触发器
作用:决定何时,触发窗口计算函数,开始计算
每个窗口都有一个默认触发器,也可以自定义触发器。
自定义触发器
示例1:
当流中元素达到5个以后,触发窗口计算。
import org.apache.flink.api.common.functions.ReduceFunction import org.apache.flink.api.common.serialization.SimpleStringSchema import org.apache.flink.api.common.state.ReducingStateDescriptor import org.apache.flink.api.scala.createTypeInformation import org.apache.flink.streaming.api.TimeCharacteristic import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment import org.apache.flink.streaming.api.windowing.time.Time import org.apache.flink.streaming.api.windowing.triggers.{Trigger, TriggerResult} import org.apache.flink.streaming.api.windowing.windows.TimeWindow import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer import java.util.Properties //case class StockPrice(stockId:String, timestamp: Long, price:Double) object trigger { def main(args: Array[String]): Unit = { //create env val env = StreamExecutionEnvironment.getExecutionEnvironment //set parallelism env.setParallelism(1) //set process time env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime) // //for kafka connection // val kafkaProps = new Properties() // // //kafka's attribute // kafkaProps.setProperty("bootstrap.servers","192.12.249.10:9092") // // //set the consumer's group // kafkaProps.setProperty("group.id","groupq") // // //create the consumer // val kafkaSource = new FlinkKafkaConsumer[String]("stockPrice", new SimpleStringSchema, kafkaProps) // // //set offset // kafkaSource.setStartFromEarliest() // // //auto commit offset // kafkaSource.setCommitOffsetsOnCheckpoints(true) // // //band data source // val ds = env.addSource(kafkaSource) // // val stockPriceStream = ds.map(s => s.split(",")) // .map(s => StockPrice(s(0).toString, s(1).toLong, s(2).toDouble)) //create ds val pricesList = List(StockPrice("stock1", 10, 1), StockPrice("stock1", 11, 2), StockPrice("stock2", 10, 666), StockPrice("stock3", 10, 888.23), StockPrice("stock3", 10, 888.23)) val ds = env.fromCollection(pricesList) // ds.print() val sumedStream = ds.keyBy(s => s.stockId) .timeWindow(Time.seconds(10)) .trigger(new MyTrigger(3)) .reduce((s1, s2) => StockPrice(s1.stockId, s1.timeStamp, s1.price + s2.price)) sumedStream.print() env.execute() } class MyTrigger extends Trigger[StockPrice, TimeWindow] { //to receive the para def this(maxCount:Int){ this() this.maxCount = maxCount } //declare ( if reach max num ,then trigger windows) private var maxCount:Long = _ //get trigger's state private lazy val countStateDescriptor = new ReducingStateDescriptor[Long]("count", new Sum, classOf[Long]) //override on element override def onElement(t: StockPrice, l: Long, w: TimeWindow, triggerContext: Trigger.TriggerContext): TriggerResult = { //get the trigger's state val countState = triggerContext.getPartitionedState(countStateDescriptor) //state add countState.add(1L) //judge state more than max trigger num if(countState.get() >= this.maxCount){ //reach max num,then clear and trigger window compute //clear state countState.clear() //compute TriggerResult.FIRE }else{ TriggerResult.CONTINUE } } override def onProcessingTime(l: Long, w: TimeWindow, triggerContext: Trigger.TriggerContext): TriggerResult = { //do nothing, cause we don't need deal process Time window, but need to override func TriggerResult.CONTINUE } override def onEventTime(l: Long, w: TimeWindow, triggerContext: Trigger.TriggerContext): TriggerResult = { //do nothing TriggerResult.CONTINUE } //clear the state, when window reach max num to trigger the compute override def clear(w: TimeWindow, triggerContext: Trigger.TriggerContext): Unit = { println("@--now, window is closeed") triggerContext.getPartitionedState(countStateDescriptor).clear() } //update the state, class Sum extends ReduceFunction[Long]{ override def reduce(t: Long, t1: Long): Long = { t+t1 } } } }