计算机视觉:多相机硬件同步拍摄
- 传感器同步
- 硬件同步信号
- FSYNC信号
- STROBE信号
- 硬件接线
- 硬件设备
- 接线步骤:
- 软件驱动
- 参考文献
传感器同步
目前主要有两种方法来同步不同传感器的信息(帧、IMU数据包、ToF等):
- 硬件同步(基于硬件信号触发,同步精度较高,需要硬件支持)
- 软件同步(基于时间戳或序列号同步,同步精度较低,无需硬件支持)
此博客重点介绍硬件同步,它允许在多个相机传感器之间精确同步,并可能与其他硬件同步,如闪光灯LED、外部IMU或其他相机。
硬件同步信号
FSYNC信号
FSYNC/FSIN(帧同步)信号是一个脉冲,在开始捕获每个帧时被驱动为高电平。它的长度与曝光时间不成正比,可以是输入或输出,工作电压是1.8V。
在双目立体相机(OAK-D*)上,我们希望双目黑白相机是完全同步的,所以一个相机传感器(如左相机)的FSYNC设置为INPUT(输入),而另一个相机传感器(如右相机)的FSYNC设置为OUTPUT(输出)。在这样的配置中,右相机驱动左相机。
注意:目前,只有OV9282/OV9782可以输出FSYNC信号,而IMX378/477/577/等应该也有这个能力,但还不支持(所以这些信号不能驱动FSYNC信号,只能被它驱动)。AR0234只支持输入FSYNC信号。
如果我们想用外部信号驱动相机,我们需要将FSIN设置为相机传感器的INPUT。将一个信号发生器连接到所有的FSIN引脚上,这样相机将根据信号发生器的触发信号捕获每一帧图像。
STROBE信号
STROBE信号是图像传感器的输出,在图像传感器的曝光期间是有效的(高电平)。它可以用来驱动外部的LED照明,所以照明只在曝光时间内激活,而不是持续开启,这将减少功耗和发热。
在OAK-D-Pro系列相机上使用STROBE信号(它有板载照明红外LED和红外激光点阵发射器)来驱动激光/LED。
硬件接线
硬件设备
我们使用的硬件设备如下:
OV9782广角相机 × 4
OAK-FFC-4P摄像头模组 × 1
OV9782广角相机产品特点:
- CMOS感光
- 全局快门
- 最大帧率:120 FPS
- 最大分辨率: 1MP(1280×800)
- DFOV:89.5°
- HFOV:80°
- VFOV:55°
- 对焦范围:固定焦点:19.6 cm – ∞
OAK-FFC-4P摄像头模组属于分体式OAK,可以通过软排线接入4个独立的MIPI相机模块,其产品特点有:
- 4T算力;
- 4K H.265推流;
- 厘米级测量精度;
- 支持的平台和语言:Windows10、Ubuntu、树莓派、linux、macOS、Jetson、Python、C++、ROS、Android(需depthai≥2.16.0)。
接线步骤:
1、首先,使用跳线将每根电缆上的 FSIN 测试点连接到相应相机板上的 FSIN 引脚(也可以直接将相机板上的所有FSIN引脚直接相连):
2、然后,将4个OV9782广角相机通过排线连接到OAK-FFC-4P摄像头模组:
3、最后,给摄像头模组供电,并通过USB接入电脑PC中。
软件驱动
编写测试代码和打印设备时间戳,camera_driver.py
文件如下:
import depthai as dai
import time
import cv2
import collections
set_fps = 30
class FPS:
def __init__(self, window_size=30):
self.dq = collections.deque(maxlen=window_size)
self.fps = 0
def update(self, timestamp=None):
if timestamp == None: timestamp = time.monotonic()
count = len(self.dq)
if count > 0: self.fps = count / (timestamp - self.dq[0])
self.dq.append(timestamp)
def get(self):
return self.fps
cam_list = ['rgb', 'left', 'right', 'camd']
cam_socket_opts = {
'rgb' : dai.CameraBoardSocket.RGB, # Or CAM_A
'left' : dai.CameraBoardSocket.LEFT, # Or CAM_B
'right': dai.CameraBoardSocket.RIGHT, # Or CAM_C
'camd' : dai.CameraBoardSocket.CAM_D,
}
pipeline = dai.Pipeline()
cam = {}
xout = {}
for c in cam_list:
cam[c] = pipeline.create(dai.node.MonoCamera)
cam[c].setResolution(dai.MonoCameraProperties.SensorResolution.THE_800_P)
if c == 'rgb':
cam[c].initialControl.setFrameSyncMode(dai.CameraControl.FrameSyncMode.OUTPUT)
else:
cam[c].initialControl.setFrameSyncMode(dai.CameraControl.FrameSyncMode.INPUT)
cam[c].setBoardSocket(cam_socket_opts[c])
xout[c] = pipeline.create(dai.node.XLinkOut)
xout[c].setStreamName(c)
cam[c].out.link(xout[c].input)
config = dai.Device.Config()
config.board.gpio[6] = dai.BoardConfig.GPIO(dai.BoardConfig.GPIO.OUTPUT,
dai.BoardConfig.GPIO.Level.HIGH)
with dai.Device(config) as device:
device.startPipeline(pipeline)
q = {}
fps_host = {} # FPS computed based on the time we receive frames in app
fps_capt = {} # FPS computed based on capture timestamps from device
for c in cam_list:
q[c] = device.getOutputQueue(name=c, maxSize=1, blocking=False)
cv2.namedWindow(c, cv2.WINDOW_NORMAL)
cv2.resizeWindow(c, (640, 480))
fps_host[c] = FPS()
fps_capt[c] = FPS()
while True:
frame_list = []
for c in cam_list:
pkt = q[c].tryGet()
if pkt is not None:
fps_host[c].update()
fps_capt[c].update(pkt.getTimestamp().total_seconds())
print(c+":",pkt.getTimestampDevice())
frame = pkt.getCvFrame()
cv2.imshow(c, frame)
print("-------------------------------")
# print("\rFPS:",
# *["{:6.2f}|{:6.2f}".format(fps_host[c].get(), fps_capt[c].get()) for c in cam_list],
# end='', flush=True)
key = cv2.waitKey(1)
if key == ord('q'):
break
运行
python camera_driver.py
参考文献
1、通过硬件触发信号实现OAK多相机之间的同步拍摄
2、官方文档:硬件同步
3、官方文档:oak-ffc-4p
4、原理图
5、oak_deptahi_external_trigger_fsync.py
#!/usr/bin/env python3
import depthai as dai
import cv2
import time
pipeline = dai.Pipeline()
camRgb = pipeline.create(dai.node.ColorCamera)
camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)
camRgb.setIspScale(2,3)
camRgb.initialControl.setFrameSyncMode(dai.CameraControl.FrameSyncMode.INPUT)
camRgb.initialControl.setExternalTrigger(4,3)
xoutRgb = pipeline.create(dai.node.XLinkOut)
xoutRgb.setStreamName("color")
camRgb.isp.link(xoutRgb.input)
monoLeft = pipeline.create(dai.node.MonoCamera)
monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_720_P)
monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
monoLeft.initialControl.setFrameSyncMode(dai.CameraControl.FrameSyncMode.INPUT)
monoLeft.initialControl.setExternalTrigger(4,3)
xoutLeft = pipeline.create(dai.node.XLinkOut)
xoutLeft.setStreamName("left")
monoLeft.out.link(xoutLeft.input)
monoRight = pipeline.createMonoCamera()
monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_720_P)
monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
monoRight.initialControl.setFrameSyncMode(dai.CameraControl.FrameSyncMode.INPUT)
monoRight.initialControl.setExternalTrigger(4,3)
xoutRight = pipeline.create(dai.node.XLinkOut)
xoutRight.setStreamName("right")
monoRight.out.link(xoutRight.input)
# Connect to device with pipeline
with dai.Device(pipeline) as device:
arr = ['left', 'right', 'color']
queues = {}
frames = {}
for name in arr:
queues[name] = device.getOutputQueue(name)
print("Starting...")
while True:
for name in arr:
if queues[name].has():
frames[name]=queues[name].get().getCvFrame()
for name, frame in frames.items():
cv2.imshow(name, frame)
key = cv2.waitKey(1)
if key == ord('q'):
break