数据工程工作存在于各个行业,在银行业、医疗保健业、大型科技企业、初创企业和其他行业找到工作机会。许多职位描述要求数据工程师、拥有数学或工程学位,但如果有合适的经验学位往往没那么重要。
**那么如何获得数据开发相关岗位的工作经验?**如果是应届毕业生争取获得一个数据工程师的实习机会。门槛最低雇主们愿意找一个没有工作经验的人;另一种是侧面获得该职位,即使你没有计算机科学或数学背景,仍然可以通过获得分析师或项目经理的职位进入数据工程领域,开始着手越来越多的数据工程领域的工作。不仅需要做自己份内的工作,也要做一些额外的数据工程工作,试着争取与数据工程师非常接近的职位,如数据分析师。
**数据工程师应具备哪些技能?**高水平的数据工程师将数据从A点传输到B点,并将其重新构建为分析师和数据科学家可以轻松使用的格式。从技能的角度来看,数据工程师需要ETLs(提取、转换、加载)、自动化(通常使用Python或其他编程语言)、数据建模或者数据仓库、SQL和NoSQL数据操作以及数据可视化等专业技能。ETLs和数据仓库是一种新技能,在获得学士学位后,会在硕士或证书课程中得到更多的涉猎。
数据工程师应该能够熟练的使用各种工具,从编程语言到拖放工具,从云数据仓库到数据可视化程序。可供数据工程师使用的工具比一个人一生可能掌握的工具要多得多。如数据工程工具包括SSIS、Azuredata Factory、Tableau、Informatica、Matillion、Fivetran、Snowflake、Redshift和Databricks等。大数据工程师的技术要求如下:
1、掌握至少一种数据库开发技术:Oracle、Teradata、DB2、Mysql等,灵活运用SQL实现海量数据ETL加工处理;
2、熟悉Linux系统常规shell处理命令,灵活运用shell做的文本处理和系统操作;
3、有从事分布式数据存储与计算平台应用开发经验,熟悉Hadoop生态相关技术并有相关实践经验着优先,重点考察Hdfs、Mapreduce、Hive、Hbase;
4、熟练掌握一门或多门编程语言,并有大型项目建设经验者优先,重点考察Java、Python、Perl;
5、熟悉数据仓库领域知识和技能者优先,包括但不局限于:元数据管理、数据开发测试工具与方法、数据质量、主数据管理;
6、掌握实时流计算技术,有storm开发经验者优先。
**数据工程师的目标着眼于全局和开发。**数据工程师建立自动化系统和模型数据结构以使数据得到有效处理。数据工程师的目标是创建及开发表和数据管道,以支持分析仪表板和其他数据客户(如数据科学家、分析师和其他工程师)。与大多数工程师很相似,有很多设计、假设、限制和开发,能够创建某种最终的强健系统。这个系统可能是一个数据仓库和ETL或者流式管道。
大数据学习潮流已成必然,“超高薪、高大上、前景光明”成为大数据行业的代名词。随着数据开发工程师成为炙手可热的职位,与之相关各项条件水涨船高:录取标准、人才需求、以及,薪资待遇,因此想要学习大数据掌握相关技能才是自身最大的核心竞争力。
时势造英雄,对个人而言亦是如此。跟随趋势,找准自己未来发力的赛道,在合适的时间干合适的事,就是抓住自己的未来。
而行业研究就是为了得出面向未来的结论。所以,了解行业趋势,太重要了。
在互联网时代,未来的机会在哪呢?
日前,北京大数据研究院联合大数据分析与应用技术国家工程实验室、北京治数科技有限公司共同发布了《2022年中国大数据产业发展指数报告》。
研究团队在2020年、2021年连续发布大数据产业发展指数的基础上,深入调研了各地大数据政策环境、大数据产业和企业发展状况,基于自身企业库中收录的 7472 家大数据企业数据和相关合作方数据,对全国 31 个省级行政区(不包含港澳台地区)和 150个 重点城市的大数据产业发展情况进行综合评估。以下是从报告中摘录的部分:
产业整体发展持续向好
但差异和分化态势显著
从大数据产业发展省级得分来看,全国 31 个省级行政区(不包含港澳台地区)大数据产业发展水平差异和分化态势显著。
大数据产业发展前20强城市
△大数据产业发展指数城市排名散点图
从梯队和排名变化情况可以看出,城市大数据产业发展水平与城市综合发展水平呈正相关。
第一梯队优势明显,引领大数据产业发展
排名依次为北京、深圳、上海、广州、杭州5个城市。这些城市实力雄厚,大数据产业发展水平处于全国头部,指数排名稳居全国前五。
第二梯队追赶势头强劲,大数据产业规模扩大
排名依次为南京、天津、成都、苏州、合肥、重庆、武汉7个城市。
这些城市大数据产业发展指数相对集中,排名位次变化较大,市场竞争激烈,其中重庆、天津、成都排名上升较快,合肥、苏州、武汉等城市排名有所下滑。
第三梯队发展趋势良好,但仍有较大提升空间
排名依次为无锡、厦门、青岛、西安、珠海、郑州、福州、济南,这些城市大数据产业发展整体趋势较好,具有较大发展潜力和市场空间,需加快追赶步伐。
头部企业情况
*以上截图均来源《2022年中国大数据产业发展指数报告》,如侵删
从各地大数据上市公司市值情况来看,北京以 1.356 万亿元位居榜首,成为全国唯一超万亿元的城市,其次杭州、上海、深圳紧随其后,市值超五千亿元,其中杭州为 0.744 万亿元、上海为 0.578 万亿元、深圳为 0.569 万亿元;
从上市公司净利润来看,北京、杭州、深圳、天津、上海、青岛六个城市净利润超百亿元,其中,北京、天津、上海上升势头强劲,北京超越杭州和深圳,以 379.8 亿元领先于其他城市,天津和上海均跻身百亿净利润企业俱乐部。
大数据遍地开花
如何抓住学习机会?
从《2022年中国大数据产业发展指数报告》中,我们可以看到,现在大数据相关的产业已经在各个城市发展起来,产业规模也不断在扩大,相关行业对人才的需求量也在不断增加!
据《新职业——大数据工程技术人员就业景气现状分析报告》显示,预计2025年前大数据人才需求仍保持 30%-40% 的增速,行业人才需求量达到 250 万 。
不仅招聘需求多,大数据开发人才在各大城市的就业薪资也非常可观。
△数据来源职友集,如侵删
薪资高、缺口大,自然成为职场人的“薪”选择!
任何学习过程都需要一个科学合理的学习路线,才能够有条不紊的完成我们的学习目标。Python+大数据所需学习的内容纷繁复杂,难度较大,为大家整理了一个全面的Python+大数据学习路线图,帮大家理清思路,攻破难关!
Python+大数据学习路线图详细介绍(均为免费视频教程哈)
第一阶段 大数据开发入门
学前导读:从传统关系型数据库入手,掌握数据迁移工具、BI数据可视化工具、SQL,对后续学习打下坚实基础。
1.大数据数据开发基础MySQL8.0从入门到精通
MySQL是整个IT基础课程,SQL贯穿整个IT人生,俗话说,SQL写的好,工作随便找。本课程从零到高阶全面讲解MySQL8.0,学习本课程之后可以具备基本开发所需的SQL水平。
2022最新MySQL知识精讲+mysql实战案例_零基础mysql数据库入门到高级全套教程
第二阶段 大数据核心基础
学前导读:学习Linux、Hadoop、Hive,掌握大数据基础技术。
2022版大数据Hadoop入门教程
Hadoop离线是大数据生态圈的核心与基石,是整个大数据开发的入门,是为后期的Spark、Flink打下坚实基础的课程。掌握课程三部分内容:Linux、Hadoop、Hive,就可以独立的基于数据仓库实现离线数据分析的可视化报表开发。
2022最新大数据Hadoop入门视频教程,最适合零基础自学的大数据Hadoop教程
第三阶段 千亿级数仓技术
学前导读:本阶段课程以真实项目为驱动,学习离线数仓技术。
数据离线数据仓库,企业级在线教育项目实战(Hive数仓项目完整流程)
本课程会、建立集团数据仓库,统一集团数据中心,把分散的业务数据集中存储和处理 ;目从需求调研、设计、版本控制、研发、测试到落地上线,涵盖了项目的完整工序 ;掘分析海量用户行为数据,定制多维数据集合,形成数据集市,供各个场景主题使用。
大数据项目实战教程_大数据企业级离线数据仓库,在线教育项目实战(Hive数仓项目完整流程)
第四阶段 PB内存计算
学前导读:Spark官方已经在自己首页中将Python作为第一语言,在3.2版本的更新中,高亮提示内置捆绑Pandas;课程完全顺应技术社区和招聘岗位需求的趋势,全网首家加入Python on Spark的内容。
1.python入门到精通(19天全)
python基础学习课程,从搭建环境。判断语句,再到基础的数据类型,之后对函数进行学习掌握,熟悉文件操作,初步构建面向对象的编程思想,最后以一个案例带领同学进入python的编程殿堂。
全套Python教程_Python基础入门视频教程,零基础小白自学Python必备教程
2.python编程进阶从零到搭建网站
学完本课程会掌握Python高级语法、多任务编程以及网络编程。
Python高级语法进阶教程_python多任务及网络编程,从零搭建网站全套教程
3.spark3.2从基础到精通
Spark是大数据体系的明星产品,是一款高性能的分布式内存迭代计算框架,可以处理海量规模的数据。本课程基于Python语言学习Spark3.2开发,课程的讲解注重理论联系实际,高效快捷,深入浅出,让初学者也能快速掌握。让有经验的工程师也能有所收获。
Spark全套视频教程,大数据spark3.2从基础到精通,全网首套基于Python语言的spark教程
4.大数据Hive+Spark离线数仓工业项目实战
通过大数据技术架构,解决工业物联网制造行业的数据存储和分析、可视化、个性化推荐问题。一站制造项目主要基于Hive数仓分层来存储各个业务指标数据,基于sparkSQL做数据分析。核心业务涉及运营商、呼叫中心、工单、油站、仓储物料。
全网首次披露大数据Spark离线数仓工业项目实战,Hive+Spark构建企业级大数据平台