【笔记】Pycharm配置Node.js运行js代码

news2025/1/12 22:51:10

最近在学习关于Js逆向的知识,需要在PyCharm中运行Js程序,记录一下配置过程。

安装Node.js

Node.js中文网

  • 选择自己电脑对应的安装包下载暗转即可
    Node.js中文网

  • 安装好软件后,配置node.js环境变量。
    在这里插入图片描述

  • 完成安装和环境配置后,打开cmd测试是否安装成功。
    在这里插入图片描述

Pycharm配置

开发环境
Win 10(64位)
PyCharm专业版(已汉化)

  1. 文件->设置
    在这里插入图片描述

  2. 插件(Plugins)->插件市场搜索node,安装
    在这里插入图片描述

  3. 检查语言与框架中Node.js的配置,我的自动添加了路径,如果没有,配置前边安装的node.js的路径即可。
    在这里插入图片描述

然后就可以使用PyCharm去运行js文件了。


Pycharm运行Js代码

代码如下:

function s(e) {
    return JSON.parse(o("5e5062e82f15fe4ca9d24bc5", decoed123(e), 0, 0, "012345677890123", 1))
}

function o(e, t, i, n, a, o) {
    var s, c, r, l, d, u, h, p, f, m, v, g, y, b,
        C = new Array(16843776, 0, 65536, 16843780, 16842756, 66564, 4, 65536, 1024, 16843776, 16843780, 1024, 16778244, 16842756, 16777216, 4, 1028, 16778240, 16778240, 66560, 66560, 16842752, 16842752, 16778244, 65540, 16777220, 16777220, 65540, 0, 1028, 66564, 16777216, 65536, 16843780, 4, 16842752, 16843776, 16777216, 16777216, 1024, 16842756, 65536, 66560, 16777220, 1024, 4, 16778244, 66564, 16843780, 65540, 16842752, 16778244, 16777220, 1028, 66564, 16843776, 1028, 16778240, 16778240, 0, 65540, 66560, 0, 16842756),
        _ = new Array(-2146402272, -2147450880, 32768, 1081376, 1048576, 32, -2146435040, -2147450848, -2147483616, -2146402272, -2146402304, -2147483648, -2147450880, 1048576, 32, -2146435040, 1081344, 1048608, -2147450848, 0, -2147483648, 32768, 1081376, -2146435072, 1048608, -2147483616, 0, 1081344, 32800, -2146402304, -2146435072, 32800, 0, 1081376, -2146435040, 1048576, -2147450848, -2146435072, -2146402304, 32768, -2146435072, -2147450880, 32, -2146402272, 1081376, 32, 32768, -2147483648, 32800, -2146402304, 1048576, -2147483616, 1048608, -2147450848, -2147483616, 1048608, 1081344, 0, -2147450880, 32800, -2147483648, -2146435040, -2146402272, 1081344),
        w = new Array(520, 134349312, 0, 134348808, 134218240, 0, 131592, 134218240, 131080, 134217736, 134217736, 131072, 134349320, 131080, 134348800, 520, 134217728, 8, 134349312, 512, 131584, 134348800, 134348808, 131592, 134218248, 131584, 131072, 134218248, 8, 134349320, 512, 134217728, 134349312, 134217728, 131080, 520, 131072, 134349312, 134218240, 0, 512, 131080, 134349320, 134218240, 134217736, 512, 0, 134348808, 134218248, 131072, 134217728, 134349320, 8, 131592, 131584, 134217736, 134348800, 134218248, 520, 134348800, 131592, 8, 134348808, 131584),
        k = new Array(8396801, 8321, 8321, 128, 8396928, 8388737, 8388609, 8193, 0, 8396800, 8396800, 8396929, 129, 0, 8388736, 8388609, 1, 8192, 8388608, 8396801, 128, 8388608, 8193, 8320, 8388737, 1, 8320, 8388736, 8192, 8396928, 8396929, 129, 8388736, 8388609, 8396800, 8396929, 129, 0, 0, 8396800, 8320, 8388736, 8388737, 1, 8396801, 8321, 8321, 128, 8396929, 129, 1, 8192, 8388609, 8193, 8396928, 8388737, 8193, 8320, 8388608, 8396801, 128, 8388608, 8192, 8396928),
        x = new Array(256, 34078976, 34078720, 1107296512, 524288, 256, 1073741824, 34078720, 1074266368, 524288, 33554688, 1074266368, 1107296512, 1107820544, 524544, 1073741824, 33554432, 1074266112, 1074266112, 0, 1073742080, 1107820800, 1107820800, 33554688, 1107820544, 1073742080, 0, 1107296256, 34078976, 33554432, 1107296256, 524544, 524288, 1107296512, 256, 33554432, 1073741824, 34078720, 1107296512, 1074266368, 33554688, 1073741824, 1107820544, 34078976, 1074266368, 256, 33554432, 1107820544, 1107820800, 524544, 1107296256, 1107820800, 34078720, 0, 1074266112, 1107296256, 524544, 33554688, 1073742080, 524288, 0, 1074266112, 34078976, 1073742080),
        T = new Array(536870928, 541065216, 16384, 541081616, 541065216, 16, 541081616, 4194304, 536887296, 4210704, 4194304, 536870928, 4194320, 536887296, 536870912, 16400, 0, 4194320, 536887312, 16384, 4210688, 536887312, 16, 541065232, 541065232, 0, 4210704, 541081600, 16400, 4210688, 541081600, 536870912, 536887296, 16, 541065232, 4210688, 541081616, 4194304, 16400, 536870928, 4194304, 536887296, 536870912, 16400, 536870928, 541081616, 4210688, 541065216, 4210704, 541081600, 0, 541065232, 16, 16384, 541065216, 4210704, 16384, 4194320, 536887312, 0, 541081600, 536870912, 4194320, 536887312),
        A = new Array(2097152, 69206018, 67110914, 0, 2048, 67110914, 2099202, 69208064, 69208066, 2097152, 0, 67108866, 2, 67108864, 69206018, 2050, 67110912, 2099202, 2097154, 67110912, 67108866, 69206016, 69208064, 2097154, 69206016, 2048, 2050, 69208066, 2099200, 2, 67108864, 2099200, 67108864, 2099200, 2097152, 67110914, 67110914, 69206018, 69206018, 2, 2097154, 67108864, 67110912, 2097152, 69208064, 2050, 2099202, 69208064, 2050, 67108866, 69208066, 69206016, 2099200, 0, 2, 69208066, 0, 2099202, 69206016, 2048, 67108866, 67110912, 2048, 2097154),
        N = new Array(268439616, 4096, 262144, 268701760, 268435456, 268439616, 64, 268435456, 262208, 268697600, 268701760, 266240, 268701696, 266304, 4096, 64, 268697600, 268435520, 268439552, 4160, 266240, 262208, 268697664, 268701696, 4160, 0, 0, 268697664, 268435520, 268439552, 266304, 262144, 266304, 262144, 268701696, 4096, 64, 268697664, 4096, 266304, 268439552, 64, 268435520, 268697600, 268697664, 268435456, 262144, 268439616, 0, 268701760, 262208, 268435520, 268697600, 268439552, 268439616, 0, 268701760, 266240, 266240, 4160, 4160, 262208, 268435456, 268701696),
        $ = function (e) {
            for (var t, i, n, a = new Array(0, 4, 536870912, 536870916, 65536, 65540, 536936448, 536936452, 512, 516, 536871424, 536871428, 66048, 66052, 536936960, 536936964), o = new Array(0, 1, 1048576, 1048577, 67108864, 67108865, 68157440, 68157441, 256, 257, 1048832, 1048833, 67109120, 67109121, 68157696, 68157697), s = new Array(0, 8, 2048, 2056, 16777216, 16777224, 16779264, 16779272, 0, 8, 2048, 2056, 16777216, 16777224, 16779264, 16779272), c = new Array(0, 2097152, 134217728, 136314880, 8192, 2105344, 134225920, 136323072, 131072, 2228224, 134348800, 136445952, 139264, 2236416, 134356992, 136454144), r = new Array(0, 262144, 16, 262160, 0, 262144, 16, 262160, 4096, 266240, 4112, 266256, 4096, 266240, 4112, 266256), l = new Array(0, 1024, 32, 1056, 0, 1024, 32, 1056, 33554432, 33555456, 33554464, 33555488, 33554432, 33555456, 33554464, 33555488), d = new Array(0, 268435456, 524288, 268959744, 2, 268435458, 524290, 268959746, 0, 268435456, 524288, 268959744, 2, 268435458, 524290, 268959746), u = new Array(0, 65536, 2048, 67584, 536870912, 536936448, 536872960, 536938496, 131072, 196608, 133120, 198656, 537001984, 537067520, 537004032, 537069568), h = new Array(0, 262144, 0, 262144, 2, 262146, 2, 262146, 33554432, 33816576, 33554432, 33816576, 33554434, 33816578, 33554434, 33816578), p = new Array(0, 268435456, 8, 268435464, 0, 268435456, 8, 268435464, 1024, 268436480, 1032, 268436488, 1024, 268436480, 1032, 268436488), f = new Array(0, 32, 0, 32, 1048576, 1048608, 1048576, 1048608, 8192, 8224, 8192, 8224, 1056768, 1056800, 1056768, 1056800), m = new Array(0, 16777216, 512, 16777728, 2097152, 18874368, 2097664, 18874880, 67108864, 83886080, 67109376, 83886592, 69206016, 85983232, 69206528, 85983744), v = new Array(0, 4096, 134217728, 134221824, 524288, 528384, 134742016, 134746112, 16, 4112, 134217744, 134221840, 524304, 528400, 134742032, 134746128), g = new Array(0, 4, 256, 260, 0, 4, 256, 260, 1, 5, 257, 261, 1, 5, 257, 261), y = e.length > 8 ? 3 : 1, b = new Array(32 * y), C = new Array(0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0), _ = 0, w = 0, k = 0; k < y; k++) {
                var x = e.charCodeAt(_++) << 24 | e.charCodeAt(_++) << 16 | e.charCodeAt(_++) << 8 | e.charCodeAt(_++),
                    T = e.charCodeAt(_++) << 24 | e.charCodeAt(_++) << 16 | e.charCodeAt(_++) << 8 | e.charCodeAt(_++);
                x ^= (n = 252645135 & (x >>> 4 ^ T)) << 4, x ^= n = 65535 & ((T ^= n) >>> -16 ^ x), x ^= (n = 858993459 & (x >>> 2 ^ (T ^= n << -16))) << 2, x ^= n = 65535 & ((T ^= n) >>> -16 ^ x), x ^= (n = 1431655765 & (x >>> 1 ^ (T ^= n << -16))) << 1, x ^= n = 16711935 & ((T ^= n) >>> 8 ^ x), n = (x ^= (n = 1431655765 & (x >>> 1 ^ (T ^= n << 8))) << 1) << 8 | (T ^= n) >>> 20 & 240, x = T << 24 | T << 8 & 16711680 | T >>> 8 & 65280 | T >>> 24 & 240, T = n;
                for (var A = 0; A < C.length; A++) C[A] ? (x = x << 2 | x >>> 26, T = T << 2 | T >>> 26) : (x = x << 1 | x >>> 27, T = T << 1 | T >>> 27), T &= -15, t = a[(x &= -15) >>> 28] | o[x >>> 24 & 15] | s[x >>> 20 & 15] | c[x >>> 16 & 15] | r[x >>> 12 & 15] | l[x >>> 8 & 15] | d[x >>> 4 & 15], i = u[T >>> 28] | h[T >>> 24 & 15] | p[T >>> 20 & 15] | f[T >>> 16 & 15] | m[T >>> 12 & 15] | v[T >>> 8 & 15] | g[T >>> 4 & 15], n = 65535 & (i >>> 16 ^ t), b[w++] = t ^ n, b[w++] = i ^ n << 16
            }
            return b
        }(e), L = 0, S = t.length, z = 0, I = 32 == $.length ? 3 : 9;
    p = 3 == I ? i ? new Array(0, 32, 2) : new Array(30, -2, -2) : i ? new Array(0, 32, 2, 62, 30, -2, 64, 96, 2) : new Array(94, 62, -2, 32, 64, 2, 30, -2, -2), 2 == o ? t += "        " : 1 == o ? i && (r = 8 - S % 8, t += String.fromCharCode(r, r, r, r, r, r, r, r), 8 === r && (S += 8)) : o || (t += "\0\0\0\0\0\0\0\0");
    var B = "", F = "";
    for (1 == n && (f = a.charCodeAt(L++) << 24 | a.charCodeAt(L++) << 16 | a.charCodeAt(L++) << 8 | a.charCodeAt(L++), v = a.charCodeAt(L++) << 24 | a.charCodeAt(L++) << 16 | a.charCodeAt(L++) << 8 | a.charCodeAt(L++), L = 0); L < S;) {
        for (u = t.charCodeAt(L++) << 24 | t.charCodeAt(L++) << 16 | t.charCodeAt(L++) << 8 | t.charCodeAt(L++), h = t.charCodeAt(L++) << 24 | t.charCodeAt(L++) << 16 | t.charCodeAt(L++) << 8 | t.charCodeAt(L++), 1 == n && (i ? (u ^= f, h ^= v) : (m = f, g = v, f = u, v = h)), u ^= (r = 252645135 & (u >>> 4 ^ h)) << 4, u ^= (r = 65535 & (u >>> 16 ^ (h ^= r))) << 16, u ^= r = 858993459 & ((h ^= r) >>> 2 ^ u), u ^= r = 16711935 & ((h ^= r << 2) >>> 8 ^ u), u = (u ^= (r = 1431655765 & (u >>> 1 ^ (h ^= r << 8))) << 1) << 1 | u >>> 31, h = (h ^= r) << 1 | h >>> 31, c = 0; c < I; c += 3) {
            for (y = p[c + 1], b = p[c + 2], s = p[c]; s != y; s += b) l = h ^ $[s], d = (h >>> 4 | h << 28) ^ $[s + 1], r = u, u = h, h = r ^ (_[l >>> 24 & 63] | k[l >>> 16 & 63] | T[l >>> 8 & 63] | N[63 & l] | C[d >>> 24 & 63] | w[d >>> 16 & 63] | x[d >>> 8 & 63] | A[63 & d]);
            r = u, u = h, h = r
        }
        h = h >>> 1 | h << 31, h ^= r = 1431655765 & ((u = u >>> 1 | u << 31) >>> 1 ^ h), h ^= (r = 16711935 & (h >>> 8 ^ (u ^= r << 1))) << 8, h ^= (r = 858993459 & (h >>> 2 ^ (u ^= r))) << 2, h ^= r = 65535 & ((u ^= r) >>> 16 ^ h), h ^= r = 252645135 & ((u ^= r << 16) >>> 4 ^ h), u ^= r << 4, 1 == n && (i ? (f = u, v = h) : (u ^= m, h ^= g)), F += String.fromCharCode(u >>> 24, u >>> 16 & 255, u >>> 8 & 255, 255 & u, h >>> 24, h >>> 16 & 255, h >>> 8 & 255, 255 & h), 512 == (z += 8) && (B += F, F = "", z = 0)
    }
    if (B = (B += F).replace(/\0*$/g, ""), !i) {
        if (1 === o) {
            var j = 0;
            (S = B.length) && (j = B.charCodeAt(S - 1)), j <= 8 && (B = B.substring(0, S - j))
        }
        B = decodeURIComponent(escape(B))
    }
    return B
}

function decoed123(t) {
    var l = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
    var f = "/[\\t\\n\\f\\r ]/g"
    var e = (t = String(t).replace(f, "")).length;
    e % 4 == 0 && (e = (t = t.replace(/==?$/, "")).length), (e % 4 == 1 || /[^+a-zA-Z0-9/]/.test(t)) && u("Invalid character: the string to be decoded is not correctly encoded.");
    for (var n, r, i = 0, o = "", a = -1; ++a < e;)
        r = l.indexOf(t.charAt(a)), n = i % 4 ? 64 * n + r : r, i++ % 4 && (o += String.fromCharCode(255 & n >> (-2 * i & 6)));
    return o
}


// 固定的密文数据
data = "bOnqtWHqs4vudLnK0KY4XY1THnLjDMjnhnPiuBVJ/IhAnuJ7d8fnTw4Dq1/hhuh973Xpv1aZl9d6UMKO2CROI8txO9XkzSGu8P/M99rdIO7YKcTIKWIpNKkNoFmvalwtZUgIbEDSootNWnSSOb/7eENrIvoA4qxkMuFPNSxYfnetORcADtyU55BAglfTSGrbHUqt3NP09v4x7tG5eiugh7O8JYJ5itJmKmrydbjwfv+XDu5r/VjXzbAo1p3ZElmf5zSHpWXS+07fRLkbzJFtScyH9uSZYpw0tOC5r/80+obw8vQniteeXplugf+8U/UzsKVjDwbcGEik0+b/xHotMmfNMGpSCNIsWH/twRhElX34vFhRfqRjzVKBH//tEZ33vcQhyGROywwx+Wxyxnn3z7fPKyh8y0izjhYaTKOVV7Ot8MgMiQV1+Pr5fBFJ+UNv2GWDukhlf6xY5Ln+6zAg/F2rsNfeqtjuVI5/T9WQqnnaS8eRn3lQengLm12CnILuT1p/85gcwFUHvI3VvS8jC5sgeMAPKWANa1EIKb6AbIohIhqeaTb94fD/zPfa3SDufZ8XD9NM3XtSGcH5S1UGF1o6BT+MZs87qeBVzW1jPXnaBZX2R0J9RXTRacRWJ+RbfdrzTp3Nw8B5/xf+SDz//mwspmFdYbC8uBCq6ADy6BJ4WFFg8AAzT2IiQXUYNwVP75p++aaWpC9vOB95Y5ZwVIjKTRLNmEupc9blp0C3DPtUfGp9S2aLfQMyC2PGMT5X2KWK2ga3e8ZMvohS2dXZoFg/6xCm1tx2URzQhzRU29mjxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dSrsHZAJdG/XGM05PODoQ1LIJvVUl4xaY7qyhkgL4QqWHqfpIynevf2w8/+IL25gg9KgZT+3tAP+nLji/cMrNwUzRFllSxk8k8sc2SXIDhZe+1TK7PZnJfcZ+4T1xxMi+2DI3w5wtwlohvOB95Y5ZwVAgfP3tU6skOLHFHGM9afcOYcZTPVtB64MkY5vXv/bDooQ7kMkSZFpxGwhXJkqxL8S6eO0u2uS5wjok4JGroGCneGQbQZfEiq8E01ntFGRdscuRO4/J4DurvqEth6ZsVzVR8an1LZot9GzvYKqVYbofMYTRK9zT4vB1Cfm4xSjSV/un1UEJ0WDabIHjADylgDWtRCCm+gGyKISIanmk2/eHw/8z32t0g7n2fFw/TTN17jF8F8/Rqz9JgeIx+PTn4/KngVc1tYz15vt1JzZ3rT32V7RWIc9tZgnKYWnVvjZznjzkLu0zTbniFDwv6/vOTBEEHKiy74Xf+BhwNB5oA/zWNl6sKp6a4SGVRz8gfxSE9bzgfeWOWcFQmvOPHuT/U0aNycSrBQyqFDsEedsU1VSnz84NJ3dITxVvdSAOmOxngK3bxnGCwfeOOE0noAjFwGoTr0OqBdcAGxQETf174B1rwRUG8EDVqeKmiWDXGlPCY7pFlI2ZLKYDsvLUtQ3a+PgFZcCOFWUBV/cdIyiCSm9aiep2mlygnlt4ZBtBl8SKrwTTWe0UZF2xy5E7j8ngO6u+oS2HpmxXNVHxqfUtmi32ZYjeDKTw01Kzgi+vQq9xJd7aN+aLCTFFFg+kjojL4YfBs87QbOX4xaK5NZqmdRv2yqie0IokZ3gV3GR90ckj8/r2ePOlALf+5Q+fpw5gmnZgtZoonG9RNt/CisQt9/gEawBbzLvX2zvazFFZRRWj+bxnbTj8/wM8uT/ZloTXjknhOUzEcE0y5aRL2/XoPn1ETCClrwkmqtM23SwByBPV58/ODSd3SE8VQlkbAQoVSobjE76CA8Slp96hws1rkCQ2oHYABLvAfLkZIkwL0XvU19PyMhlEgGDNTyWoTITjLTrjE76CA8SlpmWI3gyk8NNRflVE5BMcHJ6J6naaXKCeWWD/rEKbW3HZktYv0kdQbtCn3r9ECk7BnxX9xX8/GOiKpypTojqlCmXWK7PFW89g3xxzctHMwVqBC2Ge9C3CTdlg/6xCm1tx2URzQhzRU29mjxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dSdd2oioDzVDOHP2Vys617m72RRLvr4PlEKIQxypAafcdIrEh0vp/4fqOIwihpKryeMze/Ad5Bn0Ozr7oimFMwbVVet96X1bIYsc2SXIDhZe+1TK7PZnJfcZ+4T1xxMi+2DI3w5wtwlohvOB95Y5ZwVAgfP3tU6skOLHFHGM9afcOYcZTPVtB64Mcc3LRzMFagQthnvQtwk3ZYP+sQptbcdmS1i/SR1Bu0Kfev0QKTsGfFf3Ffz8Y6IqnKlOiOqUKZdYrs8Vbz2DfJGOb17/2w6MeG8T3lCqsODYgzI7MKGaTZuAQHc+YtO6PG3NQZb+EPRLJNko8R2YO6f4Gm0kJ9iXqivC/G+R23AbKBt0e0Vu0kKvj2abL9OBXsPbGiQo46K7PmMNhzl1KQTJ5Wvj5en8qTSG3Hq23vdtNxL0iHZjP/fBD5Ct+VE4A2VdJ+Cy0sLNazJhFRGQefg3pt/WoWZv56F+qnJkK26oNd2hTEIZmxzZJcgOFl77VMrs9mcl9xn7hPXHEyL7YMjfDnC3CWiG84H3ljlnBUCB8/e1TqyQ4scUcYz1p9w5hxlM9W0HrgyRjm9e/9sOjHhvE95QqrDg2IMyOzChmkK9ouvnDzJvyOiTgkaugYKU0HkXjvrzI1tWHCmEwB2rsp96/RApOwZ8V/cV/PxjoiqcqU6I6pQpl1iuzxVvPYN8kY5vXv/bDonQ3de9FakxFLnmfiFBp01ZwLWkacxSDS/3GvVTDL0K1r/NIPGa/ikTS/NLFKdBQM8PbJ1wQRjJhw1IusDCEXfnCn9mCv47vJXRTzPMKmjKz7IvEqsrFYDyL+77M0sImE5FCtzhVc54Y7rYHfCHfg7qdWke8aMQNMICsMLsyMNzziJujAUahlH83e1Of0Xe8AygZ5fAHp73a7ejz5vhZWncYlF43NgsmjRkiTAvRe9TVQQzaXlUxKyehOa1m5lOTroX2DAcL1PsexzZJcgOFl7xwJYFVNL+BJ8MxblUxLYg3U0OBueD1kH72nlrpbv4CgCX7rTqyWo7Vm7NPY8GNvEFJfrUi2Vryj6srj9Lke9J9HK0VpavMb6+7lmR8NcvtxjZVGY851fK0vLnq1AWa+VZfrQEEVBSPGkbMdgRD2PdvPWgngoowu/4TJ9M1hNNHULRAwFP8eBMjZzVOuqVpFDhs72CqlWG6HGqGRpWdFpEFJoGAlFYF2/Gv80g8Zr+KRNL80sUp0FAzw9snXBBGMmHDUi6wMIRd+cKf2YK/ju8ldFPM8wqaMrPsi8SqysVgPhMZsedp+Idptsb/+NZaGnPaBC4PG5os7eGryi69D+oxN1Kf0JbW0cl1jqtE6Bc9n0ZGeOgPEKNJMYZ0LOKMi5U12iHPcssgvIgOVHQzqWw1GSJMC9F71NVBDNpeVTErJ6E5rWbmU5OuhfYMBwvU+x7HNklyA4WXvHAlgVU0v4EnwzFuVTEtiDdTQ4G54PWQf2c1TrqlaRQ4bO9gqpVhuhxqhkaVnRaRBswg9quJE8boZuxFHBhJHwDx8jjeeed/IKQi5t3fr/tTShFH774xOWaAsTyEg8xIEOMK8pn4QnFuqhIaL/bwx1naqib0aLadO60edb4KKtvabIHjADylgDWtRCCm+gGyKISIanmk2/eHw/8z32t0g7n2fFw/TTN17jF8F8/Rqz9JgeIx+PTn4/KngVc1tYz15AasboR9tD9CNFdOFWQ3D93yLTMCmjRHMcAEC71EXivoGiruOB0/h86YFBbt+05iE/RYZOHAqJCFzw1ftal4/JibRySXr7m+CbzgfeWOWcFQmvOPHuT/U0aNycSrBQyqFDsEedsU1VSnz84NJ3dITxVvdSAOmOxngK3bxnGCwfeOOE0noAjFwGpXbqoivLiSpxwb0uUO3BveY1f+j+jL2pLMVVmDeJDUKVDzZRA4onpZk43NOvB6aVerK4/S5HvSfRytFaWrzG+shk8K8XT84CZGzHYEQ9j3bz1oJ4KKMLv+EyfTNYTTR1C0QMBT/HgTI2c1TrqlaRQ7HnD7dOdkQ3kEwCz9yDzW3ai//K+xmeTj//5+glUrTl5sgeMAPKWANa1EIKb6AbIohIhqeaTb94fD/zPfa3SDufZ8XD9NM3XuMXwXz9GrP0mB4jH49Ofj8qeBVzW1jPXkdJCd830yGCGxlXxUUucXsXt1MqAt1Qu0+pUh27Cyzdt03ct2aK5sXv0dTTAA2DkLJFr5IFSj/rH3S25dFuc6LLIpHRP7HsPRvOB95Y5ZwVCa848e5P9TRo3JxKsFDKoUOwR52xTVVKfPzg0nd0hPFW91IA6Y7GeArdvGcYLB9444TSegCMXAalduqiK8uJKkwoiEv1h3P3kamy5P9b3YKr25bHA4C8i+cC1pGnMUg0g2Ze0rElccyog7knpze9NE8fI43nnnfyCkIubd36/7U0oRR+++MTlmgLE8hIPMSBDjCvKZ+EJxbSw0QTGQsQmZEjhzbhLdstkWD6SOiMvhh8GzztBs5fjFork1mqZ1G/bKqJ7QiiRneBXcZH3RySPz+vZ486UAt/7lD5+nDmCadmC1miicb1E3jIEotmnxmfFqQ/AXbqrmodfySzz+eo6J3djNJ1k9iwkBMfS4vHvgYdaUoUfmaA3X0XZLOxEN+u5PmQHMdehDyHbVBu2qAW1PnyWBxtwyY6VCWRsBChVKhuMTvoIDxKWn0Z4iDVn7YUqgdgAEu8B8uRkiTAvRe9TVOyN8N9gq4KlPJahMhOMtOuMTvoIDxKWlBm0cH4XPdwQ/S8e06v/i3jok4JGroGCl4HLMMT+uyU0crRWlq8xvr7uWZHw1y+3EsAWEUWYyENkGGdkm6Un+C/VirufNi3cW+HIkURe9lITx8jjeeed/IKQi5t3fr/tTShFH774xOWaAsTyEg8xIEa5T8wO/WnFulYd9oE+whlDwDaFBxKbwU8JrBSRA/u0qT2YgFybtsJWiRBs4S3X4Da/zSDxmv4pE0vzSxSnQUDPD2ydcEEYyYcNSLrAwhF35wp/Zgr+O7yV0U8zzCpoys+yLxKrKxWA8nEeciplpctn6nCV1A0zUsVO2NNN7OiY2GYuZQn09bHmf9eKbmrhJH+wLHTaIAo8y/fCUSez9M8Jv1lIiTI0XM3a/91NTpDxRq3o4JFxfty0ZIkwL0XvU1UEM2l5VMSskjlT+nq6cwb6F9gwHC9T7Hsc2SXIDhZe+sQx+pzn2oO/DMW5VMS2IN1NDgbng9ZB+nCVAeD6AkuLJtvMHWua/6vet6IQqh53GH16wJ2d0TcFg/6xCm1tx2TZ3VqAJdNM4R2noUMyroSrxcgvC65Q8Bk9mIBcm7bCU6Y1A+0hpJDt4ZBtBl8SKrwTTWe0UZF2xy5E7j8ngO6u+oS2HpmxXNVHxqfUtmi32wAcBB1HQzGoVsoiXUrGnJa+a+sLQpxYxFg+kjojL4YfBs87QbOX4xaK5NZqmdRv2yqie0IokZ3gV3GR90ckj8/r2ePOlALf+5Q+fpw5gmnZgtZoonG9RNu/8bZfA/2hvqZ2SRSsel5qSXkXgUdVZ1OpiW0qnDzujjevGHr1EB7g4iiSR7/U2ScCePJCc2vVbQnY7+W7fElEPKnt0kJ2/D8/ODSd3SE8VQlkbAQoVSobjE76CA8Slp9GeIg1Z+2FKoHYABLvAfLkZIkwL0XvU1TsjfDfYKuCpTyWoTITjLTrjE76CA8SlpMlJkZvaHKJWHLu3CaC6Itcm07E+x0zgsPGjte48qViOQIuR8zYtog8I4ht39tU32TQeReO+vMjW1YcKYTAHauyn3r9ECk7BnxX9xX8/GOiKpypTojqlCmXWK7PFW89g318ujpF5h0/vODsmjpK6oM/9aEpvJHAIE/t2xFPo/S+mjxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dSjAZRUAbY6YaEyc37sfwDMuuUHJb41tB5+aDgob9TldH5upho62skIvAAjL67fYh66QEKCKwRDImF8YcO/osCqA2uWMdYBhLQsc2SXIDhZe+1TK7PZnJfcd2XyajBJwiq8HGntDEqTFlvOB95Y5ZwVAgfP3tU6skO1Vq2fRvlrdqYcZTPVtB64NfLo6ReYdP7zg7Jo6SuqDP/WhKbyRwCBEEd0fy3PjyOZ/r4OshEgejGD7RQzrSd1NytzbFboJh4jok4JGroGClNB5F4768yNfy3n5i6/XTC3ghHwCFf2G/eGQbQZfEiq8E01ntFGRdscuRO4/J4DurvqEth6ZsVzVR8an1LZot9/wQbZrq2WPrg537L+u7ZO77pHzqg6x62RYPpI6Iy+GHwbPO0Gzl+MWiuTWapnUb9sqontCKJGd4FdxkfdHJI/P69njzpQC3/uUPn6cOYJp2YLWaKJxvUTW+982yx9ldRvlGQ9YBsTTbAhoI+5oKBGwDEvJMkoBvCAq8HO6bnw/RyOF5LStJXWhcUXakibi7xcBT/B2BOK0S9Kck94UDPHTxNIbIADIrQUJZGwEKFUqG4xO+ggPEpafRniINWfthSqB2AAS7wHy5GSJMC9F71NU7I3w32CrgqU8lqEyE4y064xO+ggPEpaf8EG2a6tlj64Od+y/ru2TsYxDnvRlhQlWL7rYigVxX2lAO9JzvZqoIp96/RApOwZ8V/cV/PxjoiqcqU6I6pQpl1iuzxVvPYN/SG9p6L0uNSL7t2mtELJ35YP+sQptbcdlEc0Ic0VNvZo8bc1Blv4Q9Esk2SjxHZg7p/gabSQn2JeqK8L8b5HbcBsoG3R7RW7SQq+PZpsv04Few9saJCjjors+Yw2HOXUrw+DQ1CRYqJCJDwBqHNvR5cFR9pww3qnALGdtQbndQYMUr/CTmN58IGaF1yOfYSXfi+90q42PfdR/EvLhHmwr/SXjmDykVaY7HNklyA4WXvtUyuz2ZyX3Hdl8mowScIqvBxp7QxKkxZbzgfeWOWcFQIHz97VOrJDtVatn0b5a3amHGUz1bQeuD0hvaei9LjUi+7dprRCyd+WD/rEKbW3HZmBB9JKiR2HBJ9+Qn4Vvq+3hkG0GXxIquUTAVh54CsT+GTCUw9sGKexX9xX8/GOiKpypTojqlCmXWK7PFW89g3csUY0TtasTh70OU1/OimXXOcaz27Nkdq0TADOhugwJRr5r6wtCnFjEWD6SOiMvhh8GzztBs5fjFork1mqZ1G/bKqJ7QiiRneBXcZH3RySPz+vZ486UAt/7lD5+nDmCadmC1miicb1E1MTPVu7glqYpVBQA9FMSNOOCNW2YOAPehkKm0z43gJeheFJfZ2Elf7sn/T1iwvZRUJQUU5XYEEY92/Jit4ejwlJZWRjUwtBHSftiwCARvO+FCWRsBChVKhuMTvoIDxKWn0Z4iDVn7YUqgdgAEu8B8uRkiTAvRe9TVOyN8N9gq4KlPJahMhOMtOuMTvoIDxKWmPOm0Ujw6Dw/ldhLvgcdPUeufWXvj4kGkCptXyM4v30eXNEoScihHqEn35CfhW+r6Vv4ln+VBkBw7Zs9tigF43w+dM2MF4R+DeGQbQZfEiq8E01ntFGRdscuRO4/J4DurvqEth6ZsVzVR8an1LZot91YJHj+iI1LcVw9ESqMcT5pVVKXX7+YsgJgzoBFxWS7ibIHjADylgDWtRCCm+gGyKISIanmk2/eHw/8z32t0g7n2fFw/TTN17jF8F8/Rqz9JgeIx+PTn4/KngVc1tYz15LA60ibD0h/Be3NmvGmedSIQRpLpe0iMm8m80015A6EHDhuuRm3S4w9dNvbs4YD24stRAM8ZPkf+ZMd2SESfsYFNLQSAI/zN2bzgfeWOWcFQmvOPHuT/U0SKS5Viy3jU/Wx9LhnlJHnfz84NJ3dITxVvdSAOmOxngDHXH09kMh4mOE0noAjFwGoTr0OqBdcAGlmw1taochLDwRUG8EDVqeBLvfZCiyhDhufY4qAiSZhGOiTgkaugYKU0HkXjvrzI1tWHCmEwB2rsp96/RApOwZ8V/cV/PxjoiqcqU6I6pQpl1iuzxVvPYN9to3VNgELtqZq0NkeumINgCptXyM4v30bVvhAxenQSNo8bc1Blv4Q9Esk2SjxHZg7p/gabSQn2JeqK8L8b5HbcBsoG3R7RW7SQq+PZpsv04Few9saJCjjors+Yw2HOXUrW1Q4XZi43+1H/3rL93URUAut+0cNAvEyv41w0nEjnqxxK1CrAV6NOILq2gT5TZouw4I4wwqSkQuky1vEGqLH8mai5++Z1fv7HNklyA4WXvtUyuz2ZyX3Hdl8mowScIqvBxp7QxKkxZbzgfeWOWcFQIHz97VOrJDtVatn0b5a3amHGUz1bQeuBt30YnuJLCTBCpuWnFcalyvdtBJNA2kFjf/QhvazNMvWatDZHrpiDYQqrEiNJmAspnuznfZnKkMBJ9+Qn4Vvq+3hkG0GXxIqvBNNZ7RRkXbHLkTuPyeA7q2viBNWH6mIaq05krd+pZWGNHXf0qsq7ezUfqF1BIsPtdgtlhotDn+ZvewJJmeSQJhc2sV0l0pNSQdSNSusPlaPBf9orPlaCdHdjWnF05/PHYXI8s1yoLm3DUi6wMIRd+0i6aAZEbfyUYI/6IrkGNT97HAJxgXYtWpuqUsDQfPMAMZBx/8g4CSjuL7m2+8Oudj76UqDGcUpuprMMgpYV+zbUZhBFWO50lFSe7sYKzFAxzmGdeBXlyZRo9SzQRQlLF/O+JQjwcPuz3gg1sHNMnrgETgpr6pEH4sKVjDwbcGEi1UquomQi9koTt0YAPljUa/WipTzIBJpucQAdZKJ3QTbYopDatAxAn0Ydqsi6fHBf75fgsDJAF6jgn0AOKl9dDmp6l+NoLglqyJ2ldY4uvGjgn0AOKl9dDPxLeOzOhh2EiTO0ofqpr2/cLQFfWuJ+jVI5/T9WQqnnaS8eRn3lQengLm12CnILuT1p/85gcwFXumIbUhCxVXZsgeMAPKWANa1EIKb6AbIohIhqeaTb94fD/zPfa3SDufZ8XD9NM3XtSGcH5S1UGF1o6BT+MZs87qeBVzW1jPXm3Bu2Vwbn+hHEJJeT5xe+DPSQcjjcOv8SqQFU6buLfnL8dGXQq35If7iTrWrSAP29QksiMoRz36dnOlf6TBIMz58kLVFSqdENvOB95Y5ZwVIjKTRLNmEupc9blp0C3DPtUfGp9S2aLfcTwKXPt9mRCuQmejkjWi50WoDhFzRHdjEWD6SOiMvhh8GzztBs5fjFork1mqZ1G/bKqJ7QiiRneBXcZH3RySPz+vZ486UAt/7lD5+nDmCadmC1miicb1E3RbiPf3CSSrfhRuJFP8tv3qDJPt/URS1Pb2u1BrEmzQlsZXqiTENuenNtaZXCfLHRL+cgv2+M8b0ULLhBOajYMRi0Yu9Hc6BT+wYwx1kb4wlCWRsBChVKhuMTvoIDxKWn3qHCzWuQJDagdgAEu8B8uRkiTAvRe9TX0/IyGUSAYM1PJahMhOMtOuMTvoIDxKWksAWEUWYyENn2eZ7LZGADLpduZ6mM18A1GwhXJkqxL8S6eO0u2uS5wjok4JGroGCkfAVc5cv0dOIDOm0Hsti2vFJr3Fo8NK36Rsx2BEPY929CyHJn8BvtnjBuaR4We0MvvqEth6ZsVzVR8an1LZot9W+kivy0bj+EE0bmFSCm47hagOEXNEd2MRYPpI6Iy+GHwbPO0Gzl+MWiuTWapnUb9sqontCKJGd4FdxkfdHJI/P69njzpQC3/uUPn6cOYJp2YLWaKJxvUTVPSd27Uq4uFSH4nsQFL9zKHxgwr1ozwT4Qn94tHLyfOxu6h0pslHDy9+6dmSmIVlLQ1POrgUemmp2NpgkytJljQqdvExF5fL7kPiz/CLjErUJZGwEKFUqG4xO+ggPEpafRniINWfthSqB2AAS7wHy5GSJMC9F71NU7I3w32CrgqU8lqEyE4y064xO+ggPEpaVvpIr8tG4/hcZ9Bzm/qLmchc/LusF6Ip+0hjE83jcDt0wiToabCLQs4eb46RHu+iX7cfcahBxfbKbuySXoPZtuGhTWMtl93JB8BVzly/R04xLz8Eu3h1sISffkJ+Fb6vt4ZBtBl8SKrwTTWe0UZF2xy5E7j8ngO6u+oS2HpmxXNVHxqfUtmi32ZUvlx3+41mhUaRkZ/U/0Ajok4JGroGCnXIReNQuPJDPWup12VK95qo8bc1Blv4Q9Esk2SjxHZg7p/gabSQn2JeqK8L8b5HbcBsoG3R7RW7SQq+PZpsv04Few9saJCjjors+Yw2HOXUhiD+AMAUWwPlwlEP2XlLbR3Nu9htFN+3m9RqHvsFoD5ts2YrSeY6fPZCnthZSp4aGw2mdkAAjgMgYSDXPTDxftYvo8V1Oc8hbHNklyA4WXvtUyuz2ZyX3Hdl8mowScIqvBxp7QxKkxZbzgfeWOWcFQIHz97VOrJDtVatn0b5a3amHGUz1bQeuCKSm4r/YWn+C7khO29tbN4WD/rEKbW3Haul9+Av7RQ3KJ6naaXKCeW3hkG0GXxIqvBNNZ7RRkXbHLkTuPyeA7q2viBNWH6mIaq05krd+pZWF9aPNEuEa+uzUfqF1BIsPviijWM/SMIGGPTv1gVJyCEtL0qcOuzqQeQdSNSusPlaPBf9orPlaCdHdjWnF05/PHYXI8s1yoLm3DUi6wMIRd+0i6aAZEbfyXNGS0CaRKv9p496DpEGJf/Qx/KKALCC14f3HS6IF15IzuL7m2+8OudI07Ta28ZCRjUWHh1g5oLcTBiFamhM7q8+PW5ajpZbFfIPOOF8gcme57w8p2C4jNOjxR4Wdf9zJdzD+X+ml/3DgCZ3LtfLgFr4juM5Pll/1mXDu5r/VjXzQL2OewWa9vQLNLvm7Y4YI92n6zs37whCqqlKAjuOIAEWH/twRhElX34vFhRfqRjzdio57+ZMZuduvmy+3Ds9xIx+Wxyxnn3z/o3JCY8XiPv+vl8EUn5Q28D5tNBJvcbw/o3JCY8XiPv+vl8EUn5Q2/YZYO6SGV/rM4yht4Yh9mSVdQubVICCXgbwV06n4NYlIac/g7aj/KplXlx79iE4QjU6Tkzq7lRHu9W/kG38M2ko8bc1Blv4Q9Esk2SjxHZg7p/gabSQn2JeqK8L8b5HbcBsoG3R7RW7TWbnbn2z8h9Few9saJCjjors+Yw2HOXUljaVLLmE/kw1+iCa9thBhs5N7+c9yFoJd+N9QJ5PZ1IzaX1OuEuObGs3f4oZXoX3aC33pJJ1Dk+hPJCaMfTke7aVxMTkmIO93WK7PFW89g3UYMF4w2N52ugLE8hIPMSBCX65pKV9zMoASN8suOTVgVD9Q0KiGE+NaF9gwHC9T7HmyB4wA8pYA1rUQgpvoBsiiEiGp5pNv3h8P/M99rdIO59nxcP00zde4xfBfP0as/SYHiMfj05+Pyp4FXNbWM9eT+LqUa2TIweaevj28vAD9KvN/5uRkeXBV8WyGcZkgu4Y88OARl5DCHqaS3aCfVwU6BzbRg7D1XMmERHuvtFJyOLR6WRoRce4W84H3ljlnBUJrzjx7k/1NGE69DqgXXABu5h2lxkp/Vv8/ODSd3SE8Vb3UgDpjsZ4GJ7vWeIaKoFjhNJ6AIxcBqE69DqgXXABsUBE39e+AdauPMQhf34k3iXq78WYm7wIy3zzF6WCHh1uA85Mc56+0rqyuP0uR70n0crRWlq8xvrIZPCvF0/OAmRsx2BEPY9289aCeCijC7/hMn0zWE00dQtEDAU/x4EyJ55R5lXmkmzIJWPL5OoWfsaoZGlZ0WkQUmgYCUVgXb8a/zSDxmv4pE0vzSxSnQUDPD2ydcEEYyYcNSLrAwhF35wp/Zgr+O7yV0U8zzCpoys+yLxKrKxWA8dIRdLI1uTYMjW+MwxrX5UW1nXkmcv3tjqyll3OEFpKSlv74hagsOvwfI6jZ3kijGg1pEuNkrPqquiFAlfUsoahhdxfQYuqt4gXJ2nrIQyjkZIkwL0XvU1UEM2l5VMSsmnCVAeD6AkuKF9gwHC9T7Hsc2SXIDhZe8SVXKD5bbxQ/DMW5VMS2IN1NDgbng9ZB/9VirqIR/eAkfwNHH4TveWAUDTVgTJFliLuJgnS5BeQ+rK4/S5HvSfRytFaWrzG+shk8K8XT84CZGzHYEQ9j3bz1oJ4KKMLv+EyfTNYTTR1C0QMBT/HgTISBGVPZxPf7eOOirCyv0uee801iQHybvJLxQ1NLhiJjAmDOgEXFZLuJsgeMAPKWANa1EIKb6AbIohIhqeaTb94fD/zPfa3SDufZ8XD9NM3XuMXwXz9GrP0mB4jH49Ofj8qeBVzW1jPXl9PMvId0g1lB3GPws3H9xzdoQpS7LpuHGKwb++qjffl8P0de/oQy8v9hp3EDTqns6dwbCq0J+667zyYfUCn42kyn2Xu4f5fxFvOB95Y5ZwVCa848e5P9TRhOvQ6oF1wAbuYdpcZKf1b/Pzg0nd0hPFW91IA6Y7GeBie71niGiqBY4TSegCMXAaLAilZrwpSdRdfPLidc+knmRSrC5adAxbUQuz3KMzt0eT2YgFybtsJb81UXOx9TCIAqbV8jOL99E8fI43nnnfyCkIubd36/7U0oRR+++MTlmgLE8hIPMSBF6YqGcqlXYCnh0ggpviSpguL+H6ea6vKhMBwzbLhVi0jhX5M9N1u9zE9g+4tvhJ9Wv80g8Zr+KRNL80sUp0FAzw9snXBBGMmHDUi6wMIRd+cKf2YK/ju8ldFPM8wqaMrPsi8SqysVgPilPx+U7LF3NHFblfuW6yQRpS1PtqNSDcZsywgx5amMfWTp8kKd+zg05v3o9Y7zBIF2D5Sb/6zmmSuSUd/BoP0M7QMv0V54wFqicYdzdXse5GSJMC9F71NVBDNpeVTErJpwlQHg+gJLihfYMBwvU+x7HNklyA4WXvElVyg+W28UPwzFuVTEtiDdTQ4G54PWQflyu0GhdPXhjEncI1OwylWW8FCLu7t3eEmLo3EpKpYOVUbR2/tS/pMz7jRMvveRz67qhgT2gX8+G3MrNccZxWxLFwVKNw0OmrLDlX3gCIEJVNB5F4768yNZNzB7p5B3ncMM05aTn6Xfj72RkuhRipYKAsTyEg8xIEzo9Nap6hurg5TLxNOFeFjlETAJ+4XwmSY9O/WBUnIIQKU9jFSR5mGathB1hl2mMX+hbKNo0rKCScC1pGnMUg0v9xr1Uwy9Cta/zSDxmv4pE0vzSxSnQUDPD2ydcEEYyYcNSLrAwhF35wp/Zgr+O7yV0U8zzCpoys+yLxKrKxWA/KGpKr3H9bKB92AErp96j2Hmkv9TQ0NP7cs1RjVrOML58GSWa6PnxrHjS/GzNy5b9eEZ7cZdPV9EOFhjOG/F/kHP2ZKPasIOo6o5Q1sY08aUZIkwL0XvU1UEM2l5VMSsmnCVAeD6AkuKF9gwHC9T7Hsc2SXIDhZe8SVXKD5bbxQ/DMW5VMS2IN1NDgbng9ZB8mNVT0RL6gOAdF0Nix3hDdOUy8TThXhY5REwCfuF8JkmPTv1gVJyCEClPYxUkeZhmrYQdYZdpjF/oWyjaNKygknAtaRpzFININmXtKxJXHMqIO5J6c3vTRPHyON55538gpCLm3d+v+1GU2lv5O9TBFNnB1x1+v3A9pQRqoAxb4QCvxAzeMc2up1lU4+JRQvfXP5G6beRGoHEw+bghH1tA65s6tGSl+ICy2Cs0w49CEaDTpOz/JuSe0J+OllXsZbtHqiyevn7fNm6jPuePMNH/1bFjD0hiPwO38JJmSs5baxpWghZzXiSEijXK0pojx3TFJVyQ5stQZeMKvcN+848OgkXAR/7cd1srKtmgMqYOzBkH4I8cIUOGN6G+Pnvrn0pT8my5IFSrI9gBctyQnqjq1XCuE7BcIU5j2jQHfSrB9S/RJaXCNM6EqN9wKBDmdbB/O6ubBHkCqgn7CInmn/RZlIORlnoowF9NvaTQYEVAjneeQumUIsp/XqALCNko4ct4jnd0I3jZ5ePEpT7PEa9hIWCTOC5uKfoHBkYr4lVYza/G6E5xpbCsvBUZcK3Z//eZ6648e4mGTY/YxiFkfSDGnKkixgBynUQuwpWMPBtwYSLVSq6iZCL2ShO3RgA+WNRr9aKlPMgEmm7gW48RTCOHOcuVjhLXFo3/Rh2qyLp8cF1uxbRDSgCvJVdSZwHdj0W+V0Ki6e7W7ANH0154h0DgzPxLeOzOhh2FOQmKpw/+YeGbKqL06ipSySn4gcxjxfi9+f5j5DKjnUzu1U3vHxRyxInUQPZ1gFEZr/NIPGa/ikTS/NLFKdBQM8PbJ1wQRjJhw1IusDCEXfnCn9mCv47vJemQh9WVpXT77IvEqsrFYD4TGbHnafiHaS1Cl+8zdEaTJzJBOqmqixRBT06seew+Dh+2Ms71xLgsLBAqAZXBAL5visphlYgLaSd4sQvCxWXZcJz1q0kXPxcf4XPcD/60I3jUKs3PFrfvuVO8jB0Q+pXWK7PFW89g39Ib2novS41JAwtN1mwyCWaF9gwHC9T7HmyB4wA8pYA1rUQgpvoBsiiEiGp5pNv3h8P/M99rdIO59nxcP00zde4xfBfP0as/SYHiMfj05+Pyp4FXNbWM9eXpWZ/QhyltWPNE1tbSj3eQ9684eCbTaXjy35cKpShsgRkqAV/HKyizbvR8jkTZFgl2WrVvcfjcE55KZGZXezSoZU/xGPSnGkW84H3ljlnBUJrzjx7k/1NEsCKVmvClJ1MvkrUu7jKF88/ODSd3SE8Vb3UgDpjsZ4IpMu3kjr5eYjhNJ6AIxcBqV26qIry4kqVr4RK9X6AJ++SGoF2ZS1KriSgBHoUBNxyyPEY0puQqrjok4JGroGCkfAVc5cv0dOMS8/BLt4dbCEn35CfhW+r7eGQbQZfEiq8E01ntFGRdscuRO4/J4Dura+IE1YfqYhgJsrcG0BXIPL9Oa+GSKBA7NR+oXUEiw+46RyRjEpNRPn9782XvtbZlMVJ53PMVR0EosLYJ/PTxR8F/2is+VoJ2igIqE/peVw4/4ctUgCROaGxhzkUfSFRDht+yyRmWi4TrUAXG02+EHwj9jUWtlUt4Z0IcuI7C/ULQdUQVSj78fOIWrw51dGdIhqSHoEHKicqVLbFLfau06WR+4CG6RzRa1DyySCsLBsgYqPNc7W1QEWVeoC0YOcKCZF0i7nLFIjCMBu1UCZjMbaeJkD200a4OPGQUVcs0PjHsEbeOn/rfbX/O400KxpW3y23RpMig3LPDu5H6fZfMuGP9V4LhlWypLaJTFSlctrjL4MmboJzEy8SlPs8Rr2EhYJM4Lm4p+gW0CtlqGlaupBHySblvijvsFRlwrdn/95nrrjx7iYZNjLkdz/YZUJ8lzHQI2oicZ3D+qyh405X+IwHnveMNQ9sxOFnyVhSJpEoUltqyd6E1dXJpQix6v3aR6ExIzxzI+Q9/BJtGCKmtjGC+vDPTTUPGvUAjKq61QILNuQ9YIpuWTorcUtt7LNoFcQWTRY/BywExMpBuKiDBOqSzm0Mw4dn+anqX42guCWpBTtZg+j7Ip9Ut7lLR4nGeCFtn6ogAY7T6yJy2GCvBZgrfs/ix0rXYXCLZ1sNyKfgKI6wSkpWNi9/3aZVi10opsFwvQrY56oiB7MJSCAI0zPw5NgqKdQsE2j1GgVmlmL952e8dyZAxdtDsvmQvMr5/XHNOD+DAxxEHzUmytZWOF54lKYMrm4xgD5yNxryWV7qAIQstLYhyIAjSNCpeAwlASLBZCtcR7uDWogi1zWyx5pObZ0rNZDOCRZYRtuTn9Aab0pt2EBSmSiKNZnTDf5VMun5SNCQdEcfOY9cG90c8p1jMpTvWYCBdII4bD/DxHim3vDSu4xNEOYLauM4IdSSPdWUL+Oap3zQMVU1A5LKmPfL/9yg9WwoEg1be32aCeOf0zMJrKG+2pzr77+h9bVTpi+VgTwF29gqSkSIHPvB22CgYcP3ClfHGT+ZGq/zgnrKRcDPaWsohtTq+NM3bRHCYsbDJT2csayaGf3RVjrNZ4W7N1veKyVGCC3/A/BvuqcoLjilLBrrJ8mD+B7B3OxbAAjm09+7DSJXv6ulRSPgrXjFWfo9TGP5qAuliy6A96WLuqlaRIkoD3AC2UILU2AqAFoquVKKNNIp3xnhoEfZm6Z/NNsXl20ypz/3zalXxuxfx8x4CvK4+ix85nYv3sWK0yAFsHnPn9J8+d3fAoWQ3GzS6UVG4RiRP9YT3gOP2eB3c6vGQ+DeaZppl7tiuDMnrFPnUJwhBLvgqMBrNwdCaZ4jdOKthY9eyL75sk1UWdGiO3SRN0X/eMp3z7mIZgG2sOZiQLIJLU/N4bSCfz0G4evfpkawUOoXTNBv5s9XuQQctpqp+xmT8gzWa2/be89Wy8AAkEUDMV9tQl7jmSYt/A0i6aAZEbfyXTR+Gg7H48g375qbuE/KJvPZlpyeFa4huPjRIkVZ+rRUJGSJdet0GeGT2t1qh3vKtllJU5cTF70S8LReyCY0mHsCy6v+fSx9DnoxszHRbJDY3/jJXs0x5EZrEzYuIKL5SqFp5X2Seo9AyOcecRlzTMJUiUAA3bTaI3Ys9ImvpGNZRH56hHtqA4wIXvzUu1XNtMibCXn75xF4hB9ZDWbBC5elwlutttmm6LfIvoOT+eH0xWUkhXRovswmfGm3xC1Sefk+8nMTbY4KjPcK/iPMPsgzgFmtEFYQ23ZPK+YmiwcZlugf+8U/UzjIjfBXO8W/2JMW7fWsOV0cJnxpt8QtUnFphRzVYut3MOLcVS9jW8dxnskpxCtDR5FU6tftMWD/xit3OaJtxWNGYzdUFI0gYLzbyVkVo2H6v7kXv3Yq5vTaZwbcPklUTu1e/9dt+EiK7GOBGNy2wjHEYsDJhgZplaCrvGdkwqaXVJWxr5NoWME6t4Hh6ksLhNXFJXlsRNN8igsShk8bcfQ5hKTlPGn0SHSAYttRtFyfut2/quq3JhXiBhAoccowJG2hGc61zk00AzOEjMYCR2oUb1LG1+JIvSPKIlZPPaa/2VeXHv2IThCNTpOTOruVEe71b+QbfwzaSjxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtNZudufbPyH0V7D2xokKOOiuz5jDYc5dSdevo+r6nzsZN8AfVEyD9JXw1ymHcsBmdNORw/0h4F0ycGK+ZfPMiARMaUIIWQuERzeILuSSDkEVnqQX5+ubsWl7nj21/a5VJdYrs8Vbz2DdRgwXjDY3na6AsTyEg8xIEJfrmkpX3MyhRgZhbqi+Ir565ibwSGFZ2/un1UEJ0WDabIHjADylgDWtRCCm+gGyKISIanmk2/eHw/8z32t0g7n2fFw/TTN17jF8F8/Rqz9JgeIx+PTn4/KngVc1tYz15/zVeg3dc2VtlCvAr4B3H+vgb4goJIrrqvxexAw5HvJx2ZHU9C4yXOGr9k7f9RGvqadcUWXINzsp4lBg2wnlHw9pbnb5i23dGbzgfeWOWcFQmvOPHuT/U0aNycSrBQyqFDsEedsU1VSnz84NJ3dITxVvdSAOmOxngK3bxnGCwfeOOE0noAjFwGoTr0OqBdcAGjNfYnUopfO5zEBHSL9FKHz3r61LOPzGTsRF9p5LYZZ/7msfi0h5GeO+z3t4ZEoI5UYGYW6oviK+rYQdYZdpjF/oWyjaNKygk0LIcmfwG+2c4QKyWJOT3OEttF2edZFd8QUIoLuKQbpkp96/RApOwZ0OWhDylSVIa4ZP/9RK2kp5x/LTqX2E+7i0QMBT/HgTIzqgduytp568vHk6BYqGR3/FQoEcTX3izjbUEZrD1xjxr/NIPGa/ikTS/NLFKdBQM8PbJ1wQRjJhw1IusDCEXfnCn9mCv47vJXRTzPMKmjKz7IvEqsrFYD8oakqvcf1so038bP77bGWeDaUJQCRafKj++c2XKVMqQxMNOupe5z/jRsrIGSTrVmz4oIO8Kpsh3+c9Od1S7vCisopB6zvPAQ4IuPcHbk2YQRkiTAvRe9TVQQzaXlUxKyehOa1m5lOTroX2DAcL1PsexzZJcgOFl7xwJYFVNL+BJ8MxblUxLYg3U0OBueD1kHyY1VPREvqA48mcWCgVEaI0IzM4tKMYX3etlI0qK8EXEDGzYdG+frr5VPtlFKOc4Rm84RIUZzP46WD/rEKbW3HZmBB9JKiR2HBJ9+Qn4Vvq+3hkG0GXxIqvBNNZ7RRkXbHLkTuPyeA7q76hLYembFc1UfGp9S2aLfXPAzKhozMpVooBGSvy3bklr5r6wtCnFjEWD6SOiMvhh8GzztBs5fjFork1mqZ1G/bKqJ7QiiRneBXcZH3RySPz+vZ486UAt/7lD5+nDmCadmC1miicb1E0ZMI7Kr25TPZMZYos4/UhbaZD/tf5e4DoHweywcF1tb0/zvGS+djdRuFO6NXvVDxz8NPfxkC4B6+SfGZEp9nVDEiRJTG26jvuVK0jcAH8WVFCWRsBChVKhuMTvoIDxKWn3qHCzWuQJDagdgAEu8B8uRkiTAvRe9TX0/IyGUSAYM1PJahMhOMtOuMTvoIDxKWlzwMyoaMzKVaKARkr8t25J7Ly1LUN2vj7eGQbQZfEiq8E01ntFGRdscuRO4/J4DurvqEth6ZsVzVR8an1LZot9kTM4L5iO7BFIUGKh74g4QHe2jfmiwkxRRYPpI6Iy+GHwbPO0Gzl+MWiuTWapnUb9sqontCKJGd4FdxkfdHJI/P69njzpQC3/uUPn6cOYJp2YLWaKJxvUTe++C4b+WlKaPtIqhhGU7oBPWDxgPE8T2+rBgWMdX5ZcVHosGzdIYBWNyZ+XXUrSroL9ebkQWdwLfZYM4iVipU61QSU+n3Rb9zxNIbIADIrQUJZGwEKFUqG4xO+ggPEpafRniINWfthSqB2AAS7wHy5GSJMC9F71NU7I3w32CrgqU8lqEyE4y064xO+ggPEpaXXQKmShGw8QbdVgkXLwtcWK3lG9jD6eZKZghFpyNPY+1ldBe6ioYsKOiTgkaugYKUOWhDylSVIaE0iEB6UlMPzKwV03A2zCn5W/iWf5UGQHPHyON55538iXanvCOar0/wtRLgYfwfcplHvRdETJTZJ1iuzxVvPYN7UXkXAHjQXR8A4fIat/eJJaIdHnpof4adb260T3p3U1d7aN+aLCTFFFg+kjojL4YfBs87QbOX4xaK5NZqmdRv2yqie0IokZ3gV3GR90ckj8/r2ePOlALf+5Q+fpw5gmnZgtZoonG9RNWyB4u2K5xsXK4FUEdk2xmpAPXRnYdhcaTlo/7Q74VfB6np1ThCQWOTGbur84lzMKM8EXfz+uhA4Wouews3KtRQzhjHt660kluQ+LP8IuMStQlkbAQoVSobjE76CA8Slp9GeIg1Z+2FKoHYABLvAfLkZIkwL0XvU1TsjfDfYKuCpTyWoTITjLTrjE76CA8SlpddAqZKEbDxDNI8h8KlA232Ug9KUJBZ13warGfTjSbFyQmeGg/nh68zCj5jjrtDS+WiHR56aH+GnYoJU7l/ewIG84RIUZzP46WD/rEKbW3Hb4igjZurFcUpl/l5URiC8kQqrEiNJmAsqjs38xwmjTlxSa9xaPDSt+kbMdgRD2PdvQshyZ/Ab7Z4wbmkeFntDL2viBNWH6mIYCbK3BtAVyD4xh/Ujn9TpCzUfqF1BIsPvxxWzrtiz2MFtQZcp1PlKOAyi2yJmrhinmzq0ZKX4gLLYKzTDj0IRoNOk7P8m5J7QkaaVbfDi7F7KqJ7QiiRneES+AxTiuE0k8aYJGm2cfmIvhis/wS7gbC//DSICx/HJwEsC24xVIHIcHVBya73tidnWL28n2fPOtu+OJqA6tt9oSNe1EV9CozFMgVjdu7PFYEj+LOTmiFHOWnhI6FxIwTu+LGIwS7zK51iOzT5MBdIoxlzY65IM3AMsxuDmCmmepMBPw16Wl4hpEP4YDUisv19kOJCywjESFydBTz+s+XFnKHwxvq2WpWH/twRhElX34vFhRfqRjzd83odEwtUsyqHxa7bs6h6gx+Wxyxnn3z950sRUr6MDnjhYaTKOVV7O8QMm38pN7Tfr5fBFJ+UNv2GWDukhlf6wSbOe+rd73kzwdm7ShBp7daaaehf3DOgSYujcSkqlg5SwUS57ur+grfn+Y+Qyo51M7tVN7x8UcsekL8BXNGuFea/zSDxmv4pE0vzSxSnQUDPD2ydcEEYyYcNSLrAwhF35wp/Zgr+O7yXpkIfVlaV0++yLxKrKxWA+1n7UKQ3CQ4mmRMtOstoYaZydOZTMjRpNCTSKdSpmKsy41CA1bzYUdF5PNzlBFbyzGq8XBotptZ4bec2oFABtnToYCEF2PWOVKpoz7GaKJgN41CrNzxa377lTvIwdEPqV1iuzxVvPYN+vKPmuHsopiOAHYIU0OSpwCptXyM4v30bVvhAxenQSNo8bc1Blv4Q9Esk2SjxHZg7p/gabSQn2JeqK8L8b5HbcBsoG3R7RW7SQq+PZpsv04Few9saJCjjors+Yw2HOXUvszTPVGDJnOlzQ5G48KgcWESTVSBYCFWe4JcJ5tDNJKXwxIcfKQGDJwmmsotbyguHsrN6j1+nAwi8q4vwsnUwVpNQLc8t25FbHNklyA4WXvtUyuz2ZyX3GfuE9ccTIvtgyN8OcLcJaIbzgfeWOWcFQIHz97VOrJDixxRxjPWn3DmHGUz1bQeuBMmyykTw/eCNCXEumvKovxHazptXOyXuD5gmDMxXQ3Xo6JOCRq6BgpTQeReO+vMjW1YcKYTAHauyn3r9ECk7BnxX9xX8/GOiIfi7uXaJAJ06fa7UGh8AXO7Rh8jNKq9o9N/FQ5EkVd86uwrq45jEf4TZWbAYZWoH9wUU9B/k3OJQPWFV4OMJGI73Xpv1aZl9d6UMKO2CROI0Rs27O8cGfwT2495gyrBXxevkBf5IGnuqaodWRw71swd58i1QBBbvjANZrjUWHgKBWp1sQFdGTebehQn4VwnajZKbplKa1GGmdtNevG1Xtux4dE4aEeasZMjR2G+nQpsePm/FAm5aq72DZEyY1NXN+aCmRYHG27cczPC3Pj35V2D8vlf41bYHNAj8aOpENtUmxpvuKFnFLyV+UL9ggozKEf8MiH/8dko2/DWp67+RAFtT50ux7f3BnJ+u1bRjebQ0AUFoAycW4nmcQ8j5UL2Fm0ZclIizy/HnJ2xDAz7ANBOknxv9zQYXQBWXAjhVlAVUaiMWBLvADzI1WIo3XYwi0wG2vpaDaTy8XPODDqaz04cx0CNqInGdxLvVdE85nTvnZWRaZRffe1sXiQdg1j61KAD7GIJy0C3BJ9+Qn4Vvq+vIqa5dSTsMXQK6i45hiqeBgvrwz001DxxiNGfBQreXY9DV1Pu3FqIqK3FLbeyzaBu3DfWyHBjISLjmLHKLLAULAkFrWZoZx4bCijpoTBYYEpOwO8PUMLnThbHPI26nsiVdQubVICCXgbwV06n4NYlIac/g7aj/KplXlx79iE4QjU6Tkzq7lRHu9W/kG38M2ko8bc1Blv4Q9Esk2SjxHZg7p/gabSQn2JeqK8L8b5HbcBsoG3R7RW7TWbnbn2z8h9Few9saJCjjors+Yw2HOXUmfSbFLUZPrgaTW0y6+jQ7ePtM26WVsS6o8z18e5pIzhV1FZd8JAoLLdGdOmRDrWcJgeUSNr4TWKplWZNw2/+3QfZ18664uSA3WK7PFW89g3UYMF4w2N52ugLE8hIPMSBF6YqGcqlXYC6yCU2e0EXLbx2AVe0r2XA/7p9VBCdFg2myB4wA8pYA1rUQgpvoBsiiEiGp5pNv3h8P/M99rdIO59nxcP00zde4xfBfP0as/SYHiMfj05+Pyp4FXNbWM9efyNFaZY3JzKcjzKMNRm37fLkw9aHlt1V3gGiO7VnKk37jX31pyvHvWkVyOz/2/z2wsH0P2Z+DspiEpmiyKJOGTlT1IO2LRXA284H3ljlnBUJrzjx7k/1NGjcnEqwUMqhQ7BHnbFNVUp8/ODSd3SE8Vb3UgDpjsZ4Ct28ZxgsH3jjhNJ6AIxcBqV26qIry4kqesglNntBFy28dgFXtK9lwOtH8MtYK5FEDjFcbb5lENlhoYxGCiLW8W+HIkURe9lITx8jjeeed/IKQi5t3fr/tTShFH774xOWaAsTyEg8xIEJfrmkpX3MygO2bPbYoBeN/jWrbvfbYf4W8Wp5+84pQj+3bEU+j9L6aPG3NQZb+EPRLJNko8R2YO6f4Gm0kJ9iXqivC/G+R23AbKBt0e0Vu0kKvj2abL9OBXsPbGiQo46K7PmMNhzl1JiXKoeTnPasP3QsV0zkjcXqjU70dj+olwCV0+l64fJhDypeQVV4A+bimhqvEMqVSwq+DZIHX4HptCeAErDcBPpvqtmzdbd/s2xzZJcgOFl77VMrs9mcl9x3ZfJqMEnCKrwcae0MSpMWW84H3ljlnBUCB8/e1TqyQ7VWrZ9G+Wt2phxlM9W0Hrg2eotnpfLnPMd9NFAHz/DOq0WgHAfjaSAQZoZp7ypCfHTzXMhn76KytchF41C48kM61XTe6c0M44p96/RApOwZ8V/cV/PxjoiqcqU6I6pQpl1iuzxVvPYNxzHRXo/oskaGmMaiF/0PTkCptXyM4v30bVvhAxenQSNo8bc1Blv4Q9Esk2SjxHZg7p/gabSQn2JeqK8L8b5HbcBsoG3R7RW7SQq+PZpsv04Few9saJCjjors+Yw2HOXUrGeNt5oCj3kJaukkrblpxzwi33Th/outlIwATU+JJ+iLQmNU6NetKEE61kKsrn0OKHvPW9ATDsZgw+dKsyq9NtY+BDtb4fCvLHNklyA4WXvtUyuz2ZyX3Hdl8mowScIqvBxp7QxKkxZbzgfeWOWcFQIHz97VOrJDtVatn0b5a3amHGUz1bQeuB7LvLtn5BzTBpjGohf9D05PGjte48qViOQIuR8zYtog8I4ht39tU32TQeReO+vMjW1YcKYTAHauyn3r9ECk7BnxX9xX8/GOiKpypTojqlCmXWK7PFW89g3xxzctHMwVqAImfzp+PQ7Pa8MOm5gsrds0+Cq5PCGNyGjxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dS+MzgQWGdegkYctkGnN/s1cuTs34nyagSF/M3xAIcInVsDpMB63PgM/3arOlVme1bQO/bzc6OlvAAs++Yl3T2xGRqZr02dV0Vsc2SXIDhZe+1TK7PZnJfcd2XyajBJwiq8HGntDEqTFlvOB95Y5ZwVAgfP3tU6skO1Vq2fRvlrdqYcZTPVtB64NnqLZ6Xy5zzHfTRQB8/wzqtFoBwH42kgBZ1QItrF6MuUD1va3wvA9Cz9uOj3yuM1JwxYsixyBlH7qhgT2gX8+GRsx2BEPY9289aCeCijC7/hMn0zWE00dQtEDAU/x4EyK2EK5X826EWY/9jaGD69q1iTz9mkBBNaI21BGaw9cY8a/zSDxmv4pE0vzSxSnQUDPD2ydcEEYyYcNSLrAwhF35wp/Zgr+O7yV0U8zzCpoys+yLxKrKxWA/TWOK8LhctYrMzJoRPq+gGFITIdiLh66nw1GO+k3x3hAo9PTYC1nePy2EghSSbIEWs7tuRosKcu7dbES9U+NmgMN6wIOePnR/3uMNc+owGqkZIkwL0XvU1UEM2l5VMSskjlT+nq6cwb6F9gwHC9T7Hsc2SXIDhZe+sQx+pzn2oO/DMW5VMS2IN1NDgbng9ZB9jvcu/z/9VaBM8p+5v4rTct7UZay+V564ZOLm05BJBjKz2xOo2pG8/uGy29AR2JUfQbp+dgaqEo74ciRRF72UhPHyON55538gpCLm3d+v+1NKEUfvvjE5ZoCxPISDzEgTOj01qnqG6uCTIp0UgEFH7jWiit27yJb4CptXyM4v30bVvhAxenQSNo8bc1Blv4Q9Esk2SjxHZg7p/gabSQn2JeqK8L8b5HbcBsoG3R7RW7SQq+PZpsv04Few9saJCjjors+Yw2HOXUvekoBO3rSksA/Em4t54j3bupaPi1eihd+99j5m+kStIl76vTF1s4a5670mLOF9I2Nn4PvMj8OZJvmKf3Y8vBHI3dQLRxbs7I7HNklyA4WXvtUyuz2ZyX3Hdl8mowScIqvBxp7QxKkxZbzgfeWOWcFQIHz97VOrJDtVatn0b5a3amHGUz1bQeuDZ6i2el8uc8x300UAfP8M6Sgc5Cb8xqrEkyKdFIBBR+41oordu8iW+AqbV8jOL99HlzRKEnIoR6hJ9+Qn4Vvq+3hkG0GXxIqvBNNZ7RRkXbHLkTuPyeA7q76hLYembFc1UfGp9S2aLfY11gdJiIV5p2KCVO5f3sCA7fqGS5+OyPUWD6SOiMvhh8GzztBs5fjFork1mqZ1G/bKqJ7QiiRneBXcZH3RySPz+vZ486UAt/7lD5+nDmCadmC1miicb1E2TZTdYsROUVxFX7UIpD7vMVNFQJJJOdnvUH8ROVd/60//Rk7IEERQ9bGklBvNH6MgGeR/V5Qs0a2WDVw6XHQxWpkxe4AQsvp8fTnXGn5XyJVCWRsBChVKhuMTvoIDxKWn0Z4iDVn7YUqgdgAEu8B8uRkiTAvRe9TVOyN8N9gq4KlPJahMhOMtOuMTvoIDxKWmNdYHSYiFeaV9oOAkm/7k+03McfEzvxeyVv4ln+VBkBw7Zs9tigF43w+dM2MF4R+CmYIRacjT2PtZXQXuoqGLCjok4JGroGCneGQbQZfEiq8E01ntFGRdscuRO4/J4Dura+IE1YfqYhg1IQXyRKzaAUrYb4hj8mDTNR+oXUEiw+ymRSoL/G14Yyiaa3qwchrRwWy2TUPgym7VACI3dMv4QEqKLff8Gzy9b8avZKRC8H3qivC/G+R237rQ3ghZTmVLCnoofKf4bCmY4LI4TdPJTwTcpqxTpLZ/gUlhTN0Pxz4t8i+g5P54fu/FFvHlFHImBIVU7lNMpBGt3YI/x+n/HWq9/38e3uwWDOAWa0QVhDXkS01GhY54OV5FhnbNOgS+wpWMPBtwYSOGigeE+KfHDwmfGm3xC1SfV7/1234SIrsY4EY3LbCMc6799+e0OulTNljoV9Yqj/klbGvk2hYwTq3geHqSwuE1ZDR3Jn4OGGJqepfjaC4Ja20f/ehrTXSc5/UzYRsRiIi0CQbs99LTQwgvrMfP1EOOEnfAhHe4USpi6NxKSqWDlLBRLnu6v6Ct+f5j5DKjnUzu1U3vHxRyxInUQPZ1gFEZr/NIPGa/ikTS/NLFKdBQM8PbJ1wQRjJhw1IusDCEXfnCn9mCv47vJemQh9WVpXT77IvEqsrFYD9NY4rwuFy1ieez1xbksXXhlF5Lbod/9OJ5GXqdXC9WwivoQJPXgb0yIVq1l2glSQFgcRQi1hCSu35Sy+UKS7quTqe86/MnSG2xNx+qVItyl3jUKs3PFrfvuVO8jB0Q+pXWK7PFW89g3WAdCzLvKiBCSU65HLXKQWCJzLCnbNejtgRvmfBz0OmEfxX+83tKTAMMrbjhTuTWgQVu0p8aK+/WEWzEaIaTOrFYNjU84/cWAYPATjBoBGhpMZzpQry+L8eu3dqWQl5UA8JOUTcTYb2A9uktrTlob7DV0hoI7gY5ic9lFkJ86q7MI9nR5y4t5kfJ3LkpZT91+muIgcCSKAsHGk8BAhjhiiiIxgzXs7cHjgtQufF/zJtoaMloj18U6uSDGEz6hUblRMs/kWsGPS4MPRmJ2CcEQNdkCqGqNk0F+JyWG8q3PSsYEXz8FK95tpyDGEz6hUblRe7fdZxc/xxN+YuCfHHLHbnB+2FvxKM4s/3CSuhwFOkoZeMzQz5ZpkaNq6a26YOOnzS6UVG4RiRP9YT3gOP2eB3c6vGQ+DeaZppl7tiuDMnp4lYvvIQiKbUgjhsP8PEeKCu/03GSFB8FUQvN8kTfkGN1ZQv45qnfNAxVTUDksqY98v/3KD1bCgSDVt7fZoJ45/TMwmsob7anOvvv6H1tVOmL5WBPAXb2CpKRIgc+8HbYKBhw/cKV8cZP5kar/OCes8hsYPaFdRG1oqjuRsldz4M4snfUTzlaTf20DNG8XG3f+Au6pH3YkTxZRGqJbWJHMaichMQHFleBYo7g8HSsCVtNXsAC3cz7oe/q6VFI+CteMVZ+j1MY/mtbArn9+Yvz5u6qVpEiSgPcALZQgtTYCoD6wAsW1etMfnfGeGgR9mbpn802xeXbTKnP/fNqVfG7F/HzHgK8rj6J4C6NJBaPgJS2iUMmG6FcOz53d8ChZDcbNLpRUbhGJE/1hPeA4/Z4Hdzq8ZD4N5pmmmXu2K4MyeniVi+8hCIptSCOGw/w8R4rLphXMBOCXmLossWkwQiBr3VlC/jmqd80DFVNQOSypj3y//coPVsKBINW3t9mgnjn9MzCayhvtqc6++/ofW1U6YvlYE8BdvYKkpEiBz7wdtgoGHD9wpXxxk/mRqv84J6yAke4P+cGsd0RW+E0f8XdByzRLGkRHk7DQQePImmENRdUshc7peHoswkMVno26spB/qepDSfv7oH/XA1W+EjDB/+N8GCR6syF7+rpUUj4K14xVn6PUxj+a1sCuf35i/Pm7qpWkSJKA9wAtlCC1NgKgPrACxbV60x+d8Z4aBH2ZumfzTbF5dtMqO9id3eYJMz4I9KPbUirf4BZ+MQstXUMeLcLSroEeLOPPnd3wKFkNxlail1TzIbLdN0WGFC2rVzMsH/rERXQsD8vNXX235NKTrMf135XxNWzNFBrVyN/CJJv/M9NQs97KabEMhKGkaNkl68uAvShvnYlq+lzy4x5WkLZakPuNntq9+mRrBQ6hdM0G/mz1e5BBFfI4fSRyjc+8F0MegJ6vYgaI9Wj9BICglaCFnNeJISJDwcI8TxDHWy8LUj5QxEBgIMsHrtguLU35KE8O8gqV1fxX2TsAtIL+QUAwW6P8v7OVnDf9nFTI68cc3LRzMFagTgwShZV6yGv/SnEqsP3CPTCfIDHkPPwpcuRO4/J4DuqaTAY74YS1Dg4QPx3xLkxKlmw1taochLBD8tzhTNEHYm8NMM3/ionYBMsGAtvLW+eH8hnHan/1LLXFPlHizB3Ii45ixyiywFBQWg+27EjTdQySweTdSleCnW/xAdMWbOF4JLlNHIMq43hr5iytZChh9/3aZVi10opyD5kQhjQaRSB7MJSCAI0zPw5NgqKdQsE2j1GgVmlmL952e8dyZAxdtDsvmQvMr5/XHNOD+DAxxEHzUmytZWOF54lKYMrm4xhhr1mFQyOHpw/KHI2ZeMUqz7EeLUoogCu0rqcZvJKA7LnRLRztwSruEQYTRQIwccDrxPGnW+HgPR5YxW1pHKsfnshQ5gpePX2n318LD9FpAvOY9cG90c8p1jMpTvWYCBdII4bD/DxHinmfNSXY08dkfeayK+szsZP8Ytj0Jw/e9TL/+jZFCY0sH8V/vN7SkwDDK244U7k1oEFbtKfGivv1hFsxGiGkzqxWDY1POP3FgGDwE4waARoaTGc6UK8vi/Hrt3alkJeVAC+RrNYkWGLjnOiQagWXu3LVApEyT/rAMAc39C+ZkMrWLiQ8hOe+0PRCxSUrbaENxLpxC5YlD1ZnPCa3GrVjMDQZqaHi6pcCXYLULnxf8ybaGjJaI9fFOrkgxhM+oVG5UYk+DXf/7ZFtD0ZidgnBEDXZAqhqjZNBfoCgKRgRBulxBF8/BSvebafEiEyChIYvSil/qGuUqtilsumYAnaqNX7JJo7+e0B7o+stcFlWBeOiSZCpp55DBgIx3VrzEq1nYDdHRoQtG7lv0gbqkdzZN1ASsCtEjkPOQLwXQx6Anq9i0rMVzwxFkdVkfyFMRq2sds/tHtfhL7uHtHk0kInYWmXQx7ZRLeV49NvBzFRHvN/pMa5UryCSn4NJ6C7mkZPqnFn18oY76p+YPoyESeQojpoPeTKJv3hJAuqffmRHxdRKDImm0houw90ALZQgtTYCoGOJ+GkihtAxW2PIJFo0tHMFOuLllOFRFYLULnxf8ybaS7N6Cy6lb0qUqBFuwB6KuYI0OSaN55iwQla7oXHCVQvQuF+GHdET6aNq6a26YOOnccReIuVUIiDZlaRnOvaS6osp3Dr/A90u/VnGHWoOaHwU0xaiLMraI8+d3fAoWQ3GzS6UVG4RiRP9YT3gOP2eB3c6vGQ+DeaZppl7tiuDMnp4lYvvIQiKbUgjhsP8PEeKMRTjifq9BhhC/iHzdqjbvid4sYSPIUMfQLD37GfBOhp8v/3KD1bCgSDVt7fZoJ45/TMwmsob7anOvvv6H1tVOmL5WBPAXb2CpKRIgc+8HbYKBhw/cKV8cZP5kar/OCesKLLwNu2ZoRyDG8CkXGbEQch2nGqdl14Vmh/kmoHJSNUDjnAa8G1kV6NGGuNCsHbl3DkfZi7w8ECHKcS4g9lchnObnzqzNEkee/q6VFI+CteMVZ+j1MY/mvob/PuAnb3Fu6qVpEiSgPcALZQgtTYCoICP2gAuVpHXnfGeGgR9mbpn802xeXbTKgbrKgEOt2JMSCOGw/w8R4rDtI/Og9d5RZkck06OFd1B3VlC/jmqd80DFVNQOSypj3y//coPVsKBINW3t9mgnjn9MzCayhvtqc6++/ofW1U6YvlYE8BdvYKkpEiBz7wdtgoGHD9wpXxxk/mRqv84J6ymtjuGoAk0Yytw6ULlxw6ibEjXmvlYYIagcZS/S4tvYdCMU4ts9c8Oo5jKklBGda1FJsYTMXzXQnIR6rmEAQkloEC24cIle117+rpUUj4K14xVn6PUxj+a+hv8+4CdvcW7qpWkSJKA9wAtlCC1NgKggI/aAC5Wkded8Z4aBH2ZumfzTbF5dtMqK9KVqwB1s0ti3JoQx6dcKtygpQJ7lR7PBhfITDG3e7LaiAPmk4l1ySd4sYSPIUMfc9acKolsS3D6E225oPexGbwgRsY+rcOU9OdYAUJCugInfsKiiX1+sXLgdv0f4iAAq1npI/3ZzZxFQF/ZYA2KEWcbEcaVQdyL4wVEMH8w+63pr2Cmabmr62mYfQMJNruJxQiPSQG8K1bA4sZRvr0d9fe2zwF/MJGXLf+3Sh95YdRUVkmrNGnmX4ifw3iH0JPcPGmCRptnH5idP4aq7W3H2IUgRDTgkNVcxPc8d3aLJYxnHw2uzt3VK8bM6abDHhjvbUhqxz7w13h4YalGpnALS29KFeZWg6F+dmYCure6XPlp0xPGI71klQI4vWNxFIsrZd3Rg3tGbTtmG1B+PvreCOapqqipHP6sMiS4HHJ4/fD4SLosbPqs1bHYtPd+ujDJQj5iY16iqk6IsPY0LsaV8C4mZiyDKw/3otuO0A8Gvl7ndXRfvMZfKAOMfFJMFKP+xrU+WsUxhHM/qsoeNOV/iKfWkZum3Hmn0/yAcYWa8mLLeHg3Y16n2tiUcryi1VUaq1cqe4e6oXA2/7/DkKTJllYnjP9QDEHFjhNmN+g0Ym5lgZLUypbaccrZfpQRaUR+38Em0YIqa2MYL68M9NNQ8f1WKuohH94CMlJkZvaHKJWK0XLbMOB/3hGe3hLNbCNdi45ixyiywFCwJBa1maGceATLBgLby1vnKTsDvD1DC51qDURR/o+ZB4nsDIpVovP2rbvjiagOrbfE5lY+P5Xs1zRNkg+9hZPrQ35ee2tfE/uSJMbfwy/4KR/Ff7ze0pMAwytuOFO5NaBBW7Snxor79YRbMRohpM6sVg2NTzj9xYAlwgRbHsJMkoKTqDnWFXcF67d2pZCXlQCwrYUqR62FR9+jLxqinq8tO1MCOJ2bNhSQXnelhLOJyi50NJAUB1dPEaX/8rsIxmlrJyfNGjfTCE1DrwDD+Hvw3ZRS2mWgx5+C1C58X/Mm2mTVEZfYfOX+gMMQ654w22lnWV46nnIpZ8pXs6TPZU3qv1fqiB4WOwJ4z7upKus1OCB7MJSCAI0zPw5NgqKdQsE2j1GgVmlmL952e8dyZAxdtDsvmQvMr5/XHNOD+DAxxPj2+zu9Ni/N54lKYMrm4xgw8HXxjotQ6Iodah2amf1oT1gRbc0ulstQi2k6+bRjl8jnkuT2+eWfXZ9Ogw+qC++3oxt2zxpYcQYhmJXySBL89fZaIkmI8AKgw+O3qf2W4tkCqGqNk0F+mOg98oPOmS1prtkKkZaXlMte59tIBI4Le/q6VFI+CtcpVKg4u+CG6DXF19OYlppsmOg98oPOmS3KV7Okz2VN6r9X6ogeFjsC0jqsEdzKCMtGcq0zG0zk9aIWh3wMOxxlO7Wp06DyyuosH/rERXQsD8vNXX235NKTrMf135XxNWxCIl308aDNDWdZXjqecilnDBhL6guqnRVxuf2X2j6wy+mcZr/uKAmDIHswlIIAjTM/Dk2Cop1CwTaPUaBWaWYv3nZ7x3JkDF20Oy+ZC8yvn9cc04P4MDHE+Pb7O702L83niUpgyubjGDbjCugzmsZ6aPmt5kNkmQNqD06m2TxHAl7zqlkTVVm1F4PFF2d+d6Cs8yMAlpMcIPZsBFLmsW4QJMC9hv5HahRtRDQzG1AWKl2iHQu3lGZy2QKoao2TQX6Y6D3yg86ZLdX1lxG1oA0yy17n20gEjgt7+rpUUj4K1yJi16K386SNNcXX05iWmmyY6D3yg86ZLZxAB1kondBNSKbd9TZyGgSpD0TLh7XMhm0taPySC5XVO2db8T06srcgIaLqM3lNILU2zoNxytkjowRTROJDdjmsx/XflfE1bEIiXfTxoM0NZ1leOp5yKWdXGzCUydlzDQ6zO576tq7achODuswMo94gezCUggCNMz8OTYKinULBNo9RoFZpZi/ednvHcmQMXbQ7L5kLzK+f1xzTg/gwMcT49vs7vTYvzeeJSmDK5uMYl0IhS6JmK54br2muz3wdkE0HmQ4Y138c4kgXlZZdFqac7NOVj7I8ABSQ3PwJ7prERY085jw1eFGR8BPnkSXlzHbsLD7ysrPNQ8muXZ1lWDHZAqhqjZNBfpjoPfKDzpkt1fWXEbWgDTLLXufbSASOC3v6ulRSPgrXImLXorfzpI01xdfTmJaabJjoPfKDzpktl2xsGR2OkT6qPg8uIX+Z7M9GatlDLSJeu5KbWMehZqY8L+JK2SCvRFu4biyzQOamSZCpp55DBgIXMbYkxxRwBOmcZr/uKAmDylezpM9lTerI2SOSLQ1UhDdFhhQtq1czLB/6xEV0LA/LzV19t+TSk6zH9d+V8TVsQiJd9PGgzQ1nWV46nnIpZ5Xng0vMDMicz5EIjk/wiyrpnGa/7igJgyB7MJSCAI0zPw5NgqKdQsE2j1GgVmlmL952e8dyZAxdtDsvmQvMr5/XHNOD+DAxxPj2+zu9Ni/N54lKYMrm4xhR8vZECS2+J9HPpg6MPZnirTeVugpIrIryzkEVKyY7fOiX8Evvu7oXGq+MhcyoUMSeD4elRJXKIWWiTZcONy1dnsD6AF2F3m4QK/I004vGLdkCqGqNk0F+mOg98oPOmS3V9ZcRtaANMste59tIBI4Le/q6VFI+CtciYteit/OkjTXF19OYlppsmOg98oPOmS24FuPEUwjhzvBp3TeLZ3L15tEsGA3YEirmkbdERao+W5WizNnesbjMKrj0aGIJNh9Gcq0zG0zk9RFQRHGoGt3dICGi6jN5TSCweoFsHKRd7dbSni06kWxuYuP8jafnMObP9jYTrcu5xJyrLhVzhh1+z53d8ChZDcaPz5MJMLOM1zdHRoQtG7lvgtQufF/zJtoaMloj18U6uTJzGk2B3rL4AC2UILU2AqBh5BHZFVO27p3xnhoEfZm6Z/NNsXl20yoG6yoBDrdiTEgjhsP8PEeKWkkS3a+Ik1Zi3JoQx6dcKmpt/H6YdbB6IqhTLlK+ccQPO51AQnhVygAtlCC1NgKgY4n4aSKG0DFr8TB2tZ4Cvnv6ulRSPgrXd6Y1eTNykW81xdfTmJaabJjoPfKDzpktQiJd9PGgzQ1nWV46nnIpZ3bI6BX1puXzq+K4WhyB4mloho+TuzOGqSB7MJSCAI0z9EzB6O0C+uV7+rpUUj4K14xVn6PUxj+an4o1EweWkvnZAqhqjZNBfn3xA+jBPW3iBF8/BSvebafEiEyChIYvSnLgdv0f4iAAq1npI/3ZzZy7w+ZVI17uV2cbEcaVQdyLNOrUkYcFw2u9+mRrBQ6hdM0G/mz1e5BBy2mqn7GZPyDNZrb9t7z1bLwACQRQMxX21CXuOZJi38DSLpoBkRt/JdNH4aDsfjyD3QzbJIuuOqHXcf3PrPHhu/in5tIAs0BlXVpt2EU9/TbeNj5XiC0Ra2WUlTlxMXvRLwtF7IJjSYewLLq/59LH0OejGzMdFskNjf+MlezTHkRmsTNi4govlKoWnlfZJ6j0DI5x5xGXNMwlSJQADdtNojdiz0ia+kY13F5IV4g5d9bq7V047F1JbYdV+VBPQfdAyilkXsacpr8kxodeUcGX6TuL7m2+8OudI07Ta28ZCRhh574cs9VKqitFlJd9z0kRkaaywG84Ysxbf27hFuOLlPRiE21XIBUrmosuMqDJ64JN/MgEQy9BcQODJGFDGIJqWH/twRhElX34vFhRfqRjzUGmbsfOBd+zcmiPBX8mjP0x+Wxyxnn3z950sRUr6MDnjhYaTKOVV7O8QMm38pN7Tfr5fBFJ+UNv2GWDukhlf6wSbOe+rd73kzwdm7ShBp7daaaehf3DOgSYujcSkqlg5SwUS57ur+grfn+Y+Qyo51M7tVN7x8UcsSJ1ED2dYBRGa/zSDxmv4pE0vzSxSnQUDPD2ydcEEYyYcNSLrAwhF35wp/Zgr+O7yXpkIfVlaV0++yLxKrKxWA+nbSM4tjJaaqXqlrmZicYfuTEm1ovUCUViWEZPEM6RdJJDh/6yhskR5vfABSnB8Olrq1uOj1f6CHyBnFuY616LDVXPNQzvyZMO9it7zU06bt41CrNzxa377lTvIwdEPqV1iuzxVvPYN79HC5xZ8cqMidO1zny12kBYP+sQptbcdlEc0Ic0VNvZo8bc1Blv4Q9Esk2SjxHZg7p/gabSQn2JeqK8L8b5HbcBsoG3R7RW7SQq+PZpsv04Few9saJCjjors+Yw2HOXUmJkIKYFJxKjeaU1jRx2PlnznPZw79zg/L+nmtK3jxctRE4XS1NIFYdmtvaFnbrlDY2VSilXW/TdcAZyjYaOdwQo222HndjBZ7HNklyA4WXvtUyuz2ZyX3GfuE9ccTIvtgyN8OcLcJaIbzgfeWOWcFQIHz97VOrJDixxRxjPWn3DmHGUz1bQeuBP0Kc954eUS5V6bXsuWwy6VE1ZJZRpS3ecB1t7DL8Rjky+iFLZ1dmgWD/rEKbW3HZkn4ADqUesNcI4ht39tU32TQeReO+vMjW1YcKYTAHauyn3r9ECk7BnxX9xX8/GOiKpypTojqlCmXWK7PFW89g3TInPWohbJfsBPSeV5Lq71P9aEpvJHAIE/t2xFPo/S+mjxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dS9Fc414CRUVBSPsthU8CFA5K+aCg+vmu5mLuGb6w5IHthgDhvNs3aZH2vm9LcZ78XeuN5EbcUxr/bEDDz3M3KmmTd4Qr/5sawsc2SXIDhZe+1TK7PZnJfcd2XyajBJwiq8HGntDEqTFlvOB95Y5ZwVAgfP3tU6skO1Vq2fRvlrdqYcZTPVtB64E/Qpz3nh5RLlXptey5bDLoy0vj5dNV7vBp0M8mR4CudbzhEhRnM/jpYP+sQptbcdmYEH0kqJHYcEn35CfhW+r7eGQbQZfEiq8E01ntFGRdscuRO4/J4Dura+IE1YfqYhqgQH/OSnNYsBQV9bTFW3CjNR+oXUEiw+4HapKiTHDMxAVlwI4VZQFVKxAPu2FqA2UwyfeUTiHtCtgrNMOPQhGg06Ts/ybkntCRppVt8OLsXsqontCKJGd4RL4DFOK4TSTxpgkabZx+Yi+GKz/BLuBs1p/hjqMmYE6kU7hNYQqg8hwdUHJrve2J2dYvbyfZ886nbKYFtrLycwefeJ1szXcVr8Ha+hYUIDVgSP4s5OaIUZ6ipjnRJzRq62VbH3OcR5TNIJe7gHyWPA68FlJy/YvdQRK5Q0ptSlnUfoT60VwgrtowNekyGQGGp2ymBbay8nGx8c5t1DLqqKQFdLXBGu+3V7/1234SIrsY4EY3LbCMcmQcw60aJEa49vx1IRRPHNUlbGvk2hYwTq3geHqSwuE27s1iaEV71RVXUmcB3Y9FvldCounu1uwC7s1iaEV71RTn9TNhGxGIiLQJBuz30tNCPY+2G06PuQNlFT1C1mMjS6EQVdkVotGZZiSPlTUObb2VpYzroLlaT2oec+d0JvuvOrxKVVYot6kWD6SOiMvhh8GzztBs5fjFork1mqZ1G/bKqJ7QiiRneBXcZH3RySPz+vZ486UAt/6uEnmQEFmCwmC1miicb1E1Zqt4kvHQh5ZQv+mq/GmDwRNIPVbuZFyHejYJIBvDSaDbgZbJIE4PoF8C49BdBB99GuFcFWfZzLTrFFWz6DF7Azy+nsayQtau5D4s/wi4xKy3zRV8LjBb+H0lbsu/5gNgtEDAU/x4EyPB3JoLUwQWMAqbV8jOL99G1b4QMXp0EjaPG3NQZb+EPRLJNko8R2YO6f4Gm0kJ9iXqivC/G+R23AbKBt0e0Vu0kKvj2abL9OBXsPbGiQo46K7PmMNhzl1KEqfMf70Nbb2N6XxJTADJDB3jT7kySlpOUDQfBlynLxYYv17I7BE4tHjc/agY/VxM5bINGwdQTdDim+jL9fcuD6cyHPBF7OsWxzZJcgOFl77VMrs9mcl9xn7hPXHEyL7YMjfDnC3CWiG84H3ljlnBUCB8/e1TqyQ4scUcYz1p9w5hxlM9W0HrgT9CnPeeHlEuVem17LlsMumH+08CwhEE/8J9DmiDepSYSffkJ+Fb6vtOm9+HCA9M6mwxMvzqnaH4p96/RApOwZ8V/cV/PxjoiqcqU6I6pQpl1iuzxVvPYN33UAZQVmw/aTj4LD/6sVygguXhLNmPWxJsgeMAPKWANa1EIKb6AbIohIhqeaTb94fD/zPfa3SDufZ8XD9NM3XuMXwXz9GrP0mB4jH49Ofj8qeBVzW1jPXnfdo3GWnjbm4yHVdsiYzVjTpeZ58v7ck31VFNc9hYTDPKeOHpjZLpl4W3rqQepUQIG16lDjIVp2Gf9GtMTfkZyoTy1oo5J30lvOB95Y5ZwVCa848e5P9TRo3JxKsFDKoUOwR52xTVVKfPzg0nd0hPFW91IA6Y7GeArdvGcYLB9444TSegCMXAaPEiO4D5IU2ayVVmyW6lu7Jp9yoPFlpgjWD/rEKbW3HYtM24wS6obveP7B/J9a6oSoPSdQLdPOyXLj7WHREehcCn3r9ECk7BnxX9xX8/GOiKpypTojqlCmXWK7PFW89g32eotnpfLnPMVF1lwNiUY6gKm1fIzi/fRtW+EDF6dBI2jxtzUGW/hD0SyTZKPEdmDun+BptJCfYl6orwvxvkdtwGygbdHtFbtJCr49mmy/TgV7D2xokKOOiuz5jDYc5dSR8JdwgHxdGzSnOE0cjvz2xMmcoUvNA8ngVKfpXBOGzrXMmzorDT+wzTcCZBgI4pF6qZVuI2wSElOi+1LzEF5ZdmrWbTNMYEgsc2SXIDhZe+1TK7PZnJfcd2XyajBJwiq8HGntDEqTFlvOB95Y5ZwVAgfP3tU6skO1Vq2fRvlrdqYcZTPVtB64D9rcOkqhb8bxQ9bKE6A9lLc5NPgUTdZXkNdFY0sDoln5IsHd0Otp7IfAVc5cv0dOMS8/BLt4dbCEn35CfhW+r7eGQbQZfEiq8E01ntFGRdscuRO4/J4DurvqEth6ZsVzVR8an1LZot9cM8BqFQ30ydOZX0Niz2jRzt+oZLn47I9RYPpI6Iy+GHwbPO0Gzl+MWiuTWapnUb9sqontCKJGd4FdxkfdHJI/P69njzpQC3/uUPn6cOYJp2YLWaKJxvUTaNB6Ipk7jgbjl2Nj8sMAyKsMbRr0P1RzMzFIu9/4Itm4bUtScP1yV6n0JFQ8DF06OkAgfwF188Q97GVdXM8GFffE3DkDp/EFxhQvHLnV4bmUJZGwEKFUqG4xO+ggPEpafRniINWfthSqB2AAS7wHy5GSJMC9F71NU7I3w32CrgqU8lqEyE4y064xO+ggPEpacyb6G7/4Y54efSHOTqs9EiPqK3zyFjZaI+kK4vTjlzawwFphwb6n6OVem17LlsMuhDAmu5ZC3ASPHyON55538gpCLm3d+v+1GU2lv5O9TBFNnB1x1+v3A/iZmk9mf7M9SvxAzeMc2up1lU4+JRQvfXd6cVVIy3g0HAYdkkahJDZ5s6tGSl+ICy2Cs0w49CEaDTpOz/JuSe0JGmlW3w4uxeyqie0IokZ3hEvgMU4rhNJPGmCRptnH5ixerszwDv0KZ7LuyKRqDRdoVVgYPjOskiHB1Qcmu97YnZ1i9vJ9nzzez2r0la6pZNnnPqzLJ1sPoQEyZz4W0RxWBI/izk5ohQuu0jtWUhfjzCCPjvxjRx61xOsQfZAfRoF7+AmhseWTwnjAzWW37kfdPtlVsKSo8cYIsjxq+RuHZyIg4G2nVpYWiNBxi65g4olrZQKbxmgu6U0MCS7W+HNZ9TBY4ulxIi9aUtaS24BYoo0Y+qMjg+jcm+DQjdOwigkCFBoQYopFsuL9QAztwkJ+vl8EUn5Q28D5tNBJvcbw7fPKyh8y0iz2hGc61zk00AzOEjMYCR2oVhMpVynAM6N3GQeQkOVFLZZiSPlTUObb2VpYzroLlaT2oec+d0JvuvjAkK3k2q7pUWD6SOiMvhh8GzztBs5fjFork1mqZ1G/bKqJ7QiiRneBXcZH3RySPz+vZ486UAt/6uEnmQEFmCwmC1miicb1E2EgX274UZ4qmj29tloI8Zx0GDuZOOoZ/xX27vbkmUhxu4G6CEl9m8huYPK4w1D24FxHEwh//eSWowz/CEeLeDfPbIzdLNC8O6BuWwaeoOzhy3zRV8LjBb+H0lbsu/5gNgtEDAU/x4EyMf0sfhx1hWCv7BJp5N04/IaoZGlZ0WkQUmgYCUVgXb8a/zSDxmv4pE0vzSxSnQUDPD2ydcEEYyYcNSLrAwhF35wp/Zgr+O7yV0U8zzCpoys+yLxKrKxWA9A79BMoVnCdKTMi923q0aN62R5i6T76QY8YpkGjln6m5lJYFyRzLHoKoulWPSG8SbaTtKxJW9o7Xx8g3y+9Vf9nKEnnplYKV8yciEKUjAt7EZIkwL0XvU1UEM2l5VMSsnoTmtZuZTk66F9gwHC9T7Hsc2SXIDhZe8cCWBVTS/gSfDMW5VMS2IN1NDgbng9ZB/H9LH4cdYVgq79jISOE52iecZzrBJuAqYRe4h6bxmX1TNQ4SkvOTDn2fJUnpdEPgU4QKyWJOT3OKQFDh4yVo+NRytFaWrzG+shk8K8XT84CZGzHYEQ9j3bz1oJ4KKMLv+EyfTNYTTR1C0QMBT/HgTI2c1TrqlaRQ4bO9gqpVhuhxqhkaVnRaRBSaBgJRWBdvxr/NIPGa/ikTS/NLFKdBQM8PbJ1wQRjJhw1IusDCEXfnCn9mCv47vJXRTzPMKmjKz7IvEqsrFYD4TGbHnafiHabbG//jWWhpz2gQuDxuaLO3hq8ouvQ/qMTdSn9CW1tHJdY6rROgXPZ9GRnjoDxCjSTGGdCzijIuVNdohz3LLILyIDlR0M6lsNRkiTAvRe9TVQQzaXlUxKySOVP6erpzBvoX2DAcL1PsexzZJcgOFl76xDH6nOfag78MxblUxLYg3U0OBueD1kH9nNU66pWkUOGzvYKqVYbocaoZGlZ0WkQbMIPariRPG6GbsRRwYSR8A8fI43nnnfyCkIubd36/7U0oRR+++MTlmgLE8hIPMSBF6YqGcqlXYCJuvcLC4/iJqkaa45Z1ncH/7p9VBCdFg2myB4wA8pYA1rUQgpvoBsiiEiGp5pNv3h8P/M99rdIO59nxcP00zde4xfBfP0as/SYHiMfj05+Pyp4FXNbWM9eWnyh6lJ4h3wgxF1+WVifZfcGdepYgprMXMPvjvZmxDq08I+MBvQEiYd5BoVUXWI5ObJbAbHwls0acN/t/gmwtrqGP+F9uE79G84H3ljlnBUJrzjx7k/1NEikuVYst41P1sfS4Z5SR538/ODSd3SE8Vb3UgDpjsZ4Ax1x9PZDIeJjhNJ6AIxcBo8SI7gPkhTZg7Zs9tigF434y4YcGsULnpOQjr96yxuTePoA67KvYUMH3DEA+kHxmHoEEYB3TcAZpwLWkacxSDSDZl7SsSVxzKiDuSenN700Tx8jjeeed/IKQi5t3fr/tRlNpb+TvUwRTZwdcdfr9wPaOAQwvXx/7Ur8QM3jHNrqdZVOPiUUL31ZLJnez/ochQ2+ApA1yv03ubOrRkpfiAstgrNMOPQhGg06Ts/ybkntCfjpZV7GW7R6osnr5+3zZuoz7njzDR/9WxYw9IYj8Dt/CSZkrOW2saVoIWc14khIjF6BTdQaGveLbHOqUcq7HKCA00WERiZc7es5xz1lU+sIolaTwXPAsZB+CPHCFDhjehvj57659KU/JsuSBUqyPYAXLckJ6o6tVwrhOwXCFOY9o0B30qwfUv0SWlwjTOhKjfcCgQ5nWwfzurmwR5AqoJ+wiJ5p/0WZSDkZZ6KMBfTSSMCdjRTeasABge7CAKlaR5xZM+2beMFQCUmDSwoZg+MgqX/3GP0OfkoTw7yCpXVPLLfrfjXatAbJdYupexjAZ1Is/s0NHLzVqyTVa6g3Cw4gh7PS0IdXm+SP8OlUqkwTSj1rXCooShMit/DQkB4e9lEnBafhIBKqhXBplbX4/wvcNAI0qM2PcNwvJwDihK/ggbD+9LCIvCUAp8mR9WFHvCcW3OUIUOVM1DhKS85MOeIe+G5Xe6seDw5TfEijjhQEoTfspmyoXcIh+JxIJBYKlhHtdBDztoNiTDvyfMnXPEIh+JxIJBYKj6yJy2GCvBZgrfs/ix0rXYXCLZ1sNyKfgKI6wSkpWNi9/3aZVi10ooGKc3W5uATwyB7MJSCAI0zPw5NgqKdQsE2j1GgVmlmL952e8dyZAxdtDsvmQvMr5/XHNOD+DAxxEHzUmytZWOF54lKYMrm4xh8h+om839JVRdx/aLSzehDY00Ol/peFp7r8s+/by3esKgpoC3kU6RJZMyeQSWZEF/RMZddEe/B4maxGnXrjcp50mEeq25sX8sCC6viGxch3POY9cG90c8p1jMpTvWYCBdII4bD/DxHioLfInujZ3rEnF5M60tkuw0neLGEjyFDH0Cw9+xnwToafL/9yg9WwoEg1be32aCeOf0zMJrKG+2pzr77+h9bVTpi+VgTwF29gqSkSIHPvB22CgYcP3ClfHGT+ZGq/zgnrMUCJDVM1f5s/ivWLL6sJFPt7R8K3bIPgQHGidhQ29mCMRO1H+K9uCNmVjvvbddoljBQyxXa+6iLbFqZZkSoLTDcSXj1ckylEXv6ulRSPgrXjFWfo9TGP5qAuliy6A96WLuqlaRIkoD3AC2UILU2AqAFoquVKKNNIp3xnhoEfZm6Z/NNsXl20ypz/3zalXxuxfx8x4CvK4+imamcdbi2oJSqnqlsElQOyM+d3fAoWQ3GzS6UVG4RiRP9YT3gOP2eB3c6vGQ+DeaZppl7tiuDMnrFPnUJwhBLvgqMBrNwdCaZQnBKHIchXlGL75sk1UWdGruscYB0lPFyssc+GT7RULsng3qmqPzzqn4NcDpUIzu1vfpkawUOoXTNBv5s9XuQQRXyOH0kco3PvBdDHoCer2IGiPVo/QSAoJWghZzXiSEisf1750qjusmW/3Mjh8ZblbxyPn2CK+Sg+ShPDvIKldU8st+t+Ndq0Bsl1i6l7GMBnUiz+zQ0cvNWrJNVrqDcLDiCHs9LQh1ez96iVWQkofsiPCVA6Q7tw1WvhUri+eB4DUreZn3tP4OoT6lVWgjeVvf3NNaAcOE+yOZr1OKJVb+aTAY74YS1DgnF+V8F6afTl8bLVpfrNCF5dwmRrlf1Jm8NMM3/ionYBMsGAtvLW+eH8hnHan/1LLXFPlHizB3Ii45ixyiywFBQWg+27EjTdU0mrZ0Kw8YkF65lfkTGLL+87NTxMlJr7EN+XntrXxP7eevAIIqggnofxX+83tKTAMMrbjhTuTWgQVu0p8aK+/WEWzEaIaTOrFYNjU84/cWAJcIEWx7CTJKCk6g51hV3Beu3dqWQl5UAycP5xtBXEPfPC7tH6i9BVvEX8A/LqVL5PRP+UkYgWjrwz28SE2Uw5D2QiqjsZNFKQ5JETIpDfd3oNQXootHbQsBQ+kzqBTITgtQufF/zJtpk1RGX2Hzl/oDDEOueMNtpZ1leOp5yKWccDY/QqT0l6ypCTmv6brLv0jqsEdzKCMsgezCUggCNMz8OTYKinULBNo9RoFZpZi/ednvHcmQMXbQ7L5kLzK+f1xzTg/gwMcT49vs7vTYvzeeJSmDK5uMYLXzDtJOJyt4exXUpEo0nJJVmowGFNeGeNC0pYjxo/jjPUA+sKrej+W8rm0asrydK0nh3ed2nQYFnKTOrflrtuGqJMo5U2nZlLLPFuFvuwUzZAqhqjZNBfpjoPfKDzpktOhnewh35HEHLXufbSASOC3v6ulRSPgrX0vlKK/y6Esk1xdfTmJaabJjoPfKDzpktHA2P0Kk9JesqQk5r+m6y79I6rBHcygjLRnKtMxtM5PURUERxqBrd3SAhouozeU0gsHqBbBykXe3QlDIEsxBl7GamMzBRZkzYqE8T6qERTLZlXdP9mv5Q45UzGcpegi5h5UMqtgK3Z0qcTS88RKt7y2khJp30zDokW0kruYDjz4uf+cfH704D0kUQcrQxPpU0hFsxGiGkzqyniBAv3HPGusI/Y1FrZVLe5mwyrTXV8smE3RnSQsk2+Q/ggEYHQRbkx5ZAK3DyE7ZYJM4Lm4p+gUKqxIjSZgLKbqQVJShjveWMZI2auRjQlHrrjx7iYZNjenaW7JUVlZP/SnEqsP3CPUG8q3db4mHTBaUBx2YsbA28sxWjIodfbdVrIeP8MHGrIzfWRWCcoimu6ZsZhqZ7B91I139TEQplael8e37bA8gCptXyM4v30UaK8/YchfC/GiYlBA9ukrONMDRKl4/dRog67MrO61YYF78mBN5ydjDDcLycA4oSv4IGw/vSwiLwlAKfJkfVhR7wnFtzlCFDlTNQ4SkvOTDniHvhuV3urHg8OU3xIo44UHUJkluGPeBkmEpOU8afRIdIBi21G0XJ+zNnlX8QHdHePrInLYYK8Fm5VXGJ2r2VMZfrecBbNx9wEnyROhHPnVER0Ie5xZR3hfd8NmLi116uaXgBzsUek5929pEO2G3KGjdHRoQtG7lv0gbqkdzZN1ASsCtEjkPOQLwXQx6Anq9i0rMVzwxFkdXk8yB0TZL/1M/tHtfhL7uHtHk0kInYWmUMZAfsCsY6kDI83LdZBlJsbT0CHxnSTVwWDsdG04FF2lZGPbJNEabZAcHcKaAIB1M0KW/mO+9wrB0tyr5jaTNyzZ3AFczNoeRi4/yNp+cw5hoJU9LHJxATXrwDd8Wy+uOy6ZgCdqo1frAmU4I2fYol3KnQfd4YkKKBG+Z8HPQ6YR/Ff7ze0pMAwytuOFO5NaBBW7Snxor79YRbMRohpM6sVg2NTzj9xYBg8BOMGgEaGkxnOlCvL4vx67d2pZCXlQAk7NIbjUbpxcoAxQnLx/6URzw8CDscYvVtMecZlDe4gsI2ZdUF7rYFE7AwJy4LrgsGnV9mpOvmn0HMb9GYVEFLNp+jd27LlYaC1C58X/Mm2hoyWiPXxTq5IMYTPqFRuVEyz+RawY9Lgw9GYnYJwRA12QKoao2TQX4nJYbyrc9KxgRfPwUr3m2nIMYTPqFRuVFBpm7HzgXfs+uXpqTFUKUho8RHmFlEuzcneLGEjyFDH3PWnCqJbEtw+hNtuaD3sRm8IEbGPq3DlPTnWAFCQroCJ37Cool9frEpf6hrlKrYpbLpmAJ2qjV+8GXOmNETsd9bUnyXRVsHgZwVpknNd0DAH8V/vN7SkwDDK244U7k1oEFbtKfGivv1hFsxGiGkzqxWDY1POP3FgGDwE4waARoaTGc6UK8vi/Hrt3alkJeVAJIbFmbyazrhskTQCmuvQj9ESrzWXFIFW9DXPRwSkkOOu+tDDytmyvvbsYlkacll1zV0A04OUQ8AvXMmL2FcknuQIeJ32xq05ILULnxf8ybaGjJaI9fFOrkgxhM+oVG5UTLP5FrBj0uDD0ZidgnBEDXZAqhqjZNBficlhvKtz0rGBF8/BSvebacgxhM+oVG5UUGmbsfOBd+zpdp8O2RQCDgQ8k0VNgI9AdTbxAWTHKoFMEJpNciX5JHPnd3wKFkNxs0ulFRuEYkT/WE94Dj9ngd3OrxkPg3mmaaZe7YrgzJ6eJWL7yEIim1II4bD/DxHipnQaJBYaYrqw7y5k96EJt8sG36vml2RK/ZLfNUNtMiKfL/9yg9WwoEg1be32aCeOf0zMJrKG+2pzr77+h9bVTpi+VgTwF29gltXbycHcaGZCgYcP3ClfHGT+ZGq/zgnrNQZpg1hUHmAqkfSk9GAPXzXEHxIi0pYL+2xYgSxP8RwWOQgXvRjidSGOCuccm9osloPpkiUt7v065qHIJyeBX9Z5+E+RoMOOXv6ulRSPgrXjFWfo9TGP5rWwK5/fmL8+buqlaRIkoD3AC2UILU2AqA+sALFtXrTH53xnhoEfZm6Z/NNsXl20yoG6yoBDrdiTEgjhsP8PEeKp6sD/raQvyZoOxrplCYt0id4sYSPIUMfQLD37GfBOhp8v/3KD1bCgSDVt7fZoJ45/TMwmsob7anOvvv6H1tVOmL5WBPAXb2CpKRIgc+8HbYKBhw/cKV8cZP5kar/OCesC49xc9ZVtRnCW8UMAlT5TRs4i9tio+Nsj2lJ0eYe8i1rvM/jUnrHm6bTMH+j6eJ40Z6uvBDkLkGRILTFKqWE7FgzqM1dwuf/e/q6VFI+CteMVZ+j1MY/mtbArn9+Yvz5u6qVpEiSgPcALZQgtTYCoD6wAsW1etMfnfGeGgR9mbpn802xeXbTKnP/fNqVfG7F/HzHgK8rj6L9pDvMLFCUGdV+wwKFwnoKz53d8ChZDcbNLpRUbhGJExcNGaimfzIg8R6onBwTP4C8IEbGPq3DlPTnWAFCQroCJ37Cool9frFy4Hb9H+IgAArbJJokqO8lI1SM5pk7Wk1nGxHGlUHci7ClYw8G3BhI44ZGRIyTA0FRMEqjooq92TxotGPDQmTCtYGGfqouCz8wYCu79Yxd1d52e8dyZAxdtDsvmQvMr5+jtUDokMkt8IER7+bKlfqPCtEC7+Beg9RBdGxKxVKjJgvLvdkQ6smJ53V0X7zGXyg3SoImJ3wroefk+dA51w/4v/PAf6YXBgMrzg+oH7DqW34c0uxF0IM6TXyZ8k0JuuTFX5Yp9YpOQjmjfi9FwkZtI6o0pysgEHCUExOJxVlPMRrXAp8nQhFdT9CnPeeHlEuVem17LlsMug0YAPjQlvjxg0m/EYLk75EIh+JxIJBYKlhHtdBDztoNxbV9nTVXsI6srUffvR31FM82pAkFePh9DlwckOWIEuOxKsOjzzw8k/d8NmLi116uaXgBzsUek59/zRUkt+UDejdHRoQtG7lv0gbqkdzZN1ASsCtEjkPOQLwXQx6Anq9i0rMVzwxFkdXk8yB0TZL/1M/tHtfhL7uHtHk0kInYWmW9d4QcyVvs8hR3URtCd5vEUAvZqnbeLqFWK2A1YmTFfWxMBEIIhM/TvUqmkjfq6aGoEZDZ5o6v1D9nrL4cRJo/AYY+crbgsQ5i4/yNp+cw5hoJU9LHJxATXrwDd8Wy+uOy6ZgCdqo1fp0f7jGlV+BuPwz8L0cR2yAwS32bGXEBiR/Ff7ze0pMAwytuOFO5NaBBW7Snxor79YRbMRohpM6sVg2NTzj9xYBg8BOMGgEaGkxnOlCvL4vx67d2pZCXlQBW750ShES03deZ8QFIK3MewFXyXISsuBwGonimE3GtzdsxBjzceaTv4PoEMoCpISqrAxxoedTGAj0LDEyht0KSJOanTzKlFD2C1C58X/Mm2hoyWiPXxTq5IMYTPqFRuVGJPg13/+2RbQ9GYnYJwRA12QKoao2TQX6AoCkYEQbpcQRfPwUr3m2nIMYTPqFRuVHYqOe/mTGbnbQXaVzf/kxd/HzHgK8rj6JWx4y6dBiUnjOiI2Jrx7Xo8R6onBwTP4C8IEbGPq3DlPTnWAFCQroCJ37Cool9frEpf6hrlKrYpbLpmAJ2qjV+qSZsbBdZn1t8D2Ly5Qk7cSB7MJSCAI0zPw5NgqKdQsE2j1GgVmlmL952e8dyZAxdtDsvmQvMr5/XHNOD+DAxxPj2+zu9Ni/N54lKYMrm4xga1I8UiFOehuDlQhBgH5N5hCoQx5M2wTDJ9CWpYUVlP6iCcL0bGFG90dHTQ2h6QVmqFgZST+mA4qrBs0uIWa5dSceZwG2KFwROKt0/+5F8d9kCqGqNk0F+mOg98oPOmS0d0hU7/q0Sd8te59tIBI4Le/q6VFI+CteBSDnj3KVQTDXF19OYlppsmOg98oPOmS1yZtEQbEB1Ub8xX8xdA8FepoL9JG8y30oorO3yD4Z0XxlgjiQ+2EMOymTH2GlRj3rxHqicHBM/gLwgRsY+rcOU9OdYAUJCugInfsKiiX1+sXLgdv0f4iAAG6EIRk58QTJFQF/ZYA2KEWcbEcaVQdyLRzj5Nkdym1rZ701FLL0whpghavAspZrvPGi0Y8NCZMK1gYZ+qi4LPzBgK7v1jF3V3nZ7x3JkDF20Oy+ZC8yvn6O1QOiQyS3w2RNOBQnrWmOWHvGRVjpCOHQxBsCX2ZgIC8u92RDqyYnndXRfvMZfKClUK7nRe7OymC7WJjgJxuLTYvH7It1ttzSju9BysUIWmjVNlfO9alUw0nlNakqFpf7MPPOe4RDKvpQsRWNHa7rWjPpsxBVSA40wNEqXj91GiDrsys7rVhgXvyYE3nJ2MHd1kSeTkEFoR6YpMwXLoyuUAp8mR9WFHvCcW3OUIUOVicp0x2DPqqtNfMG2VZc3qOfkvAZnzd+t5R2D/rJAnoRV1JnAd2PRb5XQqLp7tbsAwZzqcKIsmbMpOwO8PUMLnS/+SKzYQtOothGuI6IvBUCtu+OJqA6tt8TmVj4/lezXNE2SD72Fk+tDfl57a18T+9Hm8kIEoxXVH8V/vN7SkwDDK244U7k1oEFbtKfGivv1hFsxGiGkzqxWDY1POP3FgCXCBFsewkySgpOoOdYVdwXrt3alkJeVAGFRHfxABzddczUkWV9OaYQSbp7OfkrsbWQ9cV8jGBMaIjbToWTPLEFWdcGOEjLnLD35mPv8yTCpLCL8gULOC6q7SJeW0SCrh4LULnxf8ybaZNURl9h85f6AwxDrnjDbaWdZXjqecilnWVKAWvDRQdk+BTsrOeyUJVUzHf/a+hg8IHswlIIAjTM/Dk2Cop1CwTaPUaBWaWYv3nZ7x3JkDF20Oy+ZC8yvn9cc04P4MDHE+Pb7O702L83niUpgyubjGFMeLCXfJ+Zga8whNub6oUZvtKEM+dfy7wxCnKmeesgO95hPeY35jnN3Wws8fguw1DDlLApZnaczlmwiL86j7YQb3isXVFc+mR3e8/oSxi/I2QKoao2TQX6Y6D3yg86ZLR3SFTv+rRJ3y17n20gEjgt7+rpUUj4K14FIOePcpVBMNcXX05iWmmyY6D3yg86ZLVlSgFrw0UHZPgU7KznslCVVMx3/2voYPLeeQ5ZICEyH1bcxMG5uVpA3RYYULatXMywf+sRFdCwPkeTpUI0qIh4Z1NCM5adBsbB6gWwcpF3t1tKeLTqRbG5i4/yNp+cw5pup04LOyPL2MRGqIHkM2i3Pnd3wKFkNxo/Pkwkws4zXN0dGhC0buW/SBuqR3Nk3UBKwK0SOQ85AvBdDHoCer2LSsxXPDEWR1WR/IUxGrax2z+0e1+Evu4e0eTSQidhaZeTlta7PbmOwnX6kAFZ/ZWZFq/loKpFFITArrimot188hmD/VZKnPN2H0RgoU1NKuKattU2adW5B7E4DWZ7Tw7ZL+hactDqzrAAtlCC1NgKgY4n4aSKG0DFbY8gkWjS0cwU64uWU4VEVgtQufF/zJtpLs3oLLqVvSpSoEW7AHoq5gjQ5Jo3nmLCycrIUwUo5ajERqiB5DNotz53d8ChZDcbUYePOBl4AU8Hg5irBEPOCLB/6xEV0LA/LzV19t+TSk6zH9d+V8TVszRQa1cjfwiSb/zPTULPeyuSoab7iF68fJevLgL0ob532VjPYPRpweUMM6jzCDhwWJ6BiSbbq1iCgy4eVYdmNJMUIj0kBvCtWCmOSpIEWMofoFW0U5vKmIM6++/ofW1U6d58i1QBBbvghvMCAZOfn31tLv5hbfh1tOKgRMsI4xku7ASXZJC5cIbRlyUiLPL8emhpcF5ELDSECjtNiT3iI+p9cNtXx8D5EdY0rvaCsO+R+lm8sJRIrD7S9KnDrs6kHBxhGgT0qqpbMwdoAEXyOF7WllcqwlxBfnURB727aU+NkCoZ7REtxwfuwrkKGl1DrFnGiBi7/sewyjmYZvuG8PT+qyh405X+IKQi5t3fr/tRViQv2GWC3LxrXAp8nQhFdT9CnPeeHlEuVem17LlsMug0YAPjQlvjxg0m/EYLk75EzZ5V/EB3R3lhHtdBDztoNpVU+MnuDx/esrUffvR31FM82pAkFePh9DlwckOWIEuOxKsOjzzw8k/d8NmLi116uaXgBzsUek592nXde9+GVsTdHRoQtG7lv0gbqkdzZN1ASsCtEjkPOQLwXQx6Anq9i0rMVzwxFkdXk8yB0TZL/1M/tHtfhL7uHtHk0kInYWmXn/ZKKDN5TIw6bPMvbbF2yEQ0gGNxCpkpWy9QA2brJ4ce18fQGx+RRlkdprOxEKVY3U0swcAlyNK3V64juceQMDluP1e8zggVi4/yNp+cw5hoJU9LHJxATXrwDd8Wy+uOy6ZgCdqo1fjFNtZ2+YaNrYtkjDWEITtSWidAJ6Vsmix/Ff7ze0pMAwytuOFO5NaBBW7Snxor79YRbMRohpM6sVg2NTzj9xYAlwgRbHsJMkoKTqDnWFXcF67d2pZCXlQDsYiz4eSB+e5SOeTB/soFJvefrQ7coO3u5HC3MV7H7f2K/ZaeJjQoTAhW29yKnF48OT0o+tJzpFMthK9vfRiwIcMLM2fdbofOC1C58X/Mm2hoyWiPXxTq5IMYTPqFRuVGJPg13/+2RbQ9GYnYJwRA12QKoao2TQX6AoCkYEQbpcQRfPwUr3m2nxIhMgoSGL0opf6hrlKrYpbLpmAJ2qjV+WKlbtAhjw8N4ZYqv2h7NCoEb5nwc9DphH8V/vN7SkwDDK244U7k1oEFbtKfGivv1hFsxGiGkzqxWDY1POP3FgGDwE4waARoaTGc6UK8vi/Hrt3alkJeVABKRMbm6g7hELZUJtZJ2fS9YGcOcrhKBlcajsDMV45l8fh+YygYVXxk8QmRxUbwbQy9bFQC6dW2AkJQGxus0AFvSolG2jM/lnYLULnxf8ybaGjJaI9fFOrkgxhM+oVG5UYk+DXf/7ZFtD0ZidgnBEDXZAqhqjZNBfoCgKRgRBulxBF8/BSvebacgxhM+oVG5UUGmbsfOBd+z5g7KCU5/ZxBqREcZLyNZvvpft/2B9pCbW643gb/8UeXUWHh1g5oLcc0ulFRuEYkT/WE94Dj9ngd3OrxkPg3mmaaZe7YrgzJ6eJWL7yEIim1II4bD/DxHitKxBkph+BD6pzK8/M/ESAHdWUL+Oap3zQMVU1A5LKmPfL/9yg9WwoEg1be32aCeOf0zMJrKG+2pzr77+h9bVTpi+VgTwF29gqSkSIHPvB22CgYcP3ClfHGT+ZGq/zgnrJQ2R5eHCEyEV3M+yBLwJlH2AlQH8yrp7/3fLQ/gqfn2ogZpP6vh7M9ykc8Vmig78U9gtT/mgvtTRe8PJwvQw3ukwDlrP7UOmXv6ulRSPgrXjFWfo9TGP5r6G/z7gJ29xbuqlaRIkoD3AC2UILU2AqCAj9oALlaR153xnhoEfZm6Z/NNsXl20yqwNMtBZkfK16PER5hZRLs3PrSv0jsFPWD/k4iujXelQ8/AicjHdeFGzS6UVG4RiRP9YT3gOP2eB3c6vGQ+DeaZgYj9X9hkeVNgRgdHH6IyLyd+wqKJfX6xKX+oa5Sq2KWy6ZgCdqo1fjYyOAJD+DRkVm6CTD/fFmhtLWj8kguV1b2U6yolfkssSstatnhmS1AgezCUggCNMz8OTYKinULBNo9RoFZpZi/ednvHcmQMXbQ7L5kLzK+f1xzTg/gwMcT49vs7vTYvzeeJSmDK5uMYYY6s7M7GChYMKatSf7RPiZ9kcgLkIohvtu1BT0c8LTyVxwHv2EUpckvgiFOddyM9VJd6b+wUwT4omKZ6bBb9+bfAr9oWg+tJx1sYH2VLrejZAqhqjZNBfpjoPfKDzpktHdIVO/6tEnfLXufbSASOC3v6ulRSPgrXgUg549ylUEw1xdfTmJaabJjoPfKDzpktuBbjxFMI4c7JgW5T4ztlDItr7HqRh+1eGbubYb+1b+S8IEbGPq3DlPTnWAFCQroCJ37Cool9frFy4Hb9H+IgAEyMsddjqtBsY5AfZGcRlhiprsbh27wp87SLxiFI3KU7HAlgVU0v4EkcN6nrYrFsiQ=="
console.log(s(data)) //输出明文数据

在这里插入图片描述

代码运行成功了,(^U^)ノ~YO

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/732737.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

解决 idea 中使用 git 提交显示多余空行

解决 idea 中使用 git 提交显示多余空行 1、问题描述2、解决方法 欢迎访问我的个人博客&#xff1a;https://wk-blog.vip 1、问题描述 在 idea 中使用Git提交代码时&#xff0c;发现不管是对于代码文件还是其他纯文本文件&#xff0c;在保存时总会在文件末尾加上一个空行&…

网络应用基础 TCPIP协议(NETBASE第四课)

网络应用基础 TCPIP协议&#xff08;NETBASE第四课&#xff09; TCP/IP 百度百科 CP/IP&#xff08;Transmission Control Protocol/Internet Protocol&#xff0c;传输控制协议/网际协议&#xff09;是指能够在多个不同网络间实现信息传输的协议簇。TCP/IP协议不仅仅指的是T…

【Excel经验】日期时间处理方法

概览-公式汇总 公式功能公式公式说明提取时间中的日期TEXT(A2,“yyyy-mm-dd”)A2列数据格式样例&#xff1a;2023/7/5 6:20:10计算耗时得到单位&#xff1a;秒数VALUE(TEXT(B2-A2,“[ss]”))A2、B2列数据格式样例&#xff1a;2023/7/5 6:20:10计算耗时得到格式化显示年月日B2-…

基础算法-子矩阵的和

1 课堂笔记 2 代码 3.代码解析 #include<iostream> using namespace std; const int maxn1010; int a[maxn][maxn],s[maxn][maxn]; int n,m,q,x1,y1,x2,y2;int main(){scanf("%d%d%d",&n,&m,&q);//为数组赋值for(int i1;i<n;i){for(int j1;j&…

Mycat【Mycat分片规则(按日期(天)分片、全局序列)、Mycat高可用(Mycat高可用概述)】(七)-全面详解(学习总结---从入门到深化)

目录 Mycat分片规则_按日期&#xff08;天&#xff09;分片 Mycat分片规则_全局序列 Mycat高可用_Mycat高可用概述 Mycat分片规则_按日期&#xff08;天&#xff09;分片 实现原理 此规则为按天分片&#xff0c;设定时间格式、范围。 实现过程 创建示例表 #用户信息表 …

Linux时间子系统

转自&#xff1a;深入理解Linux时间子系统(0.7)_城中之城的博客-CSDN博客 一、时间概念解析 我们住在空间里&#xff0c;活在时间中。时间对我们来说是既熟悉又陌生。熟悉是因为我们每天都在时间的驱动下忙碌着&#xff0c;陌生是因为我们从来没有停下来认真思考过时间是什么…

C++内存泄露排查的一个案例

背景: 这熟悉的线条. 请求量没啥波动, 不用怀疑, 就是内存泄露了. 方案一 Valgrind Valgrind可以用来检测是否有非法使用内存的问题, 如: 访问未初始化的内存,访问数组越界, 忘记释放动态内存的问题; 首先需要定位是哪个进程的内存泄露. 使用top命令, 然后shiftm按照内存排序…

python 常用数据结构-字典

python 常用数据结构-字典 Dict 字典字典定义字典使用&#xff1a;创建字典使用&#xff1a;访问元素字典使用&#xff1a;操作元素字典使用&#xff1a;嵌套字典字典方法字典方法 keys()字典方法 values()字典方法 items()字典方法 get()字典方法 update()字典方法 pop() 字典…

十二、Docker Compose 介绍与安装

学习参考&#xff1a;尚硅谷Docker实战教程、Docker官网、其他优秀博客(参考过的在文章最后列出) 目录 前言一、docker compose介绍二、docker compose能干嘛三、docker compose安装与卸载3.1 docker-compose安装3.2 docker-compose卸载 总结 前言 在使用k8s之前&#xff0c;随…

overleaf 常用命令

ctrlb 加粗 ctrli 斜体 \emph 斜体&#xff0c;强调 行内公式 $ a b c $ 行间公式 \begin{equation} ab_cd \end{equation} 交叉引用 1.引入宏包 \usepackage[colorlinks]{hyperref} 2.\label \subsection{related wok}\label{sec:related work} this is related …

【开源分享】在线客服系统源码,支持发送文本表情,上传图片附件附详细搭建教程...

源码介绍 golang开发的单用户在线客服系统&#xff0c;功能非常的简洁实用&#xff0c;没有多余的功能。golang语言可编译为二进制程序&#xff0c;自带守护进程功能&#xff0c;相比于流传最广的PHP客服系统要稳定 环境配置 服务器&#xff1a;linux 或者 windows都可以 golan…

剑指offer36.二叉搜索树与双向链表

将二叉树转换成排序的双向循环链表&#xff0c;其中包含三个条件&#xff1a;1&#xff0c;排序&#xff1b;2&#xff0c;双向链表&#xff1b;3&#xff0c;循环链表&#xff1b; 条件1&#xff1a;将一个树排序很简单&#xff0c;采用“左-->根-->右”的中序遍历方式…

本地部署 ChatGLM2-6B

本地部署 ChatGLM2-6B 1. 什么是 ChatGLM2-6B2. Github 地址3. 安装 Miniconda34. 创建虚拟环境5. 安装 ChatGLM2-6B6. 启动 ChatGLM2-6B7. 访问 ChatGLM2-6B8. API部署9. OpenAI 格式的流式 API 部署10. 命令行部署11. ChatGLM2-6B 的推理参数含义 1. 什么是 ChatGLM2-6B Cha…

JS Node 模块化解释:AMD、UMD、CommonJS、 ESM

一、前言 传统方式下&#xff0c;JS 若想引入其它 JS 文件时&#xff0c;通常使用 <script> 语法来完成&#xff0c;然而引入的 JS 往往易于造成命名污染&#xff0c;为了解决这问题&#xff0c;模块化 开发的概念逐渐浮现。 本文将以完整的 Demo 将各大模块模块的概念…

树莓派(香橙派)交叉编译

目录 1、交叉编译是什么 2、为什么要交叉编译&#xff1f; 3、交叉编译需要用到什么工具&#xff1f; 4、&#xff08;香橙派&#xff09;交叉编译工具链的安装 5、 交叉编译服务端客户端 6、 带wiringPi库的交叉编译如何进行 1、交叉编译是什么 交叉编译是在一个平台上生…

叠加态和超级定位:量子世界的奇特现象

亲爱的读者&#xff0c; 欢迎回到我们的量子力学系列文章。在前几篇文章中&#xff0c;我们介绍了量子力学的起源、基本概念以及波函数作为描述量子世界的数学工具。今天&#xff0c;我们将深入探索量子力学中的奇特现象&#xff0c;包括叠加态和超级定位。 在量子力学中&…

sklearn高级功能

包括构造数据集、正则化、交叉验证 1.构造数据集 from sklearn import datasets import matplotlib.pyplot as plt #构造数据 #用函数来建立 100 个 sample&#xff0c;有一个 feature&#xff0c;和一个 target&#xff0c;这样比较方便可视化。 X, y datasets.make_regres…

Python开发项目基于大数据的反电信诈骗管理系统设计与实现

博主介绍&#xff1a;擅长Java、微信小程序、Python、Android等&#xff0c;专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&#x1f3fb; 不然下次找不到哟 Java项目精品实战案例…

行为型模式-策略模式(一)

今天就说一说设计模式中的策略模式&#xff0c;从名字来讲&#xff0c;意思就是&#xff0c;对应不同的情况&#xff0c;就有一种解决问题的办法&#xff0c;不同的情况&#xff0c;就有不同的应对方法&#xff0c;这就是策略模式&#xff0c;非常的智能化。 也可以参考菜鸟 …

leetcode 876.链表的中间结点(快慢指针问题)

⭐️ 往期相关文章 &#x1f4ab; 链接1&#xff1a;leetcode 206.反转链表 &#x1f4ab; 链接2&#xff1a;leetcode 203.移除链表元素 &#x1f4ab; 链接3&#xff1a;数据结构-手撕单链表代码详解 ⭐️ 题目描述 &#x1f31f; leetcode链接&#xff1a;链表的中间结点 …