redis之主从复制、哨兵、集群

news2025/1/10 3:37:54

文章目录

  • 一、redis的高可用
    • 1.1 redis高可用的概念
    • 1.2 Redis的高可用技术
  • 二、redis 主从复制
    • 2.1主从复制的原理
    • 2.2搭建Redis 主从复制
  • 三、Redis 哨兵模式
    • 3.1搭建Redis 哨兵模式
    • 3.2启动哨兵模式
    • 3.3查看哨兵信息
    • 3.4故障模拟
  • 四、Redis 群集模式
    • 4.1搭建Redis 群集模式

一、redis的高可用

1.1 redis高可用的概念

在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。

高可用的计算公式是1-(宕机时间)/(宕机时间+运行时间)有点类似与网络传输的参数误码率,我们用9的个数表示可用性:
2个9:99%,一年内宕机时长:1%×365天=3.6524天=87.6h
4个9:99.99%,一年内宕机时长:0.01%×365天=52.56min
5个9:99.999%,一年内宕机时长:0.001%*365天=5.265min
11个9:几乎一年宕机时间只有几秒钟

但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等。

1.2 Redis的高可用技术

在Redis中,实现高可用的技术主要包括持久化、主从复制、哨兵和cluster集群,下面分别说明它们的作用,以及解决了什么样的问题。

持久化: 持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。

主从复制: 主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份(和同步),以及对于读操作的负载均衡和简单的故障恢复。

缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
哨兵: 在主从复制的基础上,哨兵实现了自动化的故障恢复。(主挂了,找一个从成为新的主,哨兵节点进行监控)

缺陷:写操作无法负载均衡;存储能力受到单机的限制。
Cluster集群: 通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。(6台起步,成双成对,3主3从)

二、redis 主从复制

2.1主从复制的原理

主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

主从复制的作用:
●数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
●故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
●负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
●高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

主从复制流程:
(1)若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接。
(2)无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中。
(3)后台进程完成缓存操作之后,Master机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。
(4)Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Master同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常。

在这里插入图片描述

2.2搭建Redis 主从复制

Master节点:192.168.44.100
Slave1节点:192.168.44.101
Slave2节点:192.168.44.102

1、完成redis的安装

在之前的实验中已经安装完毕详情请看:链接: redis的安装

2、修改 Redis 配置文件(Master节点操作)

vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0 #87行,修改监听地址为0.0.0.0
protected-mode no #111行,将本机访问保护模式设置no
port 6379 #138行,Redis默认的监听6379端口
daemonize yes #309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid #341行,指定 PID 文件
logfile “/usr/local/redis/log/redis_6379.log” #354行,指定日志文件
dir /usr/local/redis/data #504行,指定持久化文件所在目录
#requirepass abc123 #1037行,可选,设置redis密码
appendonly yes #1380行,开启AOF

systemctl restart redis-server.service

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3、修改 Redis 配置文件(Slave节点操作)

vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0									#87行,修改监听地址为0.0.0.0
protected-mode no								#111行,将本机访问保护模式设置no
port 6379										#138行,Redis默认的监听6379端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log"	#354行,指定日志文件
dir /usr/local/redis/data						#504行,指定持久化文件所在目录
#requirepass abc123								#1037行,可选,设置redis密码
appendonly yes									#1380行,开启AOF
replicaof 192.168.44.100 6379					#528行,指定要同步的Master节点IP和端口
#masterauth abc123								#535行,可选,指定Master节点的密码,仅在Master节点设置了requirepass


systemctl restart redis-server.service

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3、验证主从效果

在Master节点上看日志:
tail -f /usr/local/redis/log/redis_6379.log 
Replica 192.168.80.11:6379 asks for synchronization
Replica 192.168.80.12:6379 asks for synchronization
Synchronization with replica 192.168.80.11:6379 succeeded
Synchronization with replica 192.168.80.12:6379 succeeded

在Master节点上验证从节点:
redis-cli info replication
# Replication
role:master
connected_slaves:2
slave0:ip=192.168.80.11,port=6379,state=online,offset=1246,lag=0
slave1:ip=192.168.80.12,port=6379,state=online,offset=1246,lag=1

在这里插入图片描述

在主服务器上创建值,新的从服务器中也会有其中的数值

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

三、Redis 哨兵模式

主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。

哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。

#哨兵模式的作用:
●监控:哨兵会不断地检查主节点和从节点是否运作正常。

●自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。

●通知(提醒):哨兵可以将故障转移的结果发送给客户端。

哨兵结构由两部分组成,哨兵节点和数据节点:
●哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
●数据节点:主节点和从节点都是数据节点。

#故障转移机制:
1.由哨兵节点定期监控发现主节点是否出现了故障
每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。

2.当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

3.由leader哨兵节点执行故障转移,过程如下:
●将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
●若原主节点恢复也变成从节点,并指向新的主节点;
●通知客户端主节点已经更换。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。

#主节点的选举:
1.过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。
2.选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
3.选择复制偏移量最大,也就是复制最完整的从节点。

哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式

3.1搭建Redis 哨兵模式

Master节点:192.168.44.100
Slave1节点:192.168.44.101
Slave2节点:192.168.44.102

systemctl stop firewalld
setenforce 0

-----修改 Redis 哨兵模式的配置文件(所有节点操作)-----
cp /opt/redis-7.0.9/sentinel.conf /usr/local/redis/conf/
chown redis.redis /usr/local/redis/conf/sentinel.conf

vim /usr/local/redis/conf/sentinel.conf
protected-mode no									#6行,关闭保护模式
port 26379											#10行,Redis哨兵默认的监听端口
daemonize yes										#15行,指定sentinel为后台启动
pidfile /usr/local/redis/log/redis-sentinel.pid		#20行,指定 PID 文件
logfile "/usr/local/redis/log/sentinel.log"			#25行,指定日志存放路径
dir /usr/local/redis/data							#54行,指定数据库存放路径
sentinel monitor mymaster 192.168.44.100 6379 2		#73行,修改 指定该哨兵节点监控192.168.44.100:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
#sentinel auth-pass mymaster abc123					#76行,可选,指定Master节点的密码,仅在Master节点设置了requirepass
sentinel down-after-milliseconds mymaster 3000		#114行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000			#214行,同一个sentinel对同一个master两次failover之间的间隔时间(180秒)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3.2启动哨兵模式

先启master,再启slave
cd /usr/local/redis/conf/
redis-sentinel sentinel.conf &

在这里插入图片描述

3.3查看哨兵信息

redis-cli -p 26379 info Sentinel
# Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.80.10:6379,slaves=2,sentinels=3

在这里插入图片描述

3.4故障模拟

#查看redis-server进程号:
ps -ef | grep redis
root      57031      1  0 15:20 ?        00:00:07 /usr/local/bin/redis-server 0.0.0.0:6379
root      57742      1  1 16:05 ?        00:00:07 redis-sentinel *:26379 [sentinel]
root      57883  57462  0 16:17 pts/1    00:00:00 grep --color=auto redis

在这里插入图片描述

#杀死 Master 节点上redis-server的进程号
kill -9 57031			#Master节点上redis-server的进程号

在这里插入图片描述

#验证结果
tail -f /usr/local/redis/log/sentinel.log
6709:X 13 Mar 2023 12:27:29.517 # +sdown master mymaster 192.168.80.10 6379
6709:X 13 Mar 2023 12:27:29.594 * Sentinel new configuration saved on disk
6709:X 13 Mar 2023 12:27:29.594 # +new-epoch 1
6709:X 13 Mar 2023 12:27:29.595 * Sentinel new configuration saved on disk
6709:X 13 Mar 2023 12:27:29.595 # +vote-for-leader c64fac46fcd98350006900c330998364d6af635d 1
6709:X 13 Mar 2023 12:27:29.620 # +odown master mymaster 192.168.80.10 6379 #quorum 2/2
6709:X 13 Mar 2023 12:27:29.621 # Next failover delay: I will not start a failover before Mon Mar 13 12:33:30 2023
6709:X 13 Mar 2023 12:27:30.378 # +config-update-from sentinel c64fac46fcd98350006900c330998364d6af635d 192.168.80.11 26379 @ mymaster 192.168.80.10 6379
6709:X 13 Mar 2023 12:27:30.378 # +switch-master mymaster 192.168.80.10 6379 192.168.80.11 6379
6709:X 13 Mar 2023 12:27:30.378 * +slave slave 192.168.80.13:6379 192.168.80.13 6379 @ mymaster 192.168.80.11 6379
6709:X 13 Mar 2023 12:27:30.378 * +slave slave 192.168.80.10:6379 192.168.80.10 6379 @ mymaster 192.168.80.11 6379
6709:X 13 Mar 2023 12:27:30.381 * Sentinel new configuration saved on disk
6709:X 13 Mar 2023 12:27:33.379 # +sdown slave 192.168.80.10:6379 192.168.80.10 6379 @ mymaster 192.168.80.11 6379

在这里插入图片描述

2.redis-cli -p 26379 INFO Sentinel

# Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_tilt_since_seconds:-1
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.80.11:6379,slaves=2,sentinels=3

在这里插入图片描述

四、Redis 群集模式

集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。

集群由多组节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。

#集群的作用,可以归纳为两点:
(1)数据分区:数据分区(或称数据分片)是集群最核心的功能。
集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。
Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。

(2)高可用:集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。

#Redis集群的数据分片:
Redis集群引入了哈希槽的概念
Redis集群有16384个哈希槽(编号0-16383)
集群的每组节点负责一部分哈希槽
每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作

#以3个节点组成的集群为例:
节点A包含0到5460号哈希槽
节点B包含5461到10922号哈希槽
节点C包含10923到16383号哈希槽

#Redis集群的主从复制模型
集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用。
为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为的主节点继续服务。当B和B1都失败后,集群将不可用。

4.1搭建Redis 群集模式

redis的集群一般需要6个节点,3主3从。方便起见,这里所有节点在同一台服务器上模拟:
以端口号进行区分:3个主节点端口号:6001/6002/6003,对应的从节点端口号:6004/6005/6006。

cd /usr/local/redis/
mkdir -p redis-cluster/redis600{1..6}

for i in {1..6}
do
cp /opt/redis-7.0.9/redis.conf /usr/local/redis/redis-cluster/redis600$i
cp /opt/redis-7.0.9/src/redis-cli /opt/redis-7.0.9/src/redis-server /usr/local/redis/redis-cluster/redis600$i
done

在这里插入图片描述

#开启群集功能:
#其他5个文件夹的配置文件以此类推修改,注意6个端口都要不一样。
cd /usr/local/redis/redis-cluster/redis6001
vim redis.conf
#bind 127.0.0.1									#87行,注释掉bind项,默认监听所有网卡
protected-mode no								#111行,关闭保护模式
port 6001										#138行,修改redis监听端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6001.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6001.log"	#354行,指定日志文件
dir ./											#504行,指定持久化文件所在目录
appendonly yes									#1379行,开启AOF
cluster-enabled yes								#1576行,取消注释,开启群集功能
cluster-config-file nodes-6001.conf				#1584行,取消注释,群集名称文件设置
cluster-node-timeout 15000						#1590行,取消注释群集超时时间设置
#启动redis节点
分别进入那六个文件夹,执行命令:redis-server redis.conf ,来启动redis节点
cd /usr/local/redis/redis-cluster/redis6001
redis-server redis.conf

for d in {1..6}
do
cd /usr/local/redis/redis-cluster/redis600$d
./redis-server redis.conf
done

在这里插入图片描述

在这里插入图片描述

#启动集群
redis-cli --cluster create 127.0.0.1:6001 127.0.0.1:6002 127.0.0.1:6003 127.0.0.1:6004 127.0.0.1:6005 127.0.0.1:6006 --cluster-replicas 1

在这里插入图片描述

#六个实例分为三组,每组一主一从,前面的做主节点,后面的做从节点。下面交互的时候 需要输入 yes 才可以创建。
--replicas 1 表示每个主节点有1个从节点。
#测试群集
redis-cli -p 6001 -c					#加-c参数,节点之间就可以互相跳转
127.0.0.1:6001> cluster slots			#查看节点的哈希槽编号范围
1) 1) (integer) 5461
   2) (integer) 10922									#哈希槽编号范围
   3) 1) "127.0.0.1"
      2) (integer) 6003									#主节点IP和端口号
      3) "fdca661922216dd69a63a7c9d3c4540cd6baef44"
   4) 1) "127.0.0.1"
      2) (integer) 6004									#从节点IP和端口号
      3) "a2c0c32aff0f38980accd2b63d6d952812e44740"
2) 1) (integer) 0
   2) (integer) 5460
   3) 1) "127.0.0.1"
      2) (integer) 6001
      3) "0e5873747a2e26bdc935bc76c2bafb19d0a54b11"
   4) 1) "127.0.0.1"
      2) (integer) 6006
      3) "8842ef5584a85005e135fd0ee59e5a0d67b0cf8e"
3) 1) (integer) 10923
   2) (integer) 16383
   3) 1) "127.0.0.1"
      2) (integer) 6002
      3) "816ddaa3d1469540b2ffbcaaf9aa867646846b30"
   4) 1) "127.0.0.1"
      2) (integer) 6005
      3) "f847077bfe6722466e96178ae8cbb09dc8b4d5eb"

127.0.0.1:6001> set name zhangsan
-> Redirected to slot [5798] located at 127.0.0.1:6003
OK

127.0.0.1:6001> cluster keyslot name					#查看name键的槽编号

redis-cli -p 6004 -c
127.0.0.1:6004> keys *							#对应的slave节点也有这条数据,但是别的节点没有
1) "name"


redis-cli -p 6001 -c cluster nodes

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/709872.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据结构--串的定义和基本操作

数据结构–串的定义和基本操作 注:数据结构三要素――逻辑结构、数据的运算、存储结构(物理结构) 存储结构不同,运算的实现方式不同 \color{pink}存储结构不同,运算的实现方式不同 存储结构不同,运算的实现方式不同 串的定义 串 …

用Java制作简单的记事本

目录 前言 主界面设计 功能实现 打开 另存为 保存 查找 替换 成员变量 其他方法 警告弹窗 不移动光标更新文本框内容 源代码 总结 转载请注明出处,尊重作者劳动成果。 前言 考完试想写敲一下代码就写了一下这个程序,整个也是写了怎么久…

JavaEE语法第二章之多线程(初级一)

一、认识线程 1.1线程的概念 一个线程就是一个 "执行流"。每个线程之间都可以按照顺序执行自己的代码. 多个线程之间 "同时"执行着多份代码。 一家公司要去银行办理业务,既要进行财务转账,又要进行福利发放,还得进行缴…

Docker常见问题集合

一、Docker安装 1、yum 安装 1)更新yum包到最新 yum update2)安装软件需要的软件,yum-util(提供 yum-config-manager 功能),device-mapper-persistent-data、lvm2(devicemapper 驱动依赖&…

mmdetection踩坑记录

1.mmcv-full和mmdetection的版本匹配问题 Readme里应该会给可复现的版本,一定要按照readme里的,这里是一些版本对应关系,像我的mmdet是2.3.0,我就只能装1.0.5的mmcv-full 表格来源:https://blog.csdn.net/qq_55957975/…

高频-测试岗面试题,软件测试面试常问面试题(付答案)

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 测试流程&#xf…

【Zynq】Xilinx SDK设置编码方式

举例:将Xilinx SDK设置为UTF-8编码 工具栏->Window->Preferences

基于Tensorflow和Keras实现卷积神经网络CNN并进行猫狗识别

文章目录 一、环境配置1、安装Anaconda2、配置TensorFlow、Keras 二、猫狗数据集分类建模3.1 猫狗图像预处理3.2 猫狗分类的实例——基准模型3.1 构建神经网络3.2 配置优化器3.3 图片格式转化3.4 训练模型3.5 保存模型3.6 可视化 三、数据增强四、dropout 层五、参考资料 一、环…

Openresty原理概念篇(十五)Lua 规则和 NGINX 配置文件产生冲突怎么办?

一 Lua 规则和 NGINX 配置文件产生冲突怎么办? ① OpenResty 的名字和语言 说明: 了解openresty的发展史 ② 配置文件的规则优先级 1) 如何各司其职2) 都能满足功能,该如何取舍 理解: 1) rewrite ... break 到POST_WRITE阶段2) 而rewrite_by_lua*…

JAVA的DIFF算法

首先看一下我的文件结构 1.EnumType 类 public enum EnumType {ADD("ADD"),MODIFIED("MODIFIED"), DELETED("DELETED");//创建私有变量private String type;EnumType(String type) {this.type type;} }2.OperationType类 public class Operati…

vue封装svg组件来修改svg图片颜色

文章目录 1、引入依赖2、根目录的vue.config.js配置3、在组件文件夹(compontents)中创建svgIcon.vue4、在src目录下创建icons文件5、处理svg格式的图片6、在main.js文件中引入icons文件中的index.js文件7、使用8、效果图1、项目成功运行后的样子2、直接在html上添加样式&#x…

DEBUG系列三:使用 F9 和 watch point

首先是我随便找了个报错。 报销消息号信息: No pricing procedure could be determined Message No. V1212 1)首先可以直接SE91 来追溯这个消息号哪儿报出来的 可以看到下面两个地方可能会报这个消息,可以直接在这两个地方打断点,…

开发一个RISC-V上的操作系统(一)—— 环境搭建

在前面我们使用Verilog实现了一个简易的RISC-V处理器,并且能烧录到板子上跑一些简单C程序,传送门: RISC-V处理器的设计与实现(一)—— 基本指令集_risc_v处理器_Patarw_Li的博客-CSDN博客 RISC-V处理器的设计与实现&…

电子器件系列41:扁平高压电阻

这种电阻和其他的高压电阻不同,不是绕线电阻而是陶瓷电阻 找到一个大神,他的专栏也得很详细了,贴在这里 https://blog.csdn.net/wkezheng/category_12059870.html 阻容感基础03:电阻器分类(1)-片式电阻器…

如何快速判断是否在容器环境

在渗透测试过程中,我们的起始攻击点可能在一台虚拟机里或是一个Docker环境里,甚至可能是在K8s集群环境的一个pod里,我们应该如何快速判断当前是否在容器环境中运行呢? 当拿到shell权限,看到数字和字母随机生成的主机名…

软考A计划-系统集成项目管理工程师-项目范围管理(二)

点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例点击跳转>软考全系列 👉关于作者 专注于Android/Unity和各种游戏开发技巧&#xff…

HTML、Markdown、Word、Excel等格式的文档转换为PDF

工具:gotenberg,docker部署 github:https://github.com/gotenberg/gotenberg 文档:https://gotenberg.dev/docs/about https://gotenberg.dev/docs/modules/libreoffice docker运行: docker run -d --rm -p 3000:30…

kubernete部署prometheus监控sring-boot程序

目录 1、kubernete集群环境以及prometheus基础环境 2、kubernetes监控集群内部的spring-boot程序 2.1、application.yml系统配置,endpoints相关设置 2.2、引入监控的相关依赖文件 pom.xml ,主要是spring-boot-starter-actuator和micrometer-registr…

ModaHub魔搭社区:向量数据库Milvus产品问题(二)

目录 为什么向量距离计算方式是内积时,搜索出来的 top1 不是目标向量本身? 对集合分区的查询是否会受到集合大小的影响,尤其在集合数据量高达一亿数据量时? 如果只是搜索集合中的部分分区,整个集合的数据会全部加载…