1∣≤15, ∣ s 2 ∣ ≤ 5 |s_2| \leq 5 ∣s2∣≤5。
- Subtask 2(40 points): ∣ s 1 ∣ ≤ 1 0 4 |s_1| \leq 10^4 ∣s1∣≤104, ∣ s 2 ∣ ≤ 1 0 2 |s_2| \leq 10^2 ∣s2∣≤102。
- Subtask 3(30 points):无特殊约定。
对于全部的测试点,保证 1 ≤ ∣ s 1 ∣ , ∣ s 2 ∣ ≤ 1 0 6 1 \leq |s_1|,|s_2| \leq 10^6 1≤∣s1∣,∣s2∣≤106, s 1 , s 2 s_1, s_2 s1,s2 中均只含大写英文字母。
思路
这个题目主要分为两部分
1.判断s2在s1中出现的所有位置,从小到大输出
其实只需要从1-len1(s1长度)遍历就可以解决这个问题
2判断s2每一位的border长度
这个题n^3基础做法绝对会tle,题目也说了这是个kmp模板题
 kmp如何理解?
 假设答案为nxt[]
 那么nxt[i]最大等一nxt[i-1]+1
 多了一位字母border最多也就多一位
 所以判断多的这一位字母和上一位+1的字母是否相同
 相同了答案++,不同的话就去寻找再上一段的border
 如果找到了0,就判断第一位和这一位是否相同,相同为1,不同为0
 输出答案即可
AC代码
下面net就是nxt(打错了)
#include<cmath>
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
char s1[10000005],s2[10000005];
int net[10000005];
int main(){
	cin>> (s1+1);
	cin>> (s2+1);
	int len1,len2;
	len1=strlen(s1+1);
	len2=strlen(s2+1);
	for(int i=1;i<=len1;i++){
		int f=0;
		int jj=i-1;
		for(int j=1;j<=len2;j++){
			jj++;
			//cout<<jj<<" "<<j<<" "<<s1[jj]<<s2[j]<<endl;
			if(s1[jj]!=s2[j]){
				f=1;
				break;
			}
		}
		if(!f)cout<<i<<endl;
	}
	net[1]=0;
	int j=0;
	for(int i=2;i<=len2;i++){
		while(j>0&&s2[i]!=s2[j+1]){
			j=net[j];
		}
		if(s2[i]==s2[j+1]) j++;
		net[i]=j;
	}
	for(int i=1;i<=len2;i++)
		cout<<net[i]<<" ";
}



















