常见问题-wp

news2025/1/20 10:46:26

指定顺序展示富集分析的term

调整热图的label角度

 h1=ggheatmap(
    dat[cg1,],
    cluster_rows = T, #是否对行聚类
    cluster_cols = T, #是否对列聚类
    tree_height_rows = 0.28, #行聚类树高度
    tree_height_cols = 0.1, #列聚类树高度
    
    annotation_cols = group_list, #为列添加分组
    annotation_color = col,#分组颜色
    text_show_rows = FALSE,  
    
    #  text_show_rows = mark #显示指定的基因标签
    scale = "row" #选择对row/column/none进行归一化
  )   %>% ggheatmap_theme(1,
                          theme =list(
                            theme(axis.text.x = element_text(angle = 90,face = "bold",size = 10),
                                  axis.text.y = element_text(colour = "red",face = "bold")),
                            theme(legend.title = element_text(face = "bold"))
                          ))
  

特殊字符正则匹配

colnames(exp)
  dat=exp[,c(grep(pattern = "Normal",colnames(exp),value = T),
             grep(pattern = "LCT\\(14\\+14\\)-MSC-D14",colnames(exp),value = T),
             grep(pattern = "LCT\\(14\\+28\\)-MSC-D28",colnames(exp),value = TRUE))
  ]
  
  

 

富集分析term缩短

 p2=ggplot(df, aes(x = Cluster, y = Description)) +
        geom_point(aes(color = p.adjust, size = Count)) +
        scale_color_gradient(low = "red", high = "blue") +
        xlab("Cluster") +
        theme_bw() +
        theme(axis.text.x = element_text(angle = 90, face = "bold", size = 10)) +
        # Edit legends
        guides(
          # Reverse color order (higher value on top)
          color = guide_colorbar(reverse = TRUE)
        ) +
        guides(
          size = guide_legend(order = 2),
          color = guide_colorbar(order = 1)
        )+
        scale_y_discrete(labels=function(y) str_wrap(y,width = 50))

.libPaths(c("/home/data/t040413/R/x86_64-pc-linux-gnu-library/4.2","/home/data/t040413/R/yll/usr/local/lib/R/site-library",  "/usr/local/lib/R/library"))

library(dplyr)
library(ggplot2)
#library(tinyarray)
library(edgeR)
library(patchwork)
#devtools::install_github("XiaoLuo-boy/ggheatmap")
library(ggheatmap)
library(tidyr)
library(DESeq2)
library(stringr)


getwd()
dir.create("/home/data/t040413/wpx/wpx_transcriptomics_proteinomics_Metabolomics/transcriptomics/4_d28_vs_d14_treatment_effective_2")
setwd("/home/data/t040413/wpx/wpx_transcriptomics_proteinomics_Metabolomics/transcriptomics/4_d28_vs_d14_treatment_effective_2")

getwd()



load("/home/data/t040413/wpx/wpx_transcriptomics_proteinomics_Metabolomics/transcriptomics/step1_get_matrix_dd.Rdata")
load("/home/data/t040413/wpx/wpx_transcriptomics_proteinomics_Metabolomics/transcriptomics/step1_get_matrix.Rdata")
load("/home/data/t040413/wpx/wpx_transcriptomics_proteinomics_Metabolomics/transcriptomics/1_model_success_2/exp_orders.rds")
colnames(exp)=a
exp=as.matrix(exp)



1 #提取想要比较的组别
ANSWER="LCT(14+14)-MSC-D14 VS Normal control"
{  #LCT(14+14)-MSC-D14 VS Normal control
  print(getwd())
  print(colnames(exp))
  
  dat=exp[,c(grep(pattern = "Normal",colnames(exp),value = T),
             # grep(pattern = "P.*D14",colnames(exp),value = T),
             grep(pattern = "LCT\\(14\\+14\\)-MSC-D14",colnames(exp),value = TRUE))
  ]
  
  dat = log2(cpm(dat)+1)  # dat 为使用count数据转化而成的cpm数据,使用这个数据画图,而count数据只是用来做差异分析
  
  { # contro+shift+c 选中
    # # 计算每六列的平均值
    # new_matrix <- matrix(0, nrow = nrow(dat), ncol = ceiling(ncol(dat) / 6))
    # colnames(new_matrix) <- c("Normal control","LCT(14+0)-NT-D0")
    # rownames(new_matrix) <- rownames(dat)
    # 
    # for (i in 1:ncol(new_matrix)) {
    #   start_col <- (i - 1) * 6 + 1
    #   end_col <- min(start_col + 5, ncol(dat))
    #   new_matrix[, i] <- rowMeans(dat[, start_col:end_col], na.rm = TRUE)
    # }
    # head(new_matrix)
    # dat<-new_matrix
  }
  boxplot(dat,las=2)
  dat[dat>15]=15   #可视化 抹去异常值  
  
  group_list=data.frame(
    row.names = colnames(dat),
    group=rep(c("Normal control","LCT(14+14)-MSC-D14"),each=6)
  )
  group_list
  
  group_for_pca=factor(group_list$group,levels = c("Normal control","LCT(14+14)-MSC-D14"))
  
  
  #设置组别颜色
  group_col2 <- c("#bfb2d5","#f1937f")
  names(group_col2) <- c("Normal control","LCT(14+14)-MSC-D14")  #LCT(14+0)-NT-D0 VS normal control
  col=list(group=group_col2)
  col
  
  pca.plot = draw_pca(dat,group_list = group_for_pca);pca.plot
  
  
  
  resultsNames(dds)
  #res <- results(dds, name="condition_LCT.14.14..MSC.D14_vs_LCT.14.14..NT.D14")
  res <- results(dds, contrast = c("condition", "LCT(14+14)-MSC-D14", "Normal control")) #因子名称 谁比上谁
  
  head(res);print("----");head(ids);dim(ids)
  
  { 
    res$gene_symbol=ids[ids$symbol %in% rownames(res),]$symbol
    head(res);dim(res)
    
    
    DEG1 <- as.data.frame(res)
    DEG1 <- DEG1[order(DEG1$pvalue),] 
    DEG1 = na.omit(DEG1)
    head(DEG1);dim(DEG1)
    #添加change列标记基因上调下调
    logFC_t = 1
    pvalue_t = 0.05
    
    k1 = (DEG1$pvalue < pvalue_t)&(DEG1$log2FoldChange < -logFC_t);table(k1)
    k2 = (DEG1$pvalue < pvalue_t)&(DEG1$log2FoldChange > logFC_t);table(k2)
    DEG1$change = ifelse(k1,"DOWN",ifelse(k2,"UP","NOT"))
    table(DEG1$change);head(DEG1)
    print(paste("下面是padj<0.05----------:"))
    print(paste( table((DEG1$padj < pvalue_t)&(DEG1$log2FoldChange < -logFC_t)),
                 sep = "___",
                 table((DEG1$padj < pvalue_t)&(DEG1$log2FoldChange > logFC_t))
    ))
    
    
    # print(paste(group_name,sep = "_---------:-----_",table(DEG1$change)))
    
    print(table(DEG1$change))
    
    #draw_heatmap(log2(cpm(exp)+1) [cg1,],Group,n_cutoff = 2,legend = TRUE, annotation_legend =TRUE)
    
    cg1 = rownames(DEG1)[DEG1$change !="NOT"]
    
  }
  #  h1 = draw_heatmap(dat[cg1,],group_list = group_list,n_cutoff = 2,legend = TRUE, annotation_legend =TRUE)
  #https://mp.weixin.qq.com/s/Yqs6cmtVVHJjsdKXjj3srw
  
  #热图
  {
    h1=ggheatmap(
      dat[cg1,],
      cluster_rows = T, #是否对行聚类
      cluster_cols = T, #是否对列聚类
      tree_height_rows = 0.28, #行聚类树高度
      tree_height_cols = 0.1, #列聚类树高度
      
      annotation_cols = group_list, #为列添加分组
      annotation_color = col,#分组颜色
      text_show_rows = FALSE,  
      
      #  text_show_rows = mark #显示指定的基因标签
      scale = "row" #选择对row/column/none进行归一化
      
    )   %>% ggheatmap_theme(1,
                            theme =list(
                              theme(axis.text.x = element_text(angle = 90,face = "bold",size = 10),
                                    axis.text.y = element_text(colour = "red",face = "bold")),
                              theme(legend.title = element_text(face = "bold"))
                            ))
    
    
  }
  h1 
  
  
  
  if (F) {
    ggheatmap(
      dat[cg1,],hclust_method = "average",
      cluster_rows = T, #是否对行聚类
      cluster_cols = T, #是否对列聚类
      tree_height_rows = 0.28, #行聚类树高度
      tree_height_cols = 0.1, #列聚类树高度
      
      annotation_cols = group_list, #为列添加分组
      annotation_color = col,#分组颜色
      text_show_rows = FALSE,  
      
      #  text_show_rows = mark #显示指定的基因标签
      scale = "row" #选择对row/column/none进行归一化
    )
    
  }
  
  
  #火山图  
  v1 = draw_volcano(DEG1,logFC_cutoff = logFC_t, #adjust = TRUE,
                    xlab.package = FALSE)+xlab("log2FoldChange")+
    scale_x_continuous(limits = c(-3, 3), breaks = seq(-3, 3, by = 1))+
    # coord_cartesian(ylim = c(0, 10)) +
    scale_y_continuous(expand = expansion(add = c(2, 0)),limits = c(0, 10), breaks = seq(0, 40, by = 2))
  v1
  
  #(h1 ) / (v1) +plot_layout(guides = 'collect') &theme(legend.position = "none")
  head(DEG1)
  table(DEG1$change)
  DEG1$group=ANSWER
  #plot
  {
    pdf(paste(gsub("[[:punct:]]", " ",   paste(ANSWER,"_heatmap.pdf",sep = "_")),".pdf")
        ,width = 12,height = 7)
    print(h1)
    dev.off()
    
    pdf(paste(gsub("[[:punct:]]", " ",   paste(ANSWER,"_volcano.pdf",sep = "_")),".pdf"))
    print(v1)
    dev.off()
    
    pdf(paste(gsub("[[:punct:]]", " ",   paste(ANSWER,"_pca.plot.pdf",sep = "_")),".pdf"))
    print(pca.plot)
    dev.off()
    
    
    
    pdf(paste(gsub("[[:punct:]]", " ",   paste(ANSWER,"_pca_plot.pdf",sep = "_")),".pdf"))
    print(pca.plot)
    dev.off()
    DEG1$gene=rownames(DEG1) 
    write.csv(DEG1,file = paste(ANSWER,"DEGS_.CSV"))   
  }
  
  
  
} 

2.#提取想要比较的组别
ANSWER="LCT(14+28)-MSC-D28 VS Normal control"
{  #LCT(14+28)-MSC-D28 VS Normal control
  
  print(colnames(exp))
  dat=exp[,c(grep(pattern = "Normal",colnames(exp),value = T),
             # grep(pattern = "P.*D14",colnames(exp),value = T),
             grep(pattern = "LCT\\(14\\+28\\)-MSC-D28",colnames(exp),value = TRUE))
  ]
  
  dat = log2(cpm(dat)+1)  # dat 为使用count数据转化而成的cpm数据,使用这个数据画图,而count数据只是用来做差异分析
  
  { # contro+shift+c 选中
    # # 计算每六列的平均值
    # new_matrix <- matrix(0, nrow = nrow(dat), ncol = ceiling(ncol(dat) / 6))
    # colnames(new_matrix) <- c("Normal control","LCT(14+0)-NT-D0")
    # rownames(new_matrix) <- rownames(dat)
    # 
    # for (i in 1:ncol(new_matrix)) {
    #   start_col <- (i - 1) * 6 + 1
    #   end_col <- min(start_col + 5, ncol(dat))
    #   new_matrix[, i] <- rowMeans(dat[, start_col:end_col], na.rm = TRUE)
    # }
    # head(new_matrix)
    # dat<-new_matrix
  }
  boxplot(dat,las=2)
  dat[dat>15]=15   #可视化 抹去异常值  
  
  group_list=data.frame(
    row.names = colnames(dat),
    group=rep(c("Normal control","LCT(14+28)-MSC-D28"),each=6)
  )
  group_list
  
  group_for_pca=factor(group_list$group,levels = c("Normal control","LCT(14+28)-MSC-D28"))
  
  
  #设置组别颜色
  group_col2 <- c("#bfb2d5","#f1937f")
  names(group_col2) <- c("Normal control","LCT(14+28)-MSC-D28")  #LCT(14+0)-NT-D0 VS normal control
  col=list(group=group_col2)
  col
  
  pca.plot = draw_pca(dat,group_list = group_for_pca);pca.plot
  
  
  
  resultsNames(dds)
  #res <- results(dds, name="condition_LCT.14.14..MSC.D14_vs_LCT.14.14..NT.D14")
  res <- results(dds, contrast = c("condition", "LCT(14+28)-MSC-D28", "Normal control")) #因子名称 谁比上谁
  
  head(res);print("----");head(ids);dim(ids)
  
  { 
    res$gene_symbol=ids[ids$symbol %in% rownames(res),]$symbol
    head(res);dim(res)
    
    
    DEG1 <- as.data.frame(res)
    DEG1 <- DEG1[order(DEG1$pvalue),] 
    DEG1 = na.omit(DEG1)
    head(DEG1);dim(DEG1)
    #添加change列标记基因上调下调
    logFC_t = 1
    pvalue_t = 0.05
    
    k1 = (DEG1$pvalue < pvalue_t)&(DEG1$log2FoldChange < -logFC_t);table(k1)
    k2 = (DEG1$pvalue < pvalue_t)&(DEG1$log2FoldChange > logFC_t);table(k2)
    DEG1$change = ifelse(k1,"DOWN",ifelse(k2,"UP","NOT"))
    table(DEG1$change);head(DEG1)
    print(paste("下面是padj<0.05----------:"))
    print(paste( table((DEG1$padj < pvalue_t)&(DEG1$log2FoldChange < -logFC_t)),
                 sep = "___",
                 table((DEG1$padj < pvalue_t)&(DEG1$log2FoldChange > logFC_t))
    ))
    
    
    # print(paste(group_name,sep = "_---------:-----_",table(DEG1$change)))
    
    print(table(DEG1$change))
    
    #draw_heatmap(log2(cpm(exp)+1) [cg1,],Group,n_cutoff = 2,legend = TRUE, annotation_legend =TRUE)
    
    cg1 = rownames(DEG1)[DEG1$change !="NOT"]
    
  }
  #  h1 = draw_heatmap(dat[cg1,],group_list = group_list,n_cutoff = 2,legend = TRUE, annotation_legend =TRUE)
  #https://mp.weixin.qq.com/s/Yqs6cmtVVHJjsdKXjj3srw
  
  #热图
  {
    h1=ggheatmap(
      dat[cg1,],
      cluster_rows = T, #是否对行聚类
      cluster_cols = T, #是否对列聚类
      tree_height_rows = 0.28, #行聚类树高度
      tree_height_cols = 0.1, #列聚类树高度
      
      annotation_cols = group_list, #为列添加分组
      annotation_color = col,#分组颜色
      text_show_rows = FALSE,  
      
      #  text_show_rows = mark #显示指定的基因标签
      scale = "row" #选择对row/column/none进行归一化
      
    )   %>% ggheatmap_theme(1,
                            theme =list(
                              theme(axis.text.x = element_text(angle = 90,face = "bold",size = 10),
                                    axis.text.y = element_text(colour = "red",face = "bold")),
                              theme(legend.title = element_text(face = "bold"))
                            ))
    
    
    
  }
  h1 
  
  if (F) {
    ggheatmap(
      dat[cg1,],hclust_method = "average",
      cluster_rows = T, #是否对行聚类
      cluster_cols = T, #是否对列聚类
      tree_height_rows = 0.28, #行聚类树高度
      tree_height_cols = 0.1, #列聚类树高度
      
      annotation_cols = group_list, #为列添加分组
      annotation_color = col,#分组颜色
      text_show_rows = FALSE,  
      
      #  text_show_rows = mark #显示指定的基因标签
      scale = "row" #选择对row/column/none进行归一化
    )
    
  }
  
  
  #火山图  
  v1 = draw_volcano(DEG1,logFC_cutoff = logFC_t, #adjust = TRUE,
                    xlab.package = FALSE)+xlab("log2FoldChange")+
    scale_x_continuous(limits = c(-3, 3), breaks = seq(-3, 3, by = 1))+
    # coord_cartesian(ylim = c(0, 10)) +
    scale_y_continuous(expand = expansion(add = c(2, 0)),limits = c(0, 10), breaks = seq(0, 40, by = 2))
  v1
  
  #(h1 ) / (v1) +plot_layout(guides = 'collect') &theme(legend.position = "none")
  head(DEG1)
  table(DEG1$change)
  DEG1$group=ANSWER
  #plot
  {
    pdf(paste(gsub("[[:punct:]]", " ",   paste(ANSWER,"_heatmap.pdf",sep = "_")),".pdf")
        ,width = 12,height = 7)
    print(h1)
    dev.off()
    
    pdf(paste(gsub("[[:punct:]]", " ",   paste(ANSWER,"_volcano.pdf",sep = "_")),".pdf"))
    print(v1)
    dev.off()
    
    pdf(paste(gsub("[[:punct:]]", " ",   paste(ANSWER,"_pca.plot.pdf",sep = "_")),".pdf"))
    print(pca.plot)
    dev.off()
    
    
    
    pdf(paste(gsub("[[:punct:]]", " ",   paste(ANSWER,"_pca_plot.pdf",sep = "_")),".pdf"))
    print(pca.plot)
    dev.off()
    DEG1$gene=rownames(DEG1) 
    write.csv(DEG1,file = paste(ANSWER,"DEGS_.CSV"))   
  }
  
  
  
}  


#--------------------------------------______________韦恩图------------

#安装加载VennDiagram包;
#install.packages("VennDiagram")
#加载VennDiagram包;
library(VennDiagram)

getwd()
setwd("/home/data/t040413/wpx/wpx_transcriptomics_proteinomics_Metabolomics/transcriptomics/4_d28_vs_d14_treatment_effective_2")
path_degs=list.files(all.files = T,full.names = T,pattern = ".CSV")
path_degs
degs_list <- lapply(path_degs, read.csv)
head(degs_list)
names(degs_list)=path_degs
head(degs_list)


# 使用do.call和rbind将它们合并
merged_df <- do.call(rbind, degs_list)
head(merged_df)

table(merged_df$group)
table(merged_df$change)

#---------------------------------------====================------pie plot--------=饼图
if (T) {
  {
    head(merged_df)
    # Calculate the percentage of UP and DOWN changes within each group
    group_percentages <-  merged_df[merged_df$change!="NOT",]  %>%
      group_by(group, change) %>%
     dplyr:: summarize(count = n()) %>%
      ungroup() %>%
      group_by(group) %>%
      mutate(percentage = count / sum(count) * 100)   %>%
      mutate(percent = ifelse(is.na(percentage), 0, percentage),
             percent_formatted = paste0(round(percent, 2), "%")) 
    
    # mutate(text_y = cumsum(as.numeric(percentage)) - as.numeric(percentage) / 2)
    group_percentages
    
    
    # Plot the pie chart
    library(ggrepel)
    p5= ggplot(group_percentages, aes(x = "", y = percentage, fill = change)) +
      # geom_bar(stat = "identity", width = 1) +
      geom_col()+
      coord_polar(theta = "y") +
      facet_wrap(~group) +
      theme_void() +
      labs(fill = "Change")
    
    ggsave(plot = p5,filename = "pie_plot_nolabel.pdf",width = 7,height = 7,limitsize = FALSE) 
    
    openxlsx::write.xlsx(group_percentages,file = "pie_plot_data_group_percentages.xlsx")
    
  }
  
  {
    group_percentages <-  merged_df[merged_df$change!="NOT",]  %>%
      group_by(group, change) %>%
    dplyr::  summarize(count = n()) %>%
      ungroup() %>%
      group_by(group) %>%
      mutate(percentage = count / sum(count) * 100)   %>%
      mutate(percent = ifelse(is.na(percentage), 0, percentage),
             percent_formatted = paste0(round(percent, 2), "%"))  %>%
      mutate(text_y = cumsum(as.numeric(percentage)) - as.numeric(percentage) / 2)
    
    # mutate(text_y = cumsum(as.numeric(percentage)) - as.numeric(percentage) / 2)
    group_percentages
    
    
    # Plot the pie chart
    library(ggrepel)
 p6=   ggplot(group_percentages, aes(x = "", y = percentage, fill = change)) +
      # geom_bar(stat = "identity", width = 1) +
      geom_col()+
      coord_polar(theta = "y") +
      facet_wrap(~group) +
      theme_void() +
      labs(fill = "Change")+
      geom_label_repel(aes(label = count, y = c(0.01,1,0.01,1)), show.legend = FALSE, 
                       #   box.padding = unit(1.8, "lines"), 
                       segment.color = "grey50", segment.size = 0.5)
    
    
 ggsave(plot = p6,filename = "pie_plot.pdf",width = 7,height = 7,limitsize = FALSE)   
 
 
  }
}


if (F) {
  {
    # Calculate the percentage of UP and DOWN changes within each group
    group_percentages <- merged_df[merged_df$change != "NOT", ] %>%
      group_by(group, change) %>%
      summarize(count = n()) %>%
      ungroup() %>%
      group_by(group) %>%
      mutate(percentage = count / sum(count) * 100) %>%
      mutate(percent = ifelse(is.na(percentage), 0, percentage),
             percent_formatted = paste0(round(percent, 2), "%")) %>%
      mutate(text_y = cumsum(as.numeric(percentage)) - as.numeric(percentage) / 2)
    
    group_percentages
    # Plot the pie chart
    ggplot(group_percentages, aes(x = "", y = percentage, fill = change)) +
      geom_col() +
      coord_polar(theta = "y") +
      facet_wrap(~group) +
      theme_void() +
      labs(fill = "Change") +
      geom_label_repel(aes(label = count, y = text_y), show.legend = FALSE, 
                       box.padding = unit(1.8, "lines"), 
                       segment.color = "grey50", segment.size = 0.5)
    
    
    
  }
  
  {
    head(merged_df)
    # Calculate the percentage of UP and DOWN changes within each group
    group_percentages <-  merged_df[merged_df$change!="NOT",]  %>%
      group_by(group, change) %>%
      summarize(count = n()) %>%
      ungroup() %>%
      group_by(group) %>%
      mutate(percentage = count / sum(count) * 100)   %>%
      mutate(percent = ifelse(is.na(percentage), 0, percentage),
             percent_formatted = paste0(round(percent, 2), "%")) 
    
    # mutate(text_y = cumsum(as.numeric(percentage)) - as.numeric(percentage) / 2)
    group_percentages
    
    
    # Plot the pie chart
    library(ggrepel)
    p5= ggplot(group_percentages, aes(x = "", y = percentage, fill = change)) +
      # geom_bar(stat = "identity", width = 1) +
      geom_col()+
      coord_polar(theta = "y") +
      facet_wrap(~group) +
      theme_void() +
      labs(fill = "Change")
    
    ggsave(plot = p5,filename = "pie_plot_nolabel.pdf") 
    
    
  }
}

#https://zhuanlan.zhihu.com/p/370916031

{
  list_for_venn=list()
  for ( each_degs in unique(merged_df$group)) {
    
    list_for_venn[[each_degs]]=merged_df[merged_df$group==each_degs
                                         &merged_df$change %in% c("DOWN","UP"),]$gene
    
  }
  str(list_for_venn)
  
  
  #选择韦恩图的颜色
  {
    #载入个人收藏的wesanderson包颜色列表;
    Chevalier1<-c("#355243","#fbca50","#c9d5d4","#baa28a")
    FantasticFox1<-c("#d37a20","#dbcb09","#3a9cbc","#dd7208","#a30019")
    Moonrise3<-c("#75cbdc","#f0a4af","#8a863a","#c2b479","#f8d068")
    Cavalcanti1<-c("#ceab0d","#083215","#919562","#6f997a","#831e11")
    Darjeeling2<-c("#e6c09e","#0d5888","#cb8b3e","#9cd6d6","#000000")
    Darjeeling1<-c("#fb0007","#139177","#ed9e08","#f56f08","#4caecc")
    Royal2<-c("#e4c9b2","#f1c2a5","#f49d98","#fcd68f","#629076")
    IsleofDogs2<-c("#e4c9b2","#998273","#a6723d","#2b2523","#151213")
    
    #设置颜色列表,因为最多只能画五个分组的韦恩图,这里最多设置5种颜色;
    color_list = Darjeeling1
    #依照指定的新分组数选取颜色列;
    fill_colors = color_list[1:length(list_for_venn)]
    fill_colors  
    
  }
  #绘制韦恩图,并导出到工作目录;https://cran.r-project.org/web/packages/VennDiagram/VennDiagram.pdf
  
  #VennDiagram::draw.triple.venn
  {venn.diagram(list_for_venn,
                # col="white",
                fill=fill_colors,lwd=.05,
                # cat.cex=0.1 ,#size of the category name
                resolution = 700,
                #     cat.pos = c(-20, 0, 20),
                # cat.dist = c(1.05, 1.05, 1.02),
                cex = 0.5,
                cat.cex = 0.3, #字体大小
                margin=0.1,  #页边距
                filename="venn_.tiff",
                width=1900,height=1900)
    
  }
  #继续以上述3个分组为例,组间交集元素获得
  venn_list=list_for_venn
  inter <- get.venn.partitions(venn_list) %>%as.data.frame()
  # Convert each element in the list to a character vector and encode special characters
  #inter<- lapply(inter[-c(5, 6)], function(x) iconv(as.character(x), "UTF-8", "ASCII", sub = ""))
  # Modify special characters in the 'inter' object
  
  inter
  
  for (i in 1:nrow(inter)) inter[i,'values'] <- paste(inter[[i,'..values..']], collapse = ', ')
  openxlsx::write.xlsx(as.data.frame(inter[-c(5, 6)]), 'venn_inter.xlsx')
  
  #for (i in 1:nrow(inter)) inter[i,'values'] <- paste(inter[[i,'..values..']], collapse = ', ')
  #inter <- lapply(inter[-c(5, 6)], function(x) gsub("[:punct:]", "-", as.character(x)))
  # 修改inter对象中的斜杠
  #inter <- lapply(inter[-c(5, 6)], function(x) gsub("\\\\", "-", as.character(x)))
  # Modify backslashes in the specific column of the data frame
  #inter[,3] <- gsub("\\\\", "-", inter[,3], fixed = TRUE)
  #openxlsx::write.xlsx(inter[-c(5, 6)], 'venn_inter.xlsx', row.names = FALSE, sep = ',', quote = FALSE)
  #交集的基因
  cg_inter=inter[1,"..values.."] 
  cg_inter=cg_inter[[1]]
  cg_inter
  }


#-----------------------------------------------------==########=========------------pheatmap four groups‘ 热图##########################3
figurename="d28_d14_control"
#pheatmap
{
  colnames(exp)
  dat=exp[,c(grep(pattern = "Normal",colnames(exp),value = T),
             grep(pattern = "LCT\\(14\\+14\\)-MSC-D14",colnames(exp),value = T),
             grep(pattern = "LCT\\(14\\+28\\)-MSC-D28",colnames(exp),value = TRUE))
  ]
  
  
  dim(dat)
  dat = log2(cpm(dat)+1)  # dat 为使用count数据转化而成的cpm数据,使用这个数据画图,而count数据只是用来做差异分析
  
  
  boxplot(dat,las=2)
  dat[dat>15]=15   #可视化 抹去异常值  
  
  #分组信息 phe_Data
  
  group_list=data.frame(
    row.names = colnames(dat),
    group=rep(c("Normal control","LCT(14+14)-MSC-D14","LCT(14+28)-MSC-D28"),each=6)
  )
  group_list$group=factor(group_list$group,levels =c("Normal control","LCT(14+14)-MSC-D14","LCT(14+28)-MSC-D28") )
  group_list
  
  
  #设置组别颜色 https://zhuanlan.zhihu.com/p/366674882
  group_col2 <- c("#bfb2d5","#f1937f","red")
  names(group_col2) <- unique(group_list$group) #LCT(14+28)-NT-D28 VS normal control
  col=list(group=group_col2)
  col
  library(pheatmap)
  
  ph1=pheatmap(dat[cg_inter,], annotation_col = group_list,color = colorRampPalette(c("blue", "white", "red"))(50),
               cutree_rows=2,cutree_cols=3, #切分成几份 
               
               cluster_cols = FALSE, #是否对列 样本聚类
               #annotation_row = annotation_row,
               #  cellwidth = 20, cellheight = 15, 
               scale = "row" ,
               fontsize_row = 4,
               annotation_legend = TRUE)
  
  pdf(paste(figurename,"pheatmap1.pdf"))
  print(ph1)
  dev.off()
  
  
  #带聚类的热图
  {
    ph2=pheatmap(dat[cg_inter,], annotation_col = group_list,color = colorRampPalette(c("blue", "white", "red"))(50),
                 #  cutree_rows=2,cutree_cols=3, #切分成几份 
                 
                 cluster_cols = T,
                 #clustering_method = "average", #是否对列 样本聚类
                 #annotation_row = annotation_row,
                 #  cellwidth = 20, cellheight = 15, 
                 scale = "row" ,
                 fontsize_row = 4,
                 annotation_legend = TRUE)
    pdf(paste(figurename,"pheatmap__clustering.pdf"))
    print(ph2)
    dev.off()}
  
}

#六组求平均值  # 计算每六列的平均值  差异基因的热图
if (T) {
  {
    colnames(exp)
    dat=exp[,c(grep(pattern = "Normal",colnames(exp),value = T),
               grep(pattern = "LCT\\(14\\+14\\)-MSC-D14",colnames(exp),value = T),
               grep(pattern = "LCT\\(14\\+28\\)-MSC-D28",colnames(exp),value = TRUE))
    ]
    
    
    dim(dat)
    dat = log2(cpm(dat)+1)  # dat 为使用count数据转化而成的cpm数据,使用这个数据画图,而count数据只是用来做差异分析
    
    
    boxplot(dat,las=2)
    dat[dat>15]=15   #可视化 抹去异常值  
    
    #分组信息 phe_Data
    
    group_list=data.frame(
      row.names = colnames(dat),
      group=rep(c("Normal control","LCT(14+14)-MSC-D14","LCT(14+28)-MSC-D28"),each=6)
    )
    group_list$group=factor(group_list$group,levels =c("Normal control","LCT(14+14)-MSC-D14","LCT(14+28)-MSC-D28") )
    group_list
    
    
    # 计算每六列的平均值
    group_list
    new_matrix <- matrix(0, nrow = nrow(dat), ncol = ceiling(ncol(dat) / 6))
    colnames(new_matrix) <- unique(group_list$group)
    rownames(new_matrix) <- rownames(dat)
    
    for (i in 1:ncol(new_matrix)) {
      start_col <- (i - 1) * 6 + 1
      end_col <- min(start_col + 5, ncol(dat))
      new_matrix[, i] <- rowMeans(dat[, start_col:end_col], na.rm = TRUE)
    }
    head(new_matrix)
    dat<-new_matrix
    
    boxplot(dat,las=2)
    dat[dat>15]=15   #可视化 抹去异常值  
    
    
    ph3=pheatmap(dat[cg_inter,], #annotation_col = group_list,
                 color = colorRampPalette(c("blue", "white", "red"))(50),
                 #  cutree_rows=2,cutree_cols=3, #切分成几份 
                 
                 cluster_cols = T, #是否对列 样本聚类
                 #annotation_row = annotation_row,
                 #  cellwidth = 20, cellheight = 15, 
                 scale = "row" ,
                 fontsize_row = 3,
                 annotation_legend = TRUE)
    pdf(paste(figurename,"pheatmap__average_expression_clustering_differential_degs.pdf"))
    print(ph3)
    dev.off()
  }
  
}
getwd()

#六组求平均值  # 计算每六列的平均值  seletec_genes的热图
seletec_genes=openxlsx::read.xlsx("/home/data/t040413/wpx/wpx_transcriptomics_proteinomics_Metabolomics/副本wpx-炎症或缺氧相关的因子 (1).xlsx",
                                  sheet = 2)
seletec_genes=seletec_genes$Gene_name %>%tolower() %>% str_to_title()
seletec_genes
{
  
  colnames(exp)
  dat=exp[,c(grep(pattern = "Normal",colnames(exp),value = T),
             grep(pattern = "LCT\\(14\\+14\\)-MSC-D14",colnames(exp),value = T),
             grep(pattern = "LCT\\(14\\+28\\)-MSC-D28",colnames(exp),value = TRUE))
  ]
  
  
  dim(dat)
  dat = log2(cpm(dat)+1)  # dat 为使用count数据转化而成的cpm数据,使用这个数据画图,而count数据只是用来做差异分析
  
  
  boxplot(dat,las=2)
  dat[dat>15]=15   #可视化 抹去异常值  
  
  #分组信息 phe_Data
  
  group_list=data.frame(
    row.names = colnames(dat),
    group=rep(c("Normal control","LCT(14+14)-MSC-D14","LCT(14+28)-MSC-D28"),each=6)
  )
  group_list$group=factor(group_list$group,levels =c("Normal control","LCT(14+14)-MSC-D14","LCT(14+28)-MSC-D28") )
  group_list
  
  # 计算每六列的平均值
  group_list
  new_matrix <- matrix(0, nrow = nrow(dat), ncol = ceiling(ncol(dat) / 6))
  colnames(new_matrix) <- unique(group_list$group)
  rownames(new_matrix) <- rownames(dat)
  
  for (i in 1:ncol(new_matrix)) {
    start_col <- (i - 1) * 6 + 1
    end_col <- min(start_col + 5, ncol(dat))
    new_matrix[, i] <- rowMeans(dat[, start_col:end_col], na.rm = TRUE)
  }
  head(new_matrix)
  dat<-new_matrix
  
  boxplot(dat,las=2)
  dat[dat>15]=15   #可视化 抹去异常值  
  
  print(length(seletec_genes))
  
  ph4=pheatmap(dat[ rownames(dat)[rownames(dat) %in% seletec_genes ]  ,], 
               #annotation_col = group_list,
               color = colorRampPalette(c("blue", "white", "red"))(50),
               #  cutree_rows=2,cutree_cols=3, #切分成几份 
               
               cluster_cols = T, #是否对列 样本聚类
               #annotation_row = annotation_row,
               #  cellwidth = 20, cellheight = 15, 
               scale = "row" ,
               fontsize_row = 5,
               annotation_legend = TRUE)
  pdf(paste(figurename,"pheatmap__average_expression_clustering_selected_genes.pdf"))
  print(ph4)
  dev.off()
  
}

print(getwd())


cg_inter

##重新画图 selected pathway
if (TRUE) {
  
  print(getwd())#=--------------------------------===============================#####################_+==============================
  #-----------------------https://www.jianshu.com/p/eee2cc315f77-----------------------------------------------------------
  library(clusterProfiler)
  library(ggplot2)
  library(enrichplot)
  library(DOSE)
  print(getwd())
  xx=openxlsx::read.xlsx("./compareCluster-GO_enrichment.xlsx")
  gg=openxlsx::read.xlsx("./compareCluster-KEGG_enrichment.xlsx")
  xx=xx[xx$excellent=="1" &
          !is.na(xx$excellent),]
  gg=gg[gg$excellent=="1" &
          !is.na(gg$excellent),]
  gg
  head(xx)
  
  #XX
  if (T) {
    df=xx
    df$GeneRatio <- DOSE::parse_ratio(df$GeneRatio)
    # Find unique levels and sort them alphabetically
    # unique_descriptions <- sort(unique(df$Description))
    # # Convert Description column into a factor with sorted levels
    # df$Description <- factor(df$Description, levels = unique_descriptions)
    if (T) {
      
      library(dplyr)
      
      # First, ensure the 'Description' column is of type character (if not already)
      df$Description <- as.character(df$Description)
      
      # Use add_count() to add a new column 'DescriptionFreq' containing the frequency of each 'Description'
      df <- df %>%
        add_count(Description, name = "DescriptionFreq")
      
      # Now, arrange the dataframe based on the frequency and the 'Description' column
      df <- df %>%
        arrange(DescriptionFreq, Description) %>%
        select(-DescriptionFreq) # Remove the temporary frequency column if you don't need it in the final result
      
      # Now the 'Description' column is reordered as you desired, with non-repeated descriptions at the beginning, followed by descriptions with one repetition, and so on.
      
      
    }
    
    df=df %>%
      group_by(ID) %>%
      add_count() %>% group_by(Description)  %>% mutate(number=rownames(df))#%>%ungroup()
    xx=df
    xx
    
    dim(xx)
    xx$GeneRatio=as.numeric(xx$GeneRatio)
    library(forcats)
    
    if (T) {
      
      #如何取消ggplot的y轴默认排序,但同时我的y轴又存在重复
      # Convert 'Description' to a factor while preserving the order and duplicates
      df$Description <- fct_inorder(df$Description)
      
      # Now create the ggplot using the 'Description' column for y-axis
      p2=ggplot(df, aes(x = Cluster, y = Description)) +
        geom_point(aes(color = p.adjust, size = Count)) +
        scale_color_gradient(low = "red", high = "blue") +
        xlab("Cluster") +
        theme_bw() +
        theme(axis.text.x = element_text(angle = 90, face = "bold", size = 10)) +
        # Edit legends
        guides(
          # Reverse color order (higher value on top)
          color = guide_colorbar(reverse = TRUE)
        ) +
        guides(
          size = guide_legend(order = 2),
          color = guide_colorbar(order = 1)
        )
      
    }
    if (F) {
      # str(xx)
      # p2=ggplot(df,aes(x = Cluster,y = as.character(Description)))+
      #   geom_point(aes(color = p.adjust,
      #                  size = Count))+
      #   scale_color_gradient(low = "red", high = "blue")  +
      #   xlab("Cluster")+
      #   theme_bw()+
      #   theme(axis.text.x = element_text(angle = 90,face = "bold",size = 10))+
      # #  scale_y_continuous(labels = NULL) +  # Remove custom labels for y-axis
      #   #edit legends
      #   guides(
      #     #reverse color order (higher value on top)
      #     color = guide_colorbar(reverse = TRUE)) +
      #   guides( size  = guide_legend(order = 2),
      #          color = guide_colorbar(order = 1)) 
      # 
      # #reverse size order (higher diameter on top) 
      # #size = guide_legend(reverse = TRUE))
      # 
    }
    
    
    ggsave('degs_compareCluster-GO_enrichment-2_selected_go.pdf',
           plot = p2,width = 7,height = 13,limitsize = F)
    
  }
  
  
  #GG
  if (T) {
    xx=gg
    df=xx
    df$GeneRatio <- DOSE::parse_ratio(df$GeneRatio)
    # Find unique levels and sort them alphabetically
    # unique_descriptions <- sort(unique(df$Description))
    # # Convert Description column into a factor with sorted levels
    # df$Description <- factor(df$Description, levels = unique_descriptions)
    if (T) {
      
      library(dplyr)
      
      # First, ensure the 'Description' column is of type character (if not already)
      df$Description <- as.character(df$Description)
      
      # Use add_count() to add a new column 'DescriptionFreq' containing the frequency of each 'Description'
      df <- df %>%
        add_count(Description, name = "DescriptionFreq")
      
      # Now, arrange the dataframe based on the frequency and the 'Description' column
      df <- df %>%
        arrange(DescriptionFreq, Description) %>%
        select(-DescriptionFreq) # Remove the temporary frequency column if you don't need it in the final result
      
      # Now the 'Description' column is reordered as you desired, with non-repeated descriptions at the beginning, followed by descriptions with one repetition, and so on.
      
      
    }
    
    df=df %>%
      group_by(ID) %>%
      add_count() %>% group_by(Description)  %>% mutate(number=rownames(df))#%>%ungroup()
    xx=df
    xx
    
    dim(xx)
    xx$GeneRatio=as.numeric(xx$GeneRatio)
    library(forcats)
    
    if (T) {
      
      #如何取消ggplot的y轴默认排序,但同时我的y轴又存在重复
      # Convert 'Description' to a factor while preserving the order and duplicates
      df$Description <- fct_inorder(df$Description)
      
      # Now create the ggplot using the 'Description' column for y-axis
      p2=ggplot(df, aes(x = Cluster, y = Description)) +
        geom_point(aes(color = p.adjust, size = Count)) +
        scale_color_gradient(low = "red", high = "blue") +
        xlab("Cluster") +
        theme_bw() +
        theme(axis.text.x = element_text(angle = 90, face = "bold", size = 10)) +
        # Edit legends
        guides(
          # Reverse color order (higher value on top)
          color = guide_colorbar(reverse = TRUE)
        ) +
        guides(
          size = guide_legend(order = 2),
          color = guide_colorbar(order = 1)
        )
      
    }
    if (F) {
      # str(xx)
      # p2=ggplot(df,aes(x = Cluster,y = as.character(Description)))+
      #   geom_point(aes(color = p.adjust,
      #                  size = Count))+
      #   scale_color_gradient(low = "red", high = "blue")  +
      #   xlab("Cluster")+
      #   theme_bw()+
      #   theme(axis.text.x = element_text(angle = 90,face = "bold",size = 10))+
      # #  scale_y_continuous(labels = NULL) +  # Remove custom labels for y-axis
      #   #edit legends
      #   guides(
      #     #reverse color order (higher value on top)
      #     color = guide_colorbar(reverse = TRUE)) +
      #   guides( size  = guide_legend(order = 2),
      #          color = guide_colorbar(order = 1)) 
      # 
      # #reverse size order (higher diameter on top) 
      # #size = guide_legend(reverse = TRUE))
      # 
    }
    
    
    ggsave('degs_compareCluster-KEGG_enrichment-2_selected_KEGG.pdf',
           plot = p2,width = 6,height = 8,limitsize = F)
    
  }
  
  
  
}






############-----------------------------------------------------------富集分析---------
getwd()
#openxlsx::write.xlsx(merged_df,file = "/home/data/t040413/wpx/wpx_transcriptomics_proteinomics_Metabolomics/transcriptomics/4_d28_vs_d14_treatment_effective/merged_df.xlsx")

head(merged_df)
{
  ##########################----------------------enrichment analysis==================================================
  #https://mp.weixin.qq.com/s/WyT-7yKB9YKkZjjyraZdPg
  df=merged_df
  head(df)
  # ##筛选阈值确定:p<0.05,|log2FC|>1
  # p_val_adj = 0.05
  # avg_log2FC = 0.6
  # #根据阈值添加上下调分组标签:
  # df$direction <- case_when(
  #   df$avg_log2FC > avg_log2FC & df$p_val_adj < p_val_adj ~ "up",
  #   df$avg_log2FC < -avg_log2FC & df$p_val_adj < p_val_adj ~ "down",
  #   TRUE ~ 'none'
  # )
  # head(df)
  df$direction=df$change
  df=df[df$direction!="NOT",]
  head(df)
  dim(df)
  df$mygroup=paste(df$group,df$direction,sep = "_")
  head(df)
  dim(df)
  
  #https://mp.weixin.qq.com/s/WyT-7yKB9YKkZjjyraZdPg
  {
    library(clusterProfiler)
   # library(org.Hs.eg.db)
  # BiocManager::install("org.Rn.eg.db")
 #  install.packages("org.Rn.eg.db")
    library(org.Rn.eg.db)
    library(ggplot2)
    # degs_for_nlung_vs_tlung$gene=rownames(degs_for_nlung_vs_tlung)
    sce.markers=df
    head(sce.markers)
    ids=bitr(sce.markers$gene,'SYMBOL','ENTREZID','org.Rn.eg.db')
    head(ids)
    sce.markers=merge(sce.markers,ids,by.x='gene',by.y='SYMBOL')
    head(sce.markers)
    sce.markers=sce.markers[sce.markers$change!="NOT",]
    dim(sce.markers)
    head(sce.markers)
    sce.markers$cluster=sce.markers$mygroup
    
    gcSample=split(sce.markers$ENTREZID, sce.markers$cluster)
    gcSample # entrez id , compareCluster 
    #https://zhuanlan.zhihu.com/p/561522453 
    #https://evvail.com/2021/07/13/2456.html 
    
    print("===========开始go kegg============")
    xx <-clusterProfiler::compareCluster(gcSample, fun="enrichGO",OrgDb="org.Rn.eg.db",
                         readable=TRUE,
                         ont = 'ALL',  #GO Ontology,可选 BP、MF、CC,也可以指定 ALL 同时计算 3 者
                         pvalueCutoff=0.05) #organism="hsa", #'org.Hs.eg.db',
    
    
    gg<-clusterProfiler::compareCluster(gcSample,fun = "enrichKEGG",
                                        keyType = 'kegg',  #KEGG 富集
                                        organism="rno",
                                        pvalueCutoff = 0.05 #指定 p 值阈值(可指定 1 以输出全部
                                        )
    
    
    p=dotplot(xx) 
    p2=p+ theme(axis.text.x = element_text(angle = 90, 
                                        vjust = 0.5, hjust=0.5))
    p2
    ggsave('degs_compareCluster-GO_enrichment-2.pdf',plot = p2,width = 6,height = 12,limitsize = F)
    xx
   openxlsx::write.xlsx(xx,file = "compareCluster-GO_enrichment.xlsx")
 # -----  
   p=dotplot(gg) 
   p4=p+ theme(axis.text.x = element_text(angle = 90, 
                                          vjust = 0.5, hjust=0.5))
   p4
   print(paste("保存位置",getwd(),sep = "  :   "))
   ggsave('degs_compareCluster-KEGG_enrichment-2.pdf',plot = p4,width = 6,height = 12,limitsize = F)
   gg
   openxlsx::write.xlsx(gg,file = "compareCluster-KEGG_enrichment.xlsx")
   
   
   
  }
  
  getwd()
  setwd("/home/data/t040413/wpx/wpx_transcriptomics_proteinomics_Metabolomics/transcriptomics/4_d28_vs_d14_treatment_effective/")
  
 if (F) {
   {
     
     go=openxlsx::read.xlsx("/home/data/t040413/wpx/wpx_transcriptomics_proteinomics_Metabolomics/transcriptomics/4_d28_vs_d14_treatment_effective/compareCluster-GO_enrichment.xlsx")
     head(go)
     #  或者使用一些作图包(如ggplot2)读取输出结果做个展示,不再多说。
     
     library(ggplot2)
     
     go <- xx@compareClusterResult
     head(go)
     go$term <- paste(go$ID, go$Description, sep = ': ')
     
     #  go <- go[order(go$ONTOLOGY, go$p.adjust, decreasing = c(TRUE, TRUE)), ]
     go <- go[order( go$p.adjust, decreasing = c( FALSE)  ), ]
     head(go)
     go$term <- factor(go$term, levels = unique(go$term))
     print(dim(go))
     
     #library(tidyr)
     # install.packages("BiocManager")
     #  library(BiocManager)
     # BiocManager::install("dplyr")
     head(go)
     go <-go %>%
       group_by(ONTOLOGY) %>%
       mutate(group_size = n()) %>%
       filter(row_number() <= ifelse(group_size > 10, 10, group_size)) %>%
       ungroup() %>%
       select(-group_size)   
     go
     
     p3=ggplot(go, aes(term, -log10(p.adjust))) +
       geom_col(aes(fill = ONTOLOGY), width = 0.5, show.legend = FALSE) +
       scale_fill_manual(values = c('#D06660', '#5AAD36', '#6C85F5')) +
       facet_grid(ONTOLOGY~., scale = 'free_y', space = 'free_y') +
       theme(panel.grid = element_blank(), panel.background = element_rect(color = 'black', fill = 'transparent')) +
       scale_y_continuous(expand = expansion(mult = c(0, 0.1))) + 
       coord_flip() +
       labs(x = '', y = '-Log10 P-Value\n')
     
     ggsave(plot = p3,filename = "")
     
     
     
   }
 } 
  
  
}



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/768467.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

软件检测报告对软件产品起的作用和编写原则分析

软件检测报告是一项对软件进行全面测试和评估的结果总结&#xff0c;通过对软件的功能、性能、安全性等方面的测试&#xff0c;以及通过分析软件的可靠性和稳定性&#xff0c;来评估软件的质量和合规性。 一、软件检测报告对软件产品起到的作用 1、提供一个全面的评估和分析软…

认识主被动无人机遥感数据、预处理无人机遥感数据、定量估算农林植被关键性状、期刊论文插图精细制作与Appdesigner应用开发

目录 第一章、认识主被动无人机遥感数据 第二章、预处理无人机遥感数据 第三章、定量估算农林植被关键性状 第四章、期刊论文插图精细制作与Appdesigner应用开发 更多推荐 遥感技术作为一种空间大数据手段&#xff0c;能够从多时、多维、多地等角度&#xff0c;获取大量的…

NAT 地址转换路由器配置命令(华为路由器)

#AR1路由器配置 # acl 2000 rule permit source any # interface GigabitEthernet0/0/1 nat outbound 2000 ip address 1.1.1.1 24 # interface GigabitEthernet0/0/0 ip address 172.16.1.1 255.255.255.0 # ip route-static 0.0.0.0 0.0.0.0 1.1.1.2 ip route-static …

工业平板电脑具备IP65防护等级,防尘、防水、防震

随着科技的快速发展&#xff0c;工业平板电脑已经成为了我们日常生活中不可或缺的一部分。而在不同领域中&#xff0c;各行各业的专业需求也在不断增长。针对工业领域的专业需求&#xff0c;工业平板电脑应运而生。它以出色的外观设计、强大的性能和丰富的功能&#xff0c;为工…

【iOS】对象的本质探索

OC对象的底层结构 问题&#xff1a;一个NSObject对象在内存中是如何布局的&#xff1f;NSObject的内存布局1 通过 lldb命令 窥探NSObject内存布局2 通过 View Memory 窥探NSObject内存布局3 通过 底层函数API 窥探NSObject内存布局总结 通过继承关系进一步了解NSObject1 运行项…

【SwitchyOmega】SwitchyOmega 安装及使用

文章目录 安装教程使用教程 安装教程 SwitchyOmega 谷歌商店下载链接&#xff1a;https://chrome.google.com/webstore/detail/proxy-switchyomega/padekgcemlokbadohgkifijomclgjgif?hlen-US 在谷歌商店搜索 SwitchyOmega&#xff0c; 选择 Proxy SwitchyOmega 点击 Add t…

刷题记录-1蓝桥公园

蓝桥杯刷题记录 记录蓝桥杯刷题每一天 python解题 import sysn, m, q map(int, input().split()) dp [[sys.maxsize]*(n1) for _ in range(n1)]for _ in range(m):u, v, w map(int, input().split())dp[u][v] dp[v][u] min(dp[u][v], w)for k in range(1, n1):for i in …

常见的网络攻击

​ 1.僵木蠕毒 攻击业内习惯把僵尸网络、木马、蠕虫、感染型病毒合称为僵木蠕毒。从攻击路径来看&#xff0c;蠕虫和感染型病毒通过自身的能力进行主动传播&#xff0c;木马则需要渠道来进行投放&#xff0c;而由后门木马&#xff08;部分具备蠕虫或感染传播能力&#xff09;构…

我在VScode学Java类与对象(Java构造方法 、JavaBean)第二辑 + VScode怎么在预览模式中点击另外一个文件,不会被替换掉

我的个人博客主页&#xff1a;如果’真能转义1️⃣说1️⃣的博客主页 关于Java基本语法学习---->可以参考我的这篇博客&#xff1a;《我在VScode学Java》 关于Java数组学习、JVM中的堆和栈—>可以参考我的这篇文章我在VScode学Java(Java一维数组、二维数组、JVM中的堆和栈…

VSCode种git rebase分支冲突解决无法继续rebase

情景&#xff1a; 常规来说我们git开分支开发完新功能之后&#xff0c;提交之前rebase dev分支&#xff0c;然后合并到dev上算是开发完成。 问题还原&#xff1a; 在开发完之后执行如下指令&#xff1a; 1.执行变基操作&#xff1a;git rebase dev。 //这一步出现冲突vscode上…

SQL中为何时常见到 where 1=1?

你是否曾在 SELECT 查询中看到过 WHERE 11 条件。我在许多不同的查询和许多 SQL 引擎中都有看过。这条件显然意味着 WHERE TRUE&#xff0c;所以它只是返回与没有 WHERE 子句时相同的查询结果。此外&#xff0c;由于查询优化器几乎肯定会删除它&#xff0c;因此对查询执行时间没…

AtcoderABC250场

A - Adjacent SquaresA - Adjacent Squares 题目大意 给定一个由H行W列组成的网格。令(i,j)表示从上到下第i行&#xff0c;从左到右第j列的方块。找出与方块(R,C)共享边的方块数量。 这里&#xff0c;方块(a,b)和方块(c,d)被称为共享边&#xff0c;当且仅当|a-c||b-d|1。 思路…

网站测试自动化系统

首先先分解一下执行测试用例的步骤&#xff0c;编码实现每一个步骤&#xff0c;然后使用批处理的形式将工作流串起来&#xff1a;&#xff08;当然啦&#xff0c;我们也可以使用.NET里面的Workflow来实现&#xff0c;只不过那样的话我们需要格外添加一个命令—安装.NET Framewo…

数据排布与跨距对齐

1 数据排布 1.1 数据排布的概念 在深度学习框架中&#xff0c;特征图通常以四维数组的形式呈现&#xff0c;这四个维度分别是&#xff1a;批量大小N&#xff0c;特征图通道数C&#xff0c;特征图高度H&#xff0c;特征图宽度W。数据排布&#xff08;Layout&#xff09;指的就…

数学建模的赛题类型

一、预测类 指通过分析已有的数据或者现象&#xff0c;找出其内在发展规律&#xff0c;然后对未来情形做出预测的过程。 根据已知条件和求解目的&#xff0c;往往将预测类问题分为&#xff1a;小样本内部预测&#xff0c;大样本内部预测。 解决预测类赛题的一般步骤&#xff…

Minio桶复制(Bucket Replication)入门

文章目录 前言一、部署下载用户组添加 minio.service 文件新建配置文件 minio启动 二、安装 mc三、桶复制1.权限建立 Replication Admin 用户建立 Replication Remote User 用户 2.建立桶3建立桶复制4.验证 总结遇到问题 前言 桶复制&#xff1a; 可以理解像 mysql 主从备份&a…

基于linux下的高并发服务器开发(第二章)- 2.10 进程间通信简介

面试官经常问&#xff1a; ① 你知道进程间通信的方式有哪几种吗&#xff1f; ② 进程间通信当中某一个方式一个具体的原理是什么&#xff1f;怎么去实现呢&#xff1f; 01 / 进程间通讯概念 02 / Linux进程间通信的方式 怎样理解阻塞非阻塞与同步异步的区别&#xff1f; 怎样…

SpringCloud Gateway网关

文章目录 SpringCloud Gateway1.1 网关架构1.2微服务网关介绍1.3Spring Cloud Gateway(技术选型)1.4依赖1.5yaml配置(包含gateway相关配置,实现转发的功能)1.6断言案例:1.7断言详细介绍1.8 整合nacos1.9 nacos整合网关案例1.10动态路由 SpringCloud Gateway 1.1 网关架构 (dub…

专题-【哈夫曼树】

14年三-1&#xff09; 已知电文信息为“PEFFQ RQRFE QFPQR FPER” &#xff08;1&#xff09;请按此信息构造哈夫曼树&#xff0c;求出每个字符的最优编码&#xff1b; &#xff08;2&#xff09;若对每个字符进行等长编码&#xff0c;至少需要几位二进制数&#xff1f;哈夫…

小研究 - 面向 Java 的高对抗内存型 Webshell 检测技术(二)

由于 Web 应用程序的复杂性和重要性, 导致其成为网络攻击的主要目标之一。攻击者在入侵一个网站后, 通常会植入一个 Webshell, 来持久化控制网站。但随着攻防双方的博弈, 各种检测技术、终端安全产品被广泛应用, 使得传统的以文件形式驻留的 Webshell 越来越容易被检测到, 内存…