基于OpenCV的红绿灯识别

news2024/11/25 13:45:39

基于OpenCV的红绿灯识别

技术背景

为了实现轻舟航天机器人实现红绿灯的识别,决定采用传统算法OpenCV视觉技术。

技术介绍

航天机器人的红绿灯识别主要基于传统计算机视觉技术,利用OpenCV算法对视频流进行处理,以获取红绿灯的状态信息。具体而言,该系统通过连接工控机摄像头读取视频流,将视频帧转换成HSV色彩空间的图像,以便更好地识别出图像中的红色像素。

HSV是一种将RGB色彩空间中的点在倒圆锥体中的表示方法,其中色相、饱和度和亮度分别用于描述颜色的不同属性。色调(H)用角度度量,其取值范围为0°~360°,从红色开始按逆时针方向计算,具体的光谱色如黄色、青色和品红等的色调取值为60°、180°和300°,而它们的补色则分别为青色、洋红和黄色。饱和度(S)用于描述颜色接近光谱色的程度,其取值范围为0%~100%,值越大,颜色越饱和。亮度(V)表示颜色明亮的程度,其取值范围为0%(黑)到100%(白)。

在红绿灯识别过程中,系统将视频帧转换成HSV图像后,通过筛选出所有红色像素值,利用切片技术切出图像中的红绿灯兴趣区域。接着,系统通过统计区域中红色像素块数量,设定阈值来判断红绿灯的状态,如果红色像素块数量超过阈值,则判定红绿灯为红灯闪烁,小车禁止通行;反之,如果红色像素块数量小于阈值,则判定红绿灯为绿灯闪烁,小车可以通行。

这种基于传统计算机视觉技术的红绿灯识别系统具有精度高、鲁棒性强等优点,可以在复杂的环境下准确地判断红绿灯的状态,从而为机器人的自主导航和交通安全提供可靠的技术支持。

HSV 模型的三维表示从 RGB 立方体演化而来。设想从 RGB 沿立方体对角线的白色顶点 向黑色顶点观察,就可以看到立方体的六边形外形。六边形边界表示色彩,水平轴表示纯度, 明度沿垂直轴测量。HSV 颜色空间可以用一个圆锥空间模型来描述。圆锥的顶点处,V=0,H 和 S 无定义,代表黑色。圆锥的顶面中心处 V=max,S=0,H 无定义,代表白色。

在这里插入图片描述

代码实现


import cv2
import numpy as np

# from cv_nano3_good import Img, Video
def gstreamer_pipeline(
        capture_width=1280,
        capture_height=720,
        display_width=1280,
        display_height=720,
        framerate=120,
        flip_method=0,
):
    return (
            "nvarguscamerasrc ! "
            "video/x-raw(memory:NVMM), width=(int)%d, height=(int)%d, format=(string)NV12, framerate=(fraction)%d/1! "
            "nvvidconv flip-method=%d ! "
            "video/x-raw, width=(int)%d, height=(int)%d, format=(string)BGRx ! "
            "videoconvert ! "
            "video/x-raw, format=(string)BGR ! "
            "appsink"
            % (
                capture_width,
                capture_height,
                framerate,
                flip_method,
                display_width,
                display_height,
            )
    )


def extract_red(img):

    #转换为hsv颜色空间
    img_hsv=cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
    rows,cols,channels=img.shape

    lower_red=np.array([156,43,46])
    # lower_red=np.array([157,177,122])
    # print(lower_red)
    upper_red=np.array([180,255,255])
    # print(upper_red)
    mask1=cv2.inRange(img_hsv,lower_red,upper_red)

    #拼接两个区间
    mask=mask1

    return mask



if __name__=='__main__':
    # if cv2.VideoCapture.isOpened():
        Video = cv2.VideoCapture(gstreamer_pipeline(flip_method=0), cv2.CAP_GSTREAMER)
        print('open cam success')
        while True:
            while True:
                    
                    ret, Img = Video.read()
                    # cap=cv2.VideoCapture("./test/light.mp4")
                    # Img=cv2.imread("./test/02.jpg")
                    # ret, Img = img.read()
                    # cv2.imshow('./',Img)
                    # print(Img.)
                    img = extract_red(Img)
                    # print(img)
                    h, w = Img.shape[0], Img.shape[1]
                    # print(h)
                    # print(w)
                    # img_cut = img[100:400, 330:600]
                    img_cut=img[450:600,800:1100] #截取roi
                    raw_cut = Img[450:600, 800:1100]
                    # cv2.imshow('./',raw_cut)
                    # cv2.waitKey(0)
                    # cv2.imshow('./',img_cut)
                    # cv2.waitKey(0)
                    count = 0
                    x = img_cut[np.where(img_cut > 250)]
                    count = len(x)
                    print(count)
                    if count >= 1500:
                        print('red')
                        # green_light.publish(False)
                    else:
                        print('green')
                    # cv2.waitKey(30)
                        # green_light.publish(True) 
           



实现思路:

调取工控机摄像头读取视频流,将图像转成
HSV 通道,筛选出图像中的所有红色的像素值,再利用切片切出图像的兴趣区域,即红绿灯的所在图像
区域,最后统计区域中的红色像素块数量并设定阈值,超过此阈值则可判定红绿灯为红灯闪烁,小车禁
止通行,低于此阈值则可判定红绿灯为绿灯闪烁, 小车可以通行。

具体代码逻辑

这段代码的主要功能是从摄像头或视频流中读取图像,对图像进行红色像素的筛选和统计,以判断红绿灯的状态并输出结果。具体实现过程如下:

  1. 首先定义了一个函数gstreamer_pipeline,用于设置摄像头或视频流的参数,包括分辨率、帧率、翻转方式等。
  2. 接着定义了一个名为extract_red的函数,用于从图像中提取红色像素。该函数首先将图像从BGR色彩空间转换为HSV色彩空间,然后通过设置上下阈值提取红色像素。
  3. 在主程序中,通过调用cv2.VideoCapture函数连接摄像头或视频流,并循环读取图像。对于每一帧图像,首先调用extract_red函数提取红色像素,然后截取图像中的兴趣区域(即红绿灯的所在图像区域),并统计区域中红色像素块数量。如果红色像素块数量超过预设阈值,则判定红绿灯为红灯闪烁,否则判定为绿灯闪烁。
  4. 在输出判断结果后,程序会继续循环读取下一帧图像,直到程序被手动中断。

总的来说,该段代码主要实现了利用OpenCV对摄像头或视频流中的图像进行红绿灯状态判断的功能,其中最核心的部分是对红色像素的筛选和区域中红色像素块数量的统计。

总结

本文介绍了轻舟航天机器人实现红绿灯识别的技术背景和介绍。该系统利用OpenCV算法对视频流进行处理,识别出图像中的红色像素,并设定阈值来判断红绿灯的状态。该系统具有精度高、鲁棒性强等优点,可以为机器人的自主导航和交通安全提供技术支持。文章还介绍了HSV颜色空间的三维表示和代码实现过程仅供了解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/780954.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Linux】Tcp服务器的三种与客户端通信方法及守护进程化

全是干货~ 文章目录 前言一、多进程版二、多线程版三、线程池版四、Tcp服务器日志的改进五、将Tcp服务器守护进程化总结 前言 在上一篇文章中,我们实现了Tcp服务器,但是为了演示多进程和多线程的效果,我们将服务器与客户通通信写成了一下死循…

【Linux】 由“进程”过渡到“线程” -- 什么是线程(thread)?

知识引入初识线程1.什么叫做进程?2.什么叫做线程?3.如何看待我们之前学习的进程? 理解线程创建线程函数调用1.线程一旦被创建,几乎所有资源都是被线程所共享的2.与进程之间切换相比,线程的切换 初识线程总结&#xff1…

JWT 的使用

一、简介 JWT将用户的一些信息存储在客户端,访问后台时会带着JWT,服务器要对这个JWT进行检验。 由于signKey是存放在服务器端的,所以比较安全只要JWT被篡改就会立刻发现。 JWT认证的优势 1.简洁:JWT Token数据量小,传…

WebRTC带宽评估 -- Transport-wide Congestion Control

简述:在RTP包中增加transport-wide-cc扩展头,放置传输层面的包序号。视频接收端记录RTP包的接收时间,并通过RTCP Feedback消息反馈到视频发送端,发送端结合缓存的RTP包发送时间,基于丢包和延迟估算当前带宽&#xff0c…

zabbix 企业级监控 (3)Zabbix-server监控mysql及httpd服务

目录 web界面设置 server.zabbix.com 服务器操作 编辑 chk_mysql.sh脚本 查看web效果 web界面设置 1. 2. 3. 4. 5. 6. 7. 8. server.zabbix.com 服务器操作 [rootserver ~]# cd /usr/local/zabbix/etc/ [rootserver etc]# vim zabbix_agentd.conf UnsafeUserParameters1 Us…

Java当中的栈

栈的理解 栈(Stack)是一种受限的线性数据结构,所谓受限是指栈只暴露栈顶和栈底的操作,其底层是由数组实现的。栈的特性是先进后出。 常用方法 注意上面的peek()方法和pop()方法的区别! 实例 import java.util.Stack…

【计算机视觉 | 图像分割】arxiv 计算机视觉关于图像分割的学术速递(7 月 19 日论文合集)

文章目录 一、分割|语义相关(12篇)1.1 Disentangle then Parse:Night-time Semantic Segmentation with Illumination Disentanglement1.2 OnlineRefer: A Simple Online Baseline for Referring Video Object Segmentation1.3 MarS3D: A Plug-and-Play Motion-Aware Model for…

LeetCode74.Search-A-2d-Matrix<搜索二维矩阵>

题目: 思路: 矩阵,搜索数是否在矩阵内。那就查找他是否在每一行中。如果符合这一行的范围,那就一直找这一列是否存在,如果存在返回true;否则false; 代码是: //codeclass Solution …

Istio 安全管理 加密证书中心

1 tls认证 2 设置ACL 允许哪些客户端可以访问 哪些客户端不能访问 3 istio里面的认证 加密是可以分为三种类型 对称加密(加密和解密用的是同一个密钥)非对称加密哈希函数 对称加密 A要发送数据传送给B,那么A要使用一个密钥,里面…

MySQL-数据库读写分离(下)

♥️作者:小刘在C站 ♥️个人主页: 小刘主页 ♥️努力不一定有回报,但一定会有收获加油!一起努力,共赴美好人生! ♥️学习两年总结出的运维经验,以及思科模拟器全套网络实验教程。专栏&#xf…

Verilog 学习之路二——基础学习总结(摘取自菜鸟教程)

目录 1 Verilog 设计方法2. 基础语法2.1 格式2.2 数值表示数值种类表示方法 2.3 数据类型2.4 表达式 3. 编译指令4. 连续赋值5. 过程结构6 过程赋值7 时序控制8 语句块9 循环10 函数例子-数码管译码 1 Verilog 设计方法 Verilog 的设计多采用自上而下的设计方法(to…

TypeScript + React 环境搭建

React 安装 vscode 或者 webstrom 代码编辑器TypeScript 开发环境搭建1.1、下载 node.js1.2、安装 node.js1.3、npm 安装 typeScript1.4、创建和编写 ts 文件1.5、编译1.6、运行 js文件 React 环境搭建2.1、homebrow2.2、安装 cnpm:2.3、安装yarn:2.4、安…

[oeasy]python0074[专业选修]字节序_byte_order_struct_pack_大端序_小端序

进制转化 回忆上次内容 上次 总结了 计算字符串值的函数 eval 四种进制的转化函数 binoctinthex 函数名前缀目标字符串所用进制bin0b二进制oct0o八进制hex0x十六进制eval无前缀十进制 数字41 和 字符串"41" 的不同 字符串"41" 两个字符字符存储依据是…

部署ELK+Kafka+Filebeat日志收集分析系统

部署ELKKafkaFilebeat日志收集分析系统 文章目录 部署ELKKafkaFilebeat日志收集分析系统一、ELK 简介1、ELK日志分析系统组成2、Elasticsearch(es)3、Logstash4、Kibana5、日志处理步骤 二、Elasticsearch介绍1、Elasticsearch核心概念2、开启分片副本的…

AcWing 244. 谜一样的牛—树状数组、二分

题目链接 AcWing 244. 谜一样的牛 题目描述 分析 这道题挺巧妙的,感觉树状数组方面的题就是比较难想,先分析一下样例,样例中每头牛前面比自己低的牛的数量分别为 0 1 2 1 0牛的高度是1~n的排列,如何分析出每头牛的高度呢&…

Linux学习之if判断的使用

if的基本用法 if后边可以直接跟着命令。 echo "good" > ifecho.txt把good输出到当前目录下ifecho.txt文件里边,cat ifecho.txt首先可以看一下这个文件里边的内容。 然后依次输入: if cat ifecho.txt thenecho "right" fi可以看…

Windows系统实现唤醒+合成+命令词智能语音交互

1、之前写过离线能力调用,今天来个终极版,实现智能交互或者结合大模型的智能交互示例,下面进入正题。上B站效果离线唤醒离线合成离线命令词实现智能交互_哔哩哔哩_bilibili 2、到讯飞开放平台下载唤醒合成命令词的离线组合包,找到…

关于正则表达式的简单介绍以及使用

一、介绍 正则表达式通常被用来检索匹配某种模式(规律)的文本 日常文本检索,如果单纯检索某个数字,字母,或者单词匹配出来的结果较多,而面对目标文件内容较大的时,我们也不可能肉眼对检索出来的…

Kotlin 新版本 1.9.0重要更新预览

释放 Kotlin 新版本 1.9.0 的强大功能 1. Kotlin K2编译器用于多平台 对K2编译器进行了进一步的改进,使其更加稳定。K2编译器针对JVM目标现已进入Beta版本,并且也可以在多平台项目中使用。 您可以通过将K2配置添加到项目的gradle.properties中&#x…

pytest-allure 生成测试报告

目录 前言: pytest 中 yield 和 return 的区别和相同点 共同点 区别 usefixtures 与传 fixture 区别 Pytest 常用的插件 一键安装多个模块 前言: 在软件测试中,生成清晰、易读的测试报告是非常重要的。pytest-allure是一个流行的测试…