队列--C语言实现数据结构

news2025/1/18 11:46:35

在这里插入图片描述

本期带大家一起用C语言实现队列🌈🌈🌈

文章目录

    • 1、队列的概念
    • 2、队列的操作流程
    • 3 、队列的结构
    • 4、队列的实现
      • 4.1 队列的结构设计
      • 4.2 队列的初始化
      • 4.3 入队
      • 4.4 判断队列是否为空
      • 4.5 出队
      • 4.6 获取队头数据
      • 4.7 获取队尾数据
      • 4.8 获取队列当中数据的个数
      • 4.9 队列的销毁
    • 5、栈和队列OJ题
      • 5.1 [队列模拟栈](https://leetcode.cn/problems/implement-stack-using-queues/)
      • 5.2 栈模拟队列
      • 5.3 循环队列
    • 6、感谢与交流✅

1、队列的概念

队列是一种线性数据结构,它按照先进先出(FIFO)的原则进行操作。可以把队列想象成排队买票或者排队上公交车的队伍。

顺序队列由一个连续的内存区域组成,可以存储多个元素。队列有两个指针,分别指向队头(Front)和队尾(Rear)。
链式队列由一系列节点构成,每个节点包含存储的元素值和指向下一个节点的指针
队列的基本操作包括:

  1. 入队(Enqueue):将新元素插入到队尾,如果队列已满则无法插入。
  2. 出队(Dequeue):移除队头元素,并返回该元素,如果队列为空则无法执行。
  3. 获取队头元素(Front):获取队头元素的值,但不对队列进行修改。
  4. 判断队列是否为空(isEmpty):判断队列中是否没有任何元素。
  5. 判断队列是否已满(isFull):判断队列是否已经达到了最大容量。

队列的操作遵循先进先出的原则,即先入队的元素先出队。在队列中,新元素被插入到队列的末尾,而出队操作始终从队列的头部进行。

队列常用于需要顺序处理任务或数据的场景,例如处理请求、消息传递、广度优先搜索等算法实现。此外,队列还可以通过循环队列的方式来实现,使得已经出队的元素可以再次被插入到队列的末尾,有效地利用内存空间。

2、队列的操作流程

在这里插入图片描述

3 、队列的结构

队列通常使用数组或链表来实现。以下是两种常见的队列结构:

  1. 基于数组的队列(顺序队列):

    • 使用一个固定大小的数组来保存队列元素。
    • 需要维护队头和队尾的索引,分别指向队列的第一个元素和最后一个元素。
    • 入队操作将元素添加到队尾,并更新队尾索引。
    • 出队操作将队头元素移除,并更新队头索引。
    • 注意,入队操作可能导致队列满(队尾索引达到数组末尾)的情况,需要进行特殊处理。
  2. 基于链表的队列(链式队列):

    • 使用链表来动态存储队列元素。
    • 需要维护队头和队尾节点指针,分别指向队列的第一个节点和最后一个节点。
    • 入队操作创建一个新节点,并将其链接到链表末尾,更新队尾指针。
    • 出队操作移除队头节点,并更新队头指针。
    • 注意,链式队列没有固定的大小限制,可以根据需要动态调整。

无论是基于数组还是链表的队列,其核心思想都是维护队头和队尾指针,并通过头部和尾部的插入和删除操作实现先进先出的特性。根据具体的应用场景和需求,选择适合的队列实现方式

在这里我们使用链表来实现队列,避免了用数组队列更新队头数据的遍历,时间复杂度低

4、队列的实现

4.1 队列的结构设计

Queue结构体,它表示整个队列。该结构体包含两个指针成员head和tail,分别指向队列的头部节点和尾部节点
QNode的结构体,它表示队列中的节点。该结构体包含一个指向下一个节点的指针next,以及一个数据data

typedef int QDataTYpe;

typedef struct QueueNode
{
	struct QueueNode* next;

	QDataTYpe data;
}QNode;

typedef struct Queue
{
	QNode* head;
	QNode* tail;
	int size;
}Queue;

4.2 队列的初始化

现在主函数当中创建了一个Queue q
然后传入q的地址,进行初始化
将队列的头部指针和尾部指针设为NULL,并将队列的大小初始化为0

void QueueInit(Queue* pq)
{
	pq->head = NULL;
	pq->tail = NULL;

	pq->size = 0;
}

4.3 入队

在函数内部,首先进行断言assert(pq)来确保指针pq不为空。

然后,通过动态内存分配malloc来创建一个新的节点newnode,并将其类型转换为QNode*

接下来,检查是否成功分配内存,如果分配失败,则输出错误信息并返回。

然后,将新节点的数据成员data赋值为传入的参数x,同时将新节点的下一个指针next设置为NULL,新节点表示当前节点是队列的尾部节点。

接着,根据队列是否为空,有两种情况处理:

  • 如果队列为空,即头部指针head为NULL,表示当前队列没有任何节点,此时将头部指针和尾部指针都指向新节点newnode
  • 如果队列不为空,即头部指针head不为NULL,表示当前队列已存在节点,此时将队列尾部节点的下一个指针next指向新节点newnode,然后将尾部指针tail更新为新节点newnode
  • 最后,将队列的大小size加1,表示新增了一个节点。
void QueuePush(Queue* pq,QDataTYpe x)
{
	assert(pq);
	QNode* newnode = (QNode*)malloc(sizeof(QNode));;

	if (newnode == NULL)
	{
		perror("malloc:fail");
		return;
	}
	newnode->data = x;
	newnode->next = NULL;
	if (pq->head == NULL)
	{
		pq->head = pq->tail = newnode;
	}
	else
	{
		pq->tail->next = newnode;

		pq->tail = newnode;
	}
	pq->size++;

}

4.4 判断队列是否为空

判断队列是否为空的话,相对来说是比较简单的
有两种判断方法
根据队列的头指针是否为空判断
根据队列当中的数据个数size判断

bool QueueEmpty(Queue* pq)
{
	return pq->head == NULL;
	//return pq->size==0;
}

4.5 出队

出队列的话我们需要先判断当前队列是否为空
队列为空的话那我们就直接返回
队列不为空的话又分两种情况
1、队头指针==队尾指针

2、队头指针!=队尾指针
void QueuePop(Queue* pq)
{
	assert(pq);

	if (QueueEmpty(pq))
	{
		printf("队列为空\n");
		return;
	}

	if (pq->head == pq->tail)
	{
		free(pq->head);
		pq->head = NULL;
		pq->tail = NULL;

	}
	else
	{
		QNode* next = pq->head->next;
		free(pq->head);
		pq->head = next;
	}
	pq->size--;
}

4.6 获取队头数据

获取队头数据的话,需要先判断队列是否为空,为空的话就直接返回
队列不为空,返回队头数据

QDataTYpe QueueFront(Queue* pq)
{
	assert(pq);

	if (QueueEmpty(pq))
	{
		printf("队列为空\n");
		return;
	}

	else
		return pq->head->data;
}

4.7 获取队尾数据

获取队尾数据的话,同样需要判断队列是否为空,为空的话也就直接返回
队列不为空的话,返回队尾数据

QDataTYpe QueueBack(Queue* pq)
{
	assert(pq);

	if (QueueEmpty(pq))
	{
		printf("队列为空\n");
		return;
	}
	else
		return pq->tail->data;
}

4.8 获取队列当中数据的个数

获取队列数据的个数,直接返回pq->size

int QueueSize(Queue* pq)
{
	assert(pq);
	return pq->size;
}

4.9 队列的销毁

使用循环遍历队列中的所有节点,直到遍历到最后一个节点,即当前节点为NULL


void QueueDestroy(Queue* pq)
{

	assert(pq);

	QNode* cur = pq->head;

	while (cur != NULL)
	{
		QNode* next = cur->next;
		free(cur);
		cur = next;

	}

	pq->head = NULL;
	pq->tail = NULL;
	pq->size = 0;

}

5、栈和队列OJ题

5.1 队列模拟栈

在这里插入图片描述

使用两个队列来实现栈的重点在于以下几点:

  1. 始终保持一个队列为空,另一个队列非空。
  2. 入数据时,将元素入队到不为空的队列中。
  3. 出数据时,将非空队列中的元素转移到空队列中,直到队列中只剩下一个元素。
  4. 出队原先非空队列的数据,原先非空队列变为空,即可实现栈的后进先出操作。

通过将元素入队到非空队列、转移到空队列以及出队的操作,可以模拟栈的后进先出特性

在这里插入图片描述

typedef int QDataTYpe;

typedef struct QueueNode
{
	struct QueueNode* next;

	QDataTYpe data;
}QNode;

typedef struct Queue
{
	QNode* head;
	QNode* tail;
	int size;
}Queue;



void QueueInit(Queue* pq);


void QueueDestroy(Queue* pq);

void QueuePush(Queue* pq,QDataTYpe x);

void QueuePop(Queue* pq);

bool QueueEmpty(Queue* pq);

QDataTYpe QueueFront(Queue* pq);

QDataTYpe QueueBack(Queue* pq);

int QueueSize(Queue* pq);
void QueueInit(Queue* pq)
{
	pq->head = NULL;
	pq->tail = NULL;

	pq->size = 0;
}


void QueueDestroy(Queue* pq)
{

	assert(pq);

	QNode* cur = pq->head;

	while (cur != NULL)
	{
		QNode* next = cur->next;
		free(cur);
		cur = next;

	}

	pq->head = NULL;
	pq->tail = NULL;
	pq->size = 0;

}


bool QueueEmpty(Queue* pq)
{
	return pq->head == NULL;
	//return pq->size==0;
}


void QueuePush(Queue* pq,QDataTYpe x)
{
	assert(pq);
	QNode* newnode = (QNode*)malloc(sizeof(QNode));;

	if (newnode == NULL)
	{
		perror("malloc:fail");
		return;
	}
	newnode->data = x;
	newnode->next = NULL;
	if (pq->head == NULL)
	{
		pq->head = pq->tail = newnode;
	}
	else
	{
		pq->tail->next = newnode;

		pq->tail = newnode;
	}
	pq->size++;

}


void QueuePop(Queue* pq)
{
	assert(pq);

	if (QueueEmpty(pq))
	{
		printf("队列为空\n");
		return;
	}

	if (pq->head == pq->tail)
	{
		free(pq->head);
		pq->head = NULL;
		pq->tail = NULL;

	}
	else
	{
		QNode* next = pq->head->next;
		free(pq->head);
		pq->head = NULL;
		pq->head = next;
	}
	pq->size--;
}




QDataTYpe QueueFront(Queue* pq)
{
	assert(pq);
	assert(!QueueEmpty(pq));

		return pq->head->data;
}

QDataTYpe QueueBack(Queue* pq)
{
	assert(pq);
	assert(!QueueEmpty(pq));
		return pq->tail->data;
}


int QueueSize(Queue* pq)
{
	assert(pq);
	return pq->size;
}


typedef struct {
    Queue q;
    Queue p;
} MyStack;


MyStack* myStackCreate() {
    MyStack*obj=(MyStack*)malloc(sizeof(MyStack));
    if(obj==NULL)
    {
        return NULL;
    }
    QueueInit(&obj->p);
    QueueInit(&obj->q);
		return obj;
}

void myStackPush(MyStack* obj, int x) {

    if(QueueEmpty(&obj->p))
    {
        QueuePush(&obj->q,x);
    }
    else
    {
        QueuePush(&obj->p,x);
    }
}

int myStackPop(MyStack* obj) {
    Queue*Empty=&obj->q;
    Queue*NoEmpty=&obj->p;
    if(QueueEmpty(&obj->p))
    {
        Empty=&obj->p;
        NoEmpty=&obj->q;
    }

    while(QueueSize(NoEmpty)>1)
    {
        QueuePush(Empty,QueueFront(NoEmpty));

        QueuePop(NoEmpty);
    }

    int top=QueueFront(NoEmpty);
    QueuePop(NoEmpty);
    return top;
}

int myStackTop(MyStack* obj) {
    if(QueueEmpty(&obj->p))
    {
        return QueueBack(&obj->q);
    }
    else
    return QueueBack(&obj->p);
}

bool myStackEmpty(MyStack* obj) {
    return QueueEmpty(&obj->q)&&QueueEmpty(&obj->p);
}

void myStackFree(MyStack* obj) {
    QueueDestroy(&obj->q);
    QueueDestroy(&obj->p);
    free(obj);
}

5.2 栈模拟队列

栈模拟队列
在这里插入图片描述
栈模拟队列的话,可以想象成一个连通器
在这里插入图片描述

在这里插入图片描述



typedef int STDataType;

typedef struct Stack
{
	STDataType* a;
	int top;
	int capacity;
}ST;


//初始化
void STInit(ST* ps);

//销毁
void STDestroy(ST* ps);

//压栈

void STPush(ST* ps,STDataType x);


//出栈

void STPop(ST* ps);

//判空

bool STEmpty(ST* ps);

//栈顶

STDataType STTop(ST* ps);

//个数

int STSize(ST* ps);



void STInit(ST* ps)
{

	assert(ps);

	ps->a = NULL;
	ps->capacity = 0;
	ps->top = 0;

}


void STDestroy(ST* ps)
{
	assert(ps);

	free(ps->a);
	ps->a = NULL;
	ps->capacity = 0;

	ps->top = 0;
}




void STPush(ST* ps,STDataType x)
{

	assert(ps);

	if (ps->top == ps->capacity)
	{
		int newcapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;

		STDataType* tmp = (STDataType*)realloc(ps->a, newcapacity*sizeof(STDataType));

		if (tmp == NULL)
		{
			perror("realloc :fail");
			return;
		}

		ps->a = tmp;

		ps->capacity = newcapacity;

	}
	ps->a[ps->top++] = x;

}

bool STEmpty(ST* ps)
{

	return ps->top == 0;
}

void STPop(ST* ps)
{

	assert(ps);
	assert(!STEmpty(ps));

	ps->top--;
}


STDataType STTop(ST* ps)
{

	assert(ps);

	return ps->a[ps->top - 1];

}


int STSize(ST* ps)
{
	assert(ps);

	return  ps->top;

}



typedef struct {
    ST pushst;
    ST popst;
} MyQueue;


MyQueue* myQueueCreate() {
    MyQueue*obj=(MyQueue*)malloc(sizeof(MyQueue));
    
    STInit(&obj->pushst);
    STInit(&obj->popst);
    return obj;
    
    
}

void myQueuePush(MyQueue* obj, int x) {
    STPush(&obj->pushst,x);

}

int myQueuePop(MyQueue* obj) {
    int ret=myQueuePeek(obj);
    STPop(&obj->popst);
    return ret;
   
}

int myQueuePeek(MyQueue* obj) {
     if(STEmpty(&obj->popst))
    {
        while(!(STEmpty(&obj->pushst)))
        {
            STPush(&obj->popst,STTop(&obj->pushst));
            STPop(&obj->pushst);
        }
    }
    return STTop(&obj->popst);
}

bool myQueueEmpty(MyQueue* obj) {
    return STEmpty(&obj->pushst)&&STEmpty(&obj->popst);
}

void myQueueFree(MyQueue* obj) {
    STDestroy(&obj->pushst);
        STDestroy(&obj->popst);

    free(obj);
}

/**
 * Your MyQueue struct will be instantiated and called as such:
 * MyQueue* obj = myQueueCreate();
 * myQueuePush(obj, x);
 
 * int param_2 = myQueuePop(obj);
 
 * int param_3 = myQueuePeek(obj);
 
 * bool param_4 = myQueueEmpty(obj);
 
 * myQueueFree(obj);
*/

5.3 循环队列

循环队列
在这里插入图片描述
解决循环队列问题的话
我们可以先定义固定大小的数组,用来存储元素
例如,我们需要一个可以存储3个数据的数组,我们现在就开辟4个数据的空间,以便于我们操作在这里插入图片描述

在这里插入图片描述




typedef struct {
    int front;
    int rear;
    int size;
    int *a;
} MyCircularQueue;
bool myCircularQueueIsFull(MyCircularQueue* obj) ;

MyCircularQueue* myCircularQueueCreate(int k) {
    MyCircularQueue*obj=(MyCircularQueue*)malloc(sizeof(MyCircularQueue));
    obj->a=(int*)malloc(sizeof(int)*(k+1));
    obj->size=k+1;
    obj->front=0;
    obj->rear=0;
    return obj;
}

bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) {
   if((obj->rear+1)%(obj->size)==obj->front)
   return false;
   obj->a[obj->rear]=value;
   obj->rear++;
   obj->rear%=obj->size;
   return true;
}

bool myCircularQueueDeQueue(MyCircularQueue* obj) {
     if(obj->rear==obj->front)
     return false;
     (obj->front)++;
     obj->front%=obj->size;
     return true;
}

int myCircularQueueFront(MyCircularQueue* obj) {
    if(obj->rear==obj->front)
    return -1;
    return obj->a[obj->front];
}

int myCircularQueueRear(MyCircularQueue* obj) {
    if(obj->rear==obj->front)
    return -1;
    

    return obj->a[(obj->rear-1+obj->size)%obj->size];

}

bool myCircularQueueIsEmpty(MyCircularQueue* obj) {
    if(obj->rear==obj->front)
    return true;
    return false;
}

bool myCircularQueueIsFull(MyCircularQueue* obj) {
    if((obj->rear+1)%(obj->size)==obj->front)
    return true;
    return false;
}

void myCircularQueueFree(MyCircularQueue* obj) {
    free(obj->a);
    obj->a=NULL;
    free(obj);
}

/**
 * Your MyCircularQueue struct will be instantiated and called as such:
 * MyCircularQueue* obj = myCircularQueueCreate(k);
 * bool param_1 = myCircularQueueEnQueue(obj, value);
 
 * bool param_2 = myCircularQueueDeQueue(obj);
 
 * int param_3 = myCircularQueueFront(obj);
 
 * int param_4 = myCircularQueueRear(obj);
 
 * bool param_5 = myCircularQueueIsEmpty(obj);
 
 * bool param_6 = myCircularQueueIsFull(obj);
 
 * myCircularQueueFree(obj);
*/

6、感谢与交流✅

🌹🌹🌹如果大家通过本篇博客收获了,对队列有了新的了解的话
那么希望支持一下哦如果还有不明白的,疑惑的话,或者什么比较好的建议的话,可以发到评论区,
我们一起解决,共同进步 ❗️❗️❗️
最后谢谢大家❗️❗️❗️💯💯💯

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/755157.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

HTTP1和HTTP2和HTTP3的区别

超文本传输协议是一个简单的请求-响应协议,它通常运行在TCP之上。 目录 HTTP1.1: HTTP2 HTTP3 参考文献 HTTP1.1: 特点: 1.一条链接只能一次请求一次返回这样子来回。一般的我们浏览器会帮我们一次次请求和收到。…

安卓UI:SearchView

目录 一、SearchView介绍 二、常用方法 (一)、监听器: (二)、常用方法: (三)、其他常用方法 三、例子: MainActivity2 : ChatListAdapter : item_people_view: activity_main2: 运行结果…

043、TiDB特性_缓存表和分区表

针对于优化器在索引存在时依然使⽤全表扫描的情况下,使⽤缓存表和分区表是提升查询性能的有效⼿段。 缓存表 缓存表是将表的内容完全缓存到 TiDB Server 的内存中表的数据量不⼤,⼏乎不更改读取很频繁缓存控制: ALTER TABLE table_name CACHE|NOCACHE; # 使用tr…

【Ubuntu】安装docker-compose

要在Ubuntu上安装Docker Compose,可以按照以下步骤进行操作: 下载 Docker Compose 二进制文件: sudo curl -L "https://github.com/docker/compose/releases/latest/download/docker-compose-$(uname -s)-$(uname -m)" -o /usr/loc…

产业大模型刚开卷,京东跑进“最后半公里”

点击关注 文|姚 悦 编|王一粟 “京东一直在探索哪些产品、技术、场景可以真正把大模型用起来,在我们内部的场景中反复验证后,才决定在7月份对外发布,现在我们在零售、健康、物流、金融等业务场景里已经积累了一些经…

架构训练营:3-3设计备选方案与架构细化

3架构中期 什么是备选架构? 备选架构定义了系统可行的架构模式和技术选型 备选方案筛选过程 头脑风暴 :对可选技术进行排列组合,得到可能的方案 红线筛选:根据系统明确的约束和限定,一票否决某些方案(主要…

Java分布式项目常用技术栈简介

Spring-Cloud-Gateway : 微服务之前架设的网关服务,实现服务注册中的API请求路由,以及控制流速控制和熔断处理都是常用的架构手段,而这些功能Gateway天然支持 运用Spring Boot快速开发框架,构建项目工程;并结合Spring…

java错误:不支持发行版本5或java: 不再支持源选项 5。请使用 6 或更高版本的解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

Docker本地镜像发布到私有库

Docker Registry(Docker镜像仓库) 使用Docker Registry,可以创建私有或公共的镜像仓库,以存储Docker镜像。私有仓库可以用于存储公司内部的镜像,或者用于个人项目的镜像。公共仓库则会将发布的镜像分享到全世界。 1 …

【C++】string模拟实现

个人主页🍖:在肯德基吃麻辣烫 文章目录 前言一、string的成员变量二、string默认成员函数1.构造函数1.1 无参构造(默认构造)1.2 普通构造1.3无参构造和全缺省构造可以合并 浅拷贝和深拷贝2.拷贝构造3.赋值运算符重载4.析构函数 三、[]的下标访问和iterat…

P5 第二章 电阻电路的等效变换

1、电阻的Y形联结和△形联结的等效变换 可以发现电阻的Y形联结和△形联结可以刻画成下图模型: 如果Y形联结和△形联结i1,i2,i3都相等,则可以列公式解出R1,R2,R3之间的大小关系。 电路普遍存在对偶关系,可以将上图的电阻换成电导&#xff0c…

干货 | 一个漏洞利用工具仓库

0x00 Awesome-Exploit 一个漏洞证明/漏洞利用工具仓库 不定期更新 部分漏洞对应POC/EXP详情可参见以下仓库: https://github.com/Threekiii/Awesome-POC https://github.com/Threekiii/Vulhub-Reproduce 0x01 项目导航 ActiveMQ CVE-2015-5254 Apisix CVE-2…

el-upload实现上传文件夹(批量上传文件)

el-upload实现上传文件夹(批量上传文件)&#xff1a;关键代码在于 this.$refs.uploadFolder.$children[0].$refs.input.webkitdirectory true;//让el-upload支持上传文件夹 <template><div class"sg-body"><el-upload ref"uploadFolder" :…

【智能时代的颠覆】AI让物联网不再是物联网

自我介绍⛵ &#x1f4e3;我是秋说&#xff0c;研究人工智能、大数据等前沿技术&#xff0c;传递Java、Python等语言知识。 &#x1f649;主页链接&#xff1a;秋说的博客 &#x1f4c6; 学习专栏推荐&#xff1a;MySQL进阶之路、C刷题集、网络安全攻防姿势总结 欢迎点赞 &…

HTML5 WebSocket介绍与基本使用(解析服务端返回的二进制数据)

WebSocket基本介绍 WebSocket 是 HTML5 开始提供的一种在单个 TCP 连接上进行全双工通讯的协议。 WebSocket 使得客户端和服务器之间的数据交换变得更加简单&#xff0c;允许服务端主动向客户端推送数据。在 WebSocket API 中&#xff0c;浏览器和服务器只需要完成一次握手&a…

数据库系统 - 家庭教育平台设计开发

目录 1.绪论 1.1项目背景 1.2家庭教育平台的发展现状与优势 1.2.1国内外发展现状 1.2.2家庭教育平台的优势 2.需求分析 2.1可行性分析 2.1.1经济可行性 2.1.2 技术可行性 2.1.3操作可行性 2.2系统功能 2.2.1 家庭教育资源 2.2.2 家庭教育指导师 2.2.3家庭教育咨询…

H3C-Cloud Lab实验-静态路由配置实验

实验拓扑图&#xff1a; 接口IP地址规划&#xff1a; 实验需求&#xff1a; 1、理解静态路由的运行原理 2、掌握静态路由的配置 实验步骤&#xff1a; PC1和PC2的IP地址、子网掩码、网关 1、连接所有设备并重命名 2、R1&#xff0c;配置R1的接口IP地址&#xff0c;配置3.0、…

042、TiDB特性_系统表的使用

系统表存储位置 MySQL 存储TiDB 系统表 mysql.user 等 information_schmea提供了一种查看系统元数据的方法 与mysql兼容的表&#xff1a;tables、processlist、columns等自定义的表&#xff1a; cluster_config、cluster_hardware、tiflash_replica等等 metrics_schema: 基于P…

Java的数据结构-Map集合

文章目录 Map概述Map常用方法Map遍历元素的方法1.方法一&#xff1a;keySet()2.方法二&#xff1a;entrySet() Map概述 1、Map和collection没有继承关系2、Map集合以key和value的方式存储数据&#xff1a;键值对key和value都是引用数据类型。key和value都是存储对象的内存地址…

ChatGPT:利用人工智能助推教育创新

当前&#xff0c;世界正需要一个更加开放的、更加个性化的学习空间&#xff0c;学生的个性发展和生存发展应该被关注和尊重&#xff0c;课程应该引导学生掌握有用的东西&#xff0c;学生之间的差距应该被正视&#xff0c;教育成功的标准也要被重新定义。过去&#xff0c;我们总…