吸烟(抽烟)检测和识别2:Pytorch实现吸烟(抽烟)检测和识别(含吸烟(抽烟)数据集和训练代码)

news2024/11/16 10:36:09

吸烟(抽烟)检测和识别2:Pytorch实现吸烟(抽烟)检测和识别(含吸烟(抽烟)数据集和训练代码)

目录

吸烟(抽烟)检测和识别2:Pytorch实现吸烟(抽烟)检测和识别(含吸烟(抽烟)数据集和训练代码)

1.吸烟(抽烟)检测和识别

2.吸烟(抽烟)数据集

 (1)吸烟(抽烟)数据集说明

 (2)自定义数据集

3.人体检测模型

4.吸烟(抽烟)分类模型训练

(1)项目安装

(2)准备数据

(3)吸烟(抽烟)识别分类模型训练(Pytorch)

(4) 可视化训练过程

(5) 吸烟(抽烟)识别效果

(6) 一些优化建议

(7) 一些运行错误处理方法

5.项目源码下载(Python版)


这是项目《吸烟(抽烟)检测和识别》系列之《Pytorch实现吸烟(抽烟)检测和识别(含吸烟(抽烟)数据集和训练代码)》;项目基于深度学习框架Pytorch开发一个高精度,可实时吸烟检测和识别算法;项目源码支持模型有resnet18,resnet34,resnet50, mobilenet_v2以及googlenet等常见的深度学习模型,用户可自定义进行训练;准确率还挺高的,采用轻量级mobilenet_v2模型的吸烟识别准确率也可以高达95.5607%左右,满足业务性能需求。

模型input sizeTest准确率
mobilenet_v2224×22495.5607%
googlenet224×22496.7290%
resnet18224×22495.7944%

先展示一下,Python版本的吸烟(抽烟)检测和识别Demo效果

尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/131521338 


更多项目《吸烟(抽烟)检测和识别》系列文章请参考:

  1. 吸烟(抽烟)检测和识别1:吸烟(抽烟)数据集说明(含下载链接):https://blog.csdn.net/guyuealian/article/details/130337263
  2. 吸烟(抽烟)检测和识别2:Pytorch实现吸烟(抽烟)检测和识别(含吸烟(抽烟)数据集和训练代码):https://blog.csdn.net/guyuealian/article/details/131521338
  3. 吸烟(抽烟)检测和识别3:Android实现吸烟(抽烟)检测和识别(含源码,可实时检测):https://blog.csdn.net/guyuealian/article/details/131521347
  4. 吸烟(抽烟)检测和识别4:C++实现吸烟(抽烟)检测和识别(含源码,可实时检测):https://blog.csdn.net/guyuealian/article/details/131521352


1.吸烟(抽烟)检测和识别

吸烟(抽烟)检测和识别方法有多种实现方案,这里采用最常规的方法:基于人体检测+吸烟分类识别方法,即先采用通用的人体检测模型,进行人体检测定位人体区域,然后按照一定规则裁剪吸烟检测区域,再训练一个吸烟行为识别分类器,完成吸烟(抽烟)检测和识别任务;

这样做的好处,是可以利用现有的人体检测模型,无需重新标注吸烟和未吸烟的检测框,可减少人工标注成本低;而吸烟分类数据相对而言比较容易采集,分类模型可针对性进行优化。


2.吸烟(抽烟)数据集

 (1)吸烟(抽烟)数据集说明

本项目主要使用两个吸烟(抽烟)数据集:smoking-dataset和smoking-video,总共15000+张图片。数据质量较高,可用于深度学习吸烟(抽烟)识别的项目分类模型算法开发。项目将吸烟(抽烟)状态分为两种情况,分别为:smoking(吸烟),notsmokint(未吸烟),为了便于大家理解,下面给出这吸烟(抽烟)的行为类别定义:

notsmoking:在吸烟检测区内无烟只,则定义为无吸烟行为(notsmoking);若主体存在吸烟行为,但烟只不在吸烟检测区内,受算法局限性,这时依然定义无吸烟(notsmoking)
smoking:在吸烟检测区内有烟只,则定义为有吸烟行为(smoking);受算法局限性,只要吸烟区内存在烟只,不管是否吸烟,都定义为有吸烟行为(smoking)
 

 关于吸烟(抽烟)数据集的使用说明请参考我的一篇博客:https://blog.csdn.net/guyuealian/article/details/130337263 

 (2)自定义数据集

如果需要新增类别数据,或者需要自定数据集进行训练,可参考如下进行处理:

  • 建立Train和Test数据集,要求相同类别的图片,放在同一个文件夹下;且子目录文件夹命名为类别名称,如

  • 类别文件:一行一个列表:​class_name.txt​
     (最后一行,请多回车一行)
A
B
C
D

  • 修改配置文件的数据路径:configs/​config.yaml​
train_data: # 可添加多个数据集
  - 'data/dataset/train1' 
  - 'data/dataset/train2'
test_data: 'data/dataset/test'
class_name: 'data/dataset/class_name.txt'
...
...

3.人体检测模型

本项目人体检测训练代码请参考:行人检测(人体检测)2:YOLOv5实现人体检测(含人体检测数据集和训练代码)


4.吸烟(抽烟)分类模型训练

准备好吸烟(抽烟)识别数据后,接下来就可以开始训练吸烟识别分类模型了;项目模型支持resnet18,resnet34,resnet50, mobilenet_v2以及googlenet等常见的深度学习模型,考虑到后续我们需要将吸烟(抽烟)识别模型部署到Android平台中,因此项目选择计算量比较小的轻量化模型mobilenet_v2;如果不用端上部署,完全可以使用参数量更大的模型,如resnet50等模型。

 整套工程项目基本结构如下:

.
├── classifier                 # 训练模型相关工具
├── configs                    # 训练配置文件
├── data                       # 训练数据
├── libs           
│   ├── convert                # 将模型转换为ONNX工具
│   ├── yolov5                 # 人体检测
│   ├── detector.py            # 人体检测demo
│   └── README.md               
├── demo.py              # demo
├── README.md            # 项目工程说明文档
├── requirements.txt     # 项目相关依赖包
└── train.py             # 训练文件

(1)项目安装

 项目依赖python包请参考requirements.txt,使用pip安装即可:

numpy==1.16.3
matplotlib==3.1.0
Pillow==6.0.0
easydict==1.9
opencv-contrib-python==4.5.2.52
opencv-python==4.5.1.48
pandas==1.1.5
PyYAML==5.3.1
scikit-image==0.17.2
scikit-learn==0.24.0
scipy==1.5.4
seaborn==0.11.2
tensorboard==2.5.0
tensorboardX==2.1
torch==1.7.1+cu110
torchvision==0.8.2+cu110
tqdm==4.55.1
xmltodict==0.12.0
basetrainer
pybaseutils==0.6.5

项目安装教程请参考(初学者入门,麻烦先看完下面教程,配置好开发环境):

  • 项目开发使用教程和常见问题和解决方法
  • 视频教程:1 手把手教你安装CUDA和cuDNN(1)
  • 视频教程:2 手把手教你安装CUDA和cuDNN(2)
  • 视频教程:3 如何用Anaconda创建pycharm环境
  • 视频教程:4 如何在pycharm中使用Anaconda创建的python环境

(2)准备数据

下载吸烟(抽烟)识别数据集:smoking-dataset和smoking-video,https://blog.csdn.net/guyuealian/article/details/130337263

(3)吸烟(抽烟)识别分类模型训练(Pytorch)

项目在《Pytorch基础训练库Pytorch-Base-Trainer(支持模型剪枝 分布式训练)》基础上实现了吸烟(抽烟)识别分类模型训练和测试,整套训练代码非常简单操作,用户只需要将相同类别的图片数据放在同一个目录下,并填写好对应的数据路径,即可开始训练了。

训练框架采用Pytorch,整套训练代码支持的内容主要有:

  • 目前支持的backbone有:googlenet,resnet[18,34,50], ,mobilenet_v2等, 其他backbone可以自定义添加
  • 训练参数可以通过(configs/config.yaml)配置文件进行设置

修改配置文件的数据路径:configs/​config.yaml​

  • train_data和test_data修改为自己的数据路径
  • 注意数据路径分隔符使用【/】,不是【\】
  • 项目不要出现含有中文字符的目录文件或路径,否则会出现很多异常!
# 训练数据集,可支持多个数据集(不要出现中文路径)
train_data:
  - 'path/to/smoking/smoking-person/smoking-dataset/trainval'
  - 'path/to/smoking/smoking-person/smoking-video'
# 测试数据集(不要出现中文路径)
test_data:
  - 'path/to/smoking/smoking-person/smoking-dataset/test'

# 类别文件
class_name: 'data/class_name.txt'
train_transform: "train"       # 训练使用的数据增强方法
test_transform: "val"          # 测试使用的数据增强方法
work_dir: "work_space/"        # 保存输出模型的目录
net_type: "mobilenet_v2"       # 骨干网络,支持:resnet18/50,mobilenet_v2,googlenet,inception_v3
width_mult: 1.0                # 模型宽度因子
input_size: [ 224,224 ]        # 模型输入大小
rgb_mean: [ 0.5, 0.5, 0.5 ]    # for normalize inputs to [-1, 1],Sequence of means for each channel.
rgb_std: [ 0.5, 0.5, 0.5 ]     # for normalize,Sequence of standard deviations for each channel.
batch_size: 128                # batch_size
lr: 0.01                       # 初始学习率
optim_type: "SGD"              # 选择优化器,SGD,Adam
loss_type: "CrossEntropyLoss"  # 选择损失函数:支持CrossEntropyLoss,LabelSmooth
momentum: 0.9                  # SGD momentum
num_epochs: 120                # 训练循环次数
num_warn_up: 0                 # warn-up次数
num_workers: 8                 # 加载数据工作进程数
weight_decay: 0.0005           # weight_decay,默认5e-4
scheduler: "multi-step"        # 学习率调整策略
milestones: [ 30,60,100 ]       # 下调学习率方式
gpu_id: [ 2 ]                  # GPU ID
log_freq: 50                   # LOG打印频率
progress: True                 # 是否显示进度条
pretrained: True               # 是否使用pretrained模型
finetune: False                # 是否进行finetune

开始训练,在终端输入: 

python train.py -c configs/config.yaml 

训练完成后,训练集的Accuracy在98.0%以上,测试集的Accuracy在95.0%左右

(4) 可视化训练过程

训练过程可视化工具是使用Tensorboard,在终端(Terminal)输入命令:

使用教程,请参考:项目开发使用教程和常见问题和解决方法

# 需要安装tensorboard==2.5.0和tensorboardX==2.1
# 基本方法
tensorboard --logdir=path/to/log/
# 例如
tensorboard --logdir=work_space/mobilenet_v2_1.0_CrossEntropyLoss_20230313090258/log

可视化效果 

​​​

 ​​ 

(5) 吸烟(抽烟)识别效果

训练完成后,训练集的Accuracy在95.5%以上,测试集的Accuracy在94.5%左右,下表给出已经训练好的三个模型,其中mobilenet_v2的准确率可以达到95.5607%,googlenet的准确率可以达到96.7290%,resnet18的准确率可以达到95.7944%

模型input sizeTest准确率
mobilenet_v2224×22495.5607%
googlenet224×22496.7290%
resnet18224×22495.7944%
  • 测试图片文件
# 测试图片(Linux系统)
image_dir='data/test_image' # 测试图片的目录
model_file="data/pretrained/mobilenet_v2_1.0_224_224_CrossEntropyLoss_20230629161618/model/best_model_045_95.5607.pth" # 模型文件
out_dir="output/" # 保存检测结果
python demo.py --image_dir $image_dir --model_file $model_file --out_dir $out_dir

Windows系统,请将$image_dir, $model_file ,$out_dir等变量代替为对应的变量值即可,如

# 测试图片(Windows系统)
python demo.py --image_dir data/test_image --model_file data/pretrained/mobilenet_v2_1.0_224_224_CrossEntropyLoss_20230629161618/model/best_model_045_95.5607.pth --out_dir output/

  • 测试视频文件
# 测试视频文件(Linux系统)
video_file="data/video-test.mp4" # 测试视频文件,如*.mp4,*.avi等
model_file="data/pretrained/mobilenet_v2_1.0_224_224_CrossEntropyLoss_20230629161618/model/best_model_045_95.5607.pth" # 模型文件
out_dir="output/" # 保存检测结果
python demo.py --video_file $video_file --model_file $model_file --out_dir $out_dir
# 测试视频文件(Windows系统)
python demo.py --video_file data/video-test.mp4 --model_file data/pretrained/mobilenet_v2_1.0_224_224_CrossEntropyLoss_20230629161618/model/best_model_045_95.5607.pth --out_dir output/

  • 测试摄像头
# 测试摄像头(Linux系统)
video_file=0 # 测试摄像头ID
model_file="data/pretrained/mobilenet_v2_1.0_224_224_CrossEntropyLoss_20230629161618/model/best_model_045_95.5607.pth" # 模型文件
out_dir="output/" # 保存检测结果
python demo.py --video_file $video_file --model_file $model_file --out_dir $out_dir
# 测试摄像头(Windows系统)
python demo.py --video_file 0 --model_file data/pretrained/mobilenet_v2_1.0_224_224_CrossEntropyLoss_20230629161618/model/best_model_045_95.5607.pth  --out_dir output/

下面是吸烟(抽烟)检测和识别的效果展示:

 

(6) 一些优化建议

 如果想进一步提高模型的性能,可以尝试:

  1. ​ 增加训练的样本数据: 建议根据自己的业务场景,采集相关数据,比如采集同一个吸烟和不吸烟的数据,提高模型泛化能力;
  2. 使用参数量更大的模型: 本教程使用的是mobilenet_v2模型,属于比较轻量级的分类模型,采用更大的模型(如resnet50),理论上其精度更高,但推理速度也较慢。
  3. 尝试不同数据增强的组合进行训练
  4. 增加数据增强: 已经支持: 随机裁剪,随机翻转,随机旋转,颜色变换等数据增强方式,可以尝试诸如mixup,CutMix等更复杂的数据增强方式
  5. 样本均衡: 原始数据吸烟识别类别数据并不均衡,类别notsmoking的样本数据偏多,而smoking数据偏少,这会导致训练的模型会偏向于样本数较多的类别。建议进行样本均衡处理。
  6. 清洗数据集:原始数据已经进行人工清洗了,但依然存在一些模糊的,低质的,模棱两可的样本;建议你,在训练前,再次清洗数据集,不然会影响模型的识别的准确率。
  7. 调超参: 比如学习率调整策略,优化器(SGD,Adam等)
  8. 损失函数: 目前训练代码已经支持:交叉熵,LabelSmoothing,可以尝试FocalLoss等损失函数

(7) 一些运行错误处理方法

  • 项目不要出现含有中文字符的目录文件或路径,否则会出现很多异常!!!!!!!!

  • cannot import name 'load_state_dict_from_url' 

由于一些版本升级,会导致部分接口函数不能使用,请确保版本对应

torch==1.7.1

torchvision==0.8.2

或者将对应python文件将

from torchvision.models.resnet import model_urls, load_state_dict_from_url

修改为:

from torch.hub import load_state_dict_from_url
model_urls = {
    'mobilenet_v2': 'https://download.pytorch.org/models/mobilenet_v2-b0353104.pth',
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
    'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
    'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
    'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
    'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
}

5.项目源码下载(Python版)

项目源码下载地址:Pytorch实现吸烟(抽烟)检测和识别(含吸烟(抽烟)数据集和训练代码)

整套项目源码内容包含:

  1. 提供吸烟(抽烟)识别分类数据集:smoking-dataset和smoking-video,总共15000+张图片。数据质量较高,可用于深度学习吸烟(抽烟)识别的项目分类模型算法开发。
  2. 提供吸烟(抽烟)识别分类模型训练代码:train.py
  3. 提供吸烟(抽烟)识别分类模型测试代码:demo.py
  4. Demo支持图片,视频和摄像头测试
  5. 支持自定义数据集进行训练
  6. 项目支持模型:resnet18,resnet34,resnet50, mobilenet_v2以及googlenet等常见的深度学习模型
  7. 项目源码自带训练好的模型文件,可直接运行测试: python demo.py
  8. 在普通电脑CPU/GPU上可以实时检测和识别

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/738359.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

msvcp120.dll丢失的解决方法?哪种方法更推荐

msvcp120.dll是一个Windows操作系统的动态链接库文件。它属于Microsoft Visual C Redistributable软件包的一部分。这个文件包含了一些用于C程序编译和运行的函数和类。当某个程序需要使用这些函数和类时,它会在系统中寻找msvcp120.dll文件。如果系统中缺少这个文件…

运行别人gitub上的vue代码

1.删除package-lock.json和node_modules文件 package-lock.json记录了整个node_moudles文件夹的树状结构,还记录了模块的下载地址,但是它是基于项目作者的npm版本库生成的,若不删掉这个依赖文件,容易出现npm版本差异导致的报错。…

性能测试测什么?如何做性能测试?超级详细总结

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 性能测试 负载&a…

深入理解Dockerfile:构建镜像的详细解释与常用命令

目录 1.Dockerfile 简介 2.Dockerfile 指令解析 2.1 FROM 2.2 RUN 2.3 COPY 2.4 ADD 2.5 CMD 2.6 ENTRYPOINT 2.7 ENV 2.8 ARG 2.9 EXPOSE 2.10 WORKDIR 2.11 VOLUME 2.12 USER 3.构建 Docker 镜像的常用命令 3.1 docker build 3.2 docker tag 3.3 docker pu…

银河麒麟V10使用编译安装PostSQL+PostGIS

一、安装环境 银河麒麟V10 1、PostGIS简介 PostGIS是对象关系型数据库系统PostgreSQL的一个扩展,PostGIS提供如下空间信息服务功能: 空间对象、空间索引、空间操作函数和空间操作符。同时,PostGIS遵循OpenGIS的规范。 二、使用make安装Post…

Day49

思维导图 练习 闹钟设计 widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QDebug> #include <QPushButton> #include <QLabel> #include <QLineEdit> #include <QTextEdit> #include <QTimer> …

【C++】STL——stack和queue使用及模拟实现

&#x1f680; 作者简介&#xff1a;一名在后端领域学习&#xff0c;并渴望能够学有所成的追梦人。 &#x1f681; 个人主页&#xff1a;不 良 &#x1f525; 系列专栏&#xff1a;&#x1f6f8;C &#x1f6f9;Linux &#x1f4d5; 学习格言&#xff1a;博观而约取&#xff0…

ICG试剂大合集:ICG-COOH/NHS/NH2/Maleimide/alkyne/N3

荧光染料及其荧光标记技术一直是生物领域常用的产品和技术&#xff0c;标记荧光的波长从300nm到1000nm&#xff0c;除了常见的FITC、FAM等荧光标记染料外&#xff0c;还包括Cy3&#xff0c;Cy3.5&#xff0c;Cy5, Cy5.5&#xff0c;Cy7&#xff0c;Cy7.5&#xff0c;ICG各种衍生…

vue2登录存储案例:sessionStorage会话存储+localStorage本地存储

vue2可以通过sessionStorage来实现登录以后的数据存储&#xff0c;是H5提供的一个API&#xff0c;可以在浏览器会话期间保持数据 简单模拟一个登录后的存储功能 目录 一、sessionStorage存储 二、localStorage本地存储 一、sessionStorage存储 1、登录的HTML方法 HTML &l…

Java基础---注解

目录 典型回答 什么是元注解 如何判断注解 典型回答 Java 注解用于为 Java 代码提供元数据作为元数据&#xff0c;注解不直接影响你的代码执行&#xff0c;但也有一些类型的注解实际上可以用于这一目的Java注解是从 Java5 开始添加到 Java 的Java的注解&#xff0c;可以说是…

GitHub Pages + Hexo

步骤 参考如下步骤&#xff1a;https://blog.csdn.net/yaorongke/article/details/119089190 出现的问题 1 Fluid主题 其更换Fluid主题时&#xff1a; 下载最新 release 版本 解压到 themes 目录&#xff0c;并将解压出的文件夹重命名为 fluid 按照上面执行后&#xff0c;后…

Michael.W基于Foundry精读Openzeppelin第7期——Timers.sol

Michael.W基于Foundry精读Openzeppelin第7期——Timers.sol 0. 版本0.1 Timers.sol 1. 目标合约2. 代码精读2.1 区块链时间戳维度2.1.1 Timestamp结构体2.1.2 setDeadline(Timestamp storage, uint64) && getDeadline(Timestamp memory)2.1.3 reset(Timestamp storage)…

Linux:基于PXE的kickstart无人值守技术

*创建应答文件&#xff0c;预先定义好各种安装设置 *免去交互设置过程&#xff0c;从而实现全自动化安装 *通过添加%post脚本&#xff0c;完成安装后的各种配置操作 需要的环境为 pxe&#xff08;dhcp&#xff0c;tftp&#xff0c;yum&#xff09; Linux&#xff1a;PXE网络装…

深度学习——批数据训练

代码与详细注释&#xff1a; BATCH_SIZE 5&#xff0c;shuffleTrue import torch import torch.utils.data as Data# 添加随机种子以使结果可复现 torch.manual_seed(1) # reproducible# 批大小 BATCH_SIZE 5 # BATCH_SIZE 8x torch.linspace(1, 10, 10) # this…

VScode 终端无法识别npm以及Missing script: “serve“ 问题

无法识别npm解决办法&#xff1a; 原因是没有全局安装npm 1.通过终端查看已经全局安装的模块 npm list --depth0 -global 2.全局安装npm npm install -g npm Missing script: "serve" 问题&#xff1a; 原因是package.json中没有配置&#xff1a;"serve"…

JUC 并发编程

文章目录 JUC 并发编程一、Lock 锁1. 可重入锁2. 公平锁3. 读写锁3.1 ReadWriteLock 接口3.2 ReentrantReadWriteLock 类3.3 锁降级 4. 线程间通信4.1 虚假唤醒4.2 线程通信&#xff08;Condition&#xff09;4.3 定制化线程通信 二、集合线程安全1. CopyOrWrite2. ConcurrentH…

机试刷题记录 2023-7-6

AB问题 题目描述 Time Limit: 1000 ms Memory Limit: 256 mb 输入A,B 输出AB -1,000,000,000<A,B<1,000,000,000 输入输出格式 输入描述: 输入包含两个整数A,B&#xff0c;用一个空格分隔。 输出描述: 输出一个整数&#xff0c;表示AB的值。 输入输出样例 输入…

ResNet网络结构入门

ResNet网络结构入门 一、传统卷积神经存在的问题二、Residual 结构&#xff08;残差结构&#xff09;ResNet 中的残差结构ResNet 中的 short cut 三、Batch Normalization Resnet 网络创新点 提出 Residual 结构&#xff08;残差结构&#xff09;&#xff0c;可搭建超深的网络…

第44节:cesium 大雾效果(cesium自带)(含源码+视频)

结果示例: 完整源码: <template><div class="viewer"><vc-viewer @ready="ready" :logo="false"><!

C#核心知识回顾——12.lambda表达式、List排序、协变和逆变

1.Lambda表达式 可以将lambad表达式理解为匿名函数的简写 它除了写法不同外&#xff0c;使用上和匿名函数一模一样 都是和委托或者事件配合使用的 //匿名函数 //delegate&#xff08;参数列表&#xff09; //{ //} //lambda表达式 //(参数列表) > //{ //函数体 //…