前言
物体检测——顾名思义就是通过深度学习算法检测图像或视频中的物体。目标检测的目的是识别和定位场景中所有已知的目标。有了这种识别和定位,目标检测可以用来计数场景中的目标,确定和跟踪它们的精确位置,同时精确地标记它们。
目标检测通常与图像识别相混淆,所以在我们继续之前,澄清它们之间的区别是重要的。
图像识别为图像分配一个标签。狗的图片会被贴上“狗”的标签。两只狗的照片仍然会被贴上“狗”的标签。另一方面,对象检测在每只狗周围画一个盒子,并给这个盒子贴上“狗”的标签。模型预测每个对象在哪里以及应该应用什么标签。通过这种方式,目标检测比识别提供了更多关于图像的信息。
物体检测与图像识别和图像分割等其他类似的计算机视觉技术密不可分,因为它有助于我们理解和分析图像或视频中的场景。
鉴于这些关键的区别和物体检测的独特能力,我们可以看到为什么它可以在日常使用优势的多种方式中应用,一些常见的例子是自动驾驶汽车,人脸检测,交通调节,视频监控,人群计数,异常检测等。
You only look once(YOLO)意思是只需要浏览一次就可以识别出图中的物体的类别和位置,是一种先进的实时目标检测系统,在2016年被提出,发表在计算机视觉顶会CVPR(Computer Vision and Pattern Recognition)上。
几个高频面试题目
如何对目标物体进行检测?
方法一:窗口切分
假设我们已经具备了图像分类的算法&